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ABSTRACT Signcryption is a basic cryptographic primitive that simultaneously captures the functions
of encryption and signature. To realize comprehensive information security against quantum computing
attacks, lattice-based signcryption schemes have been successively proposed. However, the performance
of signcryption schemes should be improved in the lattice setting. An efficient lattice-based signcryption
scheme in the standard model is proposed in this paper. Under the ring learning with errors (RLWE) assump-
tion and the ideal short integer solution (ISIS) assumption, the proposed signcryption scheme achieves
indistinguishability against adaptive chosen ciphertext attacks (IND-CCA2) and existential unforgeability
under an adaptive chosen-message attack (EUF-ACMA). Our scheme not only reduces the communication
and computational overhead but also realizes a new design that combines the partitioning technique with the
idea of tag-based key encapsulation. The performance analysis results show that our scheme is more efficient
than previous lattice-based signcryption schemes in the standard model.

INDEX TERMS Signcryption, lattice, encapsulation, ring learning with errors (RLWE) problem, ideal short
integer solution (ISIS) problem.

I. INTRODUCTION
The signcryption scheme proposed by Zheng provides
message authentication, confidentiality, integrity and non-
repudiation of data simultaneously [1]. Hence, signcryption
is more efficient than a direct combination of encryp-
tion and signature. Subsequently, some other signcryption
schemes were proposed [2]–[4]. In general, there are two
design ideas in signcryption: public key signcryption and
hybrid signcryption. Shor pointed out that the large integer
factorization problem and the discrete logarithm problem
can be broken by a quantum algorithm in polynomial
time [5]. Therefore, the design of quantum-resistant sign-
cryption schemes has very important theoretical signifi-
cance and realistic expectations for the future. Fortunately,
as an important representative of post-quantum cryptosys-
tems, lattice-based cryptosystems provide a rich opportunity
to build post-quantum signcryption schemes. No one has yet
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produced such a quantum algorithm to break the worst-case
problem over a lattice.

Lattice-based cryptosystems have rapidly become a
research hotspot, especially in recent years. The security
of lattice-based cryptographic constructions is supported by
worst-case problems over a lattice. The Gaussian sampling
algorithm, modular addition, and vector multiplication are
used in lattice-based cryptographic algorithms that are opti-
mized constantly. The asymptotic efficiency of a lattice-based
cryptographic algorithm is higher than that for traditional
number theory.

A. RELATED WORK AND DISCUSSION
Currently, lattice-based signcryption schemes are being pro-
posed. In 2012, Li et al. [6] constructed a lattice-based
signcryption scheme with a random oracle model (ROM)
based on the preimage sampling function and hash-based
signature proposed by Peikert [7]. Wang et al. [8] used
the preimage sampling function and an indistinguishabil-
ity against adaptive chosen ciphertext attacks (IND-CCA2)
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secure encryption algorithm [9] to construct a lattice-based
hybrid encryption scheme that was proven to be secure in
the ROM. In 2013, Yan et al. [10] constructed a lattice-based
signcryption scheme that was proven to be secure in the
standard model. In [10], Yan et al. first used the trapdoor gen-
eration technique proposed by Micciancio and Peikert [11]
to build a chameleon hash function, then promoted a sig-
nature scheme from existential unforgeability under static
chosen-message attack (EUF-SCMA) security to existen-
tial unforgeability under adaptive chosen-message attack
(EUF-ACMA) security, and finally improved an encryption
scheme from IND-CCA1 security to IND-CCA2 security
by utilizing a CCA secure symmetric encryption algo-
rithm and a collision-resistant hash function. In 2019,
Yan et al. [12] constructed an attribute-based signcryption
scheme from a lattice in the standard model. Lu et al. [13]
in 2014 constructed a lattice-based signcryption scheme
in the standard model. In [13], Lu et al. used Boyen’s
SUF-ACMA secure signature [14] and broke the malleability
of ciphertext by adopting the bimode encryption method.
Xiang et al. [15] designed an attribute-based signcryption
scheme from a lattice in the ROM. Lu et al. [16] con-
structed an IND-CPA secure signcryption scheme based
on a signature without a trapdoor [17] and strength-
ened the scheme to IND-CCA2 secure signcryption in the
ROMby employing Fujisaki-Okamoto’s transformation tech-
nique [18]. Although the ROM simplifies the security proof,
Leuren and Nguyen [19] showed that the ROM exists as
a theoretical fault. Therefore, the design of lattice-based
signcryption schemes in the standard model is an impor-
tant target. Sato and Shikata [20] presented a lattice-based
signcryption scheme without a random oracle. Gérard and
Merckx [21] proposed a lattice-based signcryption scheme in
the ROM. Liu et al. [22] constructed a new lattice-based sign-
cryption scheme in the ROM by combining an RLWE-based
signature scheme and an RLWE-based key exchange
scheme. Zhang et al. [23] presented a multi-receiver identity-
based signcryption scheme from a lattice in the ROM.
Meanwhile, some fine-grained signcryption schemes have
been constructed, such as [24]–[27]. However, the schemes
in [24]–[27] are not anti-quantum schemes.

B. OUR CONTRIBUTION
In this paper, we propose an improved lattice-based signcryp-
tion scheme. Our contributions are summarized as follows:
• There are two ways to realize adaptive secu-
rity in the standard model: dual-system encryp-
tion and the partitioning technique. Katsumata and
Yamada [28] constructed a homomorphic computation
function in 2016 and designed an adaptively secure
identity-based encryption scheme from an ideal lattice.
Inspired by [28], we use the partitioning technique to
ensure the CCA2 security of the proposed signcryption
scheme.

• Boyen [14] in 2010 constructed an EUF-CMA secure
signature from a lattice. In 2015, Böhl et al. [29]

improved and supplemented Boyen’s signature sch-
eme [14]. Based on [29], in 2016, Libert et al. [30]
constructed a signature scheme. Compared with the use
of an independent tag for each signature in [29], Libert
used a random bit string tag, which was equivalent to the
prime exponent in Camenisch-Lysyanskaya’s signature
scheme [31]. There are two methods that are used to
translate a non-adaptive secure signature into a fully
secure signature: the one-time signature technique and
the chameleon hash technique. Inspired by [29], [30],
we construct a chameleon hash from an ideal lattice to
ensure the EUF-CMA security of the proposed sign-
cryption. To achieve EUF-ACMA security, we use the
confined guessing technique and the tag-based lattice
trapdoor to design the signature section.

• In this paper, we introduce the encapsulation idea into
the proposed signcryption scheme. The partitioning
technique, the bonsai tree technique and the reconcili-
ation technique are closely combined to strengthen the
security, which provides a trade-off between efficiency
and computation. The proposed signcryption scheme
also utilizes ideas to optimize the sizes of the public
parameters, private keys and ciphertexts, such as the
G-trapdoor technique.

• One of the crucial properties is ciphertext anonymity.
In the signcryption setting, ciphertext anonymity means
that ciphertexts contain no information about who cre-
ated them or to whom they are intended, namely sender
privacy and receiver privacy. Libert and Quisquator [3]
presented the definition of ciphertext anonymity in the
non-identity-based setting. To the best of our knowl-
edge, few lattice-based signcryption schemes exist that
consider ciphertext anonymity. In this paper, we discuss
the ciphertext anonymity of the proposed signcryption
scheme.

C. PAPER OUTLINE
This paper is organized as follows. The necessary preliminar-
ies are introduced in Section 2. In Section 3, the proposed
scheme is presented in detail, followed by a correctness
and security analysis. Finally, the conclusion is drawn in
Section 4.

II. PRELIMINARIES
A. NOTATION
Z denotes the set of integers. R denotes the set of real
numbers. Random variables are denoted by uppercase italic
letters (e.g., X). Vectors are column vectors and denoted by
bold lower-case letters (e.g., v), and vT denotes the trans-
pose of v. Matrices are sets of column vectors and denoted
by bold capital letters (e.g., X). For a vector v ∈ Rn,
‖v‖p denotes the Lp-norm. Im denotes an m-order identity
matrix. For a matrix A ∈ Rn×n, s1(A) denotes its spectral
norm, and ‖A‖GS denotes the longest column vector of its
Gram-Schmidt orthogonalization. Define a polynomial ring
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R = Z[x]/〈8m(x)〉, where 8m(x) = xm/2 + 1 is an
m-degree cyclotomic polynomial. For a(x) =

∑n−1
i=1 aix

i
∈ R,

‖φ(a)‖2 denotes its norm. For a matrix M ∈ Rs×t , s1(M) =
max‖z‖2=1 ‖z ·rot(M)‖2 denotes its maximum singular value.
We use [v1|v2] (or [V1|V2]) and [v1; v2] (or [V1;V2]) to
denote the horizontal connection and vertical connection of
two vectors (or matrices). For a polynomial ring R over Z,
we use [−b, b]R ⊆ R to denote certain elements in R in
which coefficients are chosen from [−b, b]. If for all c there
exists n0 such that f (n) < 1

nc0
holds for n > n0, we say

that the function f : N → R+ is negligible, denoted by
negl(n). For a vector v ∈ Znq, bin(v) ∈ {0, 1}ndlog2 qe denotes
the binary expansion of each component. For x ∈ R, define
bxe = bx + 1

2c ∈ Z. x ← U (P): uniformly choose x from
the distribution P . x ←R D or x ∈R D: choose x according
to the distribution D. Pr[E] is the occurrence probability
of an event E . The statistical distance between two random
variables X and Y is defined as

4(X,Y) =
1
2

∑
s∈�

|Pr[X = s]− Pr[Y = s]|.

B. SIGNCRYPTION: PRIMITIVE AND SECURITY MODEL
Definition 1: The signcryption scheme consists of the fol-

lowing four algorithms:
• Setup(1n): Input the security parameter 1n, and output
the public parameter PP.

• KeyGen(1n,PP): Input 1n and PP, and output the pub-
lic/private key pair (pk, sk). Set (pks, sks) as the sender’s
public/private key pair. Set (pkr , skr ) as the receiver’s
public/private key pair.

• Signcrypt(msg, sks, pkr ): Signcrypt a message msg
with (sks, pkr ), and output a ciphertext C =

Signcrypt(msg, sks, pkr ).
• Unsigncrypt(C, skr , pks): UnsigncryptCwith (skr , pks).
If unsigncrypted successfully, output msg =

Unsigncrypt(C, skr , pks); otherwise, output ⊥.
Definition 2: If the following event occurs with an over-

whelming advantage, we say that the signcryption scheme is
consistent.

PP← Setup(1n)
(pks, sks)← KeyGen(1n,PP)
(pkr , skr )← KeyGen(1n,PP)
C = Signcrypt(msg, sks, pkr )

msg′ = Unsigncrypt(C, skr , pks) : msg′ = msg

 .
A signcryption scheme realizes IND-CCA2 security and

EUF-CMA security simultaneously. IND-CCA2 security is
defined by a game between a challenger C and an adversary
A as follows:
• Initiation. C executes KeyGen(1n,PP) to generate
(pk∗r , sk

∗
r ) and sends (pk

∗
r ,PP) to A.

• Stage 1. A executes a signcryption oracle query and an
unsigncryption oracle query adaptively. A provides C
with pks to C. If C is valid, C returns the corresponding
plaintext; otherwise, C outputs ⊥.

• Challenge. A selects msg0 and msg1 with the
same length and sends (msg0,msg1, pk∗s , sk

∗
s ) to C.

C chooses b ∈R {0, 1} at random, executes C∗ =
Signcrypt(msgb, pk∗r , pk

∗
s ), and sends C∗ to A.

• Stage 2. A repeats the operations in stage 1 but cannot
query the unsigncryption oracles with (C∗, pk∗s , sk

∗
s )

directly.
• Guess. A outputs b′. A wins this game if b′ = b.

The advantage of A in winning the IND-CCA2 game is
defined as follows:

Adv(A) =
∣∣Pr[b′ = b]−

1
2

∣∣.
If the above-mentioned advantage is negligible for each

polynomial bounded adversary, we say that the signcryption
has IND-CCA2 security.

EUF-CMA security is defined by a game between a chal-
lenger C and a forger F as follows:

• Initiation. C executes KeyGen(1n,PP) to generate
(pk∗s , sk

∗
s ) and sends (pk∗s ,PP) to F .

• Signcryption query. F provides msg and (pkr , skr )
to C. C executes Signcrypt(msg, sks, pkr ) and
returns C to F .

The advantage of F in winning the EUF-CMA game is
defined as follows:

Adv(F) = Pr[msg∗ = Unsigncrypt(C∗, sk∗r , pk
∗
s )].

msg∗ is the corresponding plaintext of C∗ for the
sender’s public key pk∗s with the limitation that C∗ has not
been previously created by the signcryption oracle. If the
above-mentioned advantage is negligible for each polyno-
mial bounded adversary, we say that the signcryption has
EUF-CMA security.
Definition 3: We say that a signcryption scheme has

ciphertext anonymity (i.e., key privacy, denoted by
INDK-CCA security) if no PPT distinguisher has a
non-negligible advantage in the following game:

• The challenger generates two private/public key pairs
(skr,0, pkr,0) and (skr,1, pkr,1). pkr,0 and pkr,1 are given
to the distinguisher D.

• For c = 0 or c = 1, D adaptively performs the queries
Signcrypt(msg, skr,c, pkr ), for any receiver’s keys pkr ,
and Unsigncrypt(C, skr,c, pks).

• Once stage 2 is complete, D outputs two private keys
sks,0 and sks,1 and a plaintext msg. The challenger then
flips two coins b, b′← {0, 1} and computes a challenge
ciphertext Signcrypt(msg, sks,b, pkr,b′ ).

• D adaptively performs new queries as in stage 2 with the
restriction that, this time, it is not allowed to query the
unsigncryption of the challenge σ with the private keys
sks,0 and sks,1.

• At the end of the game, D outputs the bits f and f ′ and
wins if (f , f ′) = (b, b′).
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The advantage of D in winning the INDK-CCA game is
defined as follows

AdvINDKD =
∣∣Pr[(f , f ′) = (b, b′)]−

1
4

∣∣.
C. LATTICE AND GAUSSIAN DISTRIBUTION
Definition 4: For a prime q,A ∈ Zn×mq , u ∈ Znq, define the

following two q-ary lattices:

∧
⊥
q (A) = {e ∈ Zm| Ae = 0(mod q)};

∧
⊥
u (A) = {e ∈ Zm| Ae = u(mod q)}.

Definition 5: ρs(x) = exp
{
−π‖x‖2

s2
}
denotes a standard

m-dimensional Gaussian distribution centred at 0 with vari-
ance s. For a lattice L, s > 0, the discrete Gaussian distri-
bution is defined as DL,s =

ρs(x)∑
x∈L ρs(x)

. For a polynomial

ring R that depends on the variable x over R, Dcoeff
L,s denotes

the distribution of a(x) =
∑n

i=1 aix
i
∈ R, in which the

coefficient vector (a0, . . . , an−1) ∈ Rn follows the discrete
distribution DL,s.

D. RING AND IDEAL LATTICE
This section systemically introduces the concepts of the
ring and ideal lattice. A detailed introduction is described
in [32]. Let n be a power of 2, with m = 2n, and define
a polynomial ring R = Z[x]/〈8m(x)〉, where 8m(x) =
xm/2 + 1 is an m-degree cyclotomic polynomial. Let Rq =
R/qR = Z[x]/〈q,8m(x)〉. Define the coefficient embedding
as follows:

φ :


R → Zn

a(x) =
n∑
i=1

aix i 7→ (a0, . . . , an−1)

Define the ring homomorphism rot8m,n : R → Zn×n that
maps a(x) ∈ R to a matrix over Zn×n, in which the i-th row
vector is φ(x i · a(x)mod8m(x)) ∈ Zn. An element of the
R-model Rm is denoted as x = (x1, x2, . . . , xn)T ∈ Rm.
Define two multiplication operations as follows:

x ∗ y =
n∑
i=1

xiyi,∀ x, y ∈ Rm;

xy = (x1y, x2y, . . . , xny),∀ x ∈ Rm, y ∈ R.

The following lemma shows that Rq = R/〈q,8m(x)〉 can
be regarded as a field.
Lemma 1 ( [28]): Let q be a prime such that q ≡ 3mod 8

and let n be a power of 2. We have the following two
conclusions:

1) 82n(x) = xn + 1 splits as xn + 1 ≡ t1t2mod q for
two irreducible polynomials t1 = xn/2 + uxn/4 − 1 ∈
Zq[x] and t2 = xn/2 − uxn/4 − 1 ∈ Zq[x], where u2 ≡
−2mod q. For each a ∈ Rq satisfying a ∈ R×q , are
invertible and ‖φ(a)‖2 <

√
q.

2) Let n be a power of 2, q be a prime larger than 4n
such that q ≡ 3mod 8, and k, k ′, `, ρ ∈ Z+ be
positive integers satisfying k ′, ` ≥ 1, k ≥ 2, and
ρ < 1

2
√
q/n. Define the family of hash functions

H = {hA(x)|[−ρ, ρ]kR → Rk
′

q }, where hA(x) = Ax
for A ∈ Rk

′
×k

q , x ∈ Rk×1q . Then, H is a universal hash
function family. For A ∈R Rk

′
×k

q , X ∈R Rk×`q , we have

4

(
(A,AX), (A,U (Rk

′

q × `))
)
≤
`

2

√( qk ′

(1+ 2ρ)k

)n
.

E. HARD PROBLEMS AND TRAPDOORS
This section introduces two hard problems: ring learning with
errors (RLWE) and the ideal short integer solution (ISIS).
Lyubashevsky et al. [32], [33] presented the reduction from
the RLWE problem to worst-case SIVP (or SVP) problem.
Stehlé et al. [34] defined the ISIS problem and presented the
reduction between the ISIS and SIVP.
Definition 6: For n ∈ Z+, k = k(n), and q = q(n) ≥ 2, let

χ = χ (n) denote the noise distribution over Rq. For a prob-
ability polynomial time (PPT) adversary A, its advantage in
solving RLWEq,n,m,χ is defined as follows: Adv

RLWEq,n,m,χ
A =∣∣∣Pr[A({(ai,bi)}ki=1)→ 1]− Pr[A({(ai, ais+ ei)}ki=1)→ 1]

∣∣∣
with {ai}ki=1, {bi}

k
i=1, s←R Rq, {ei}ki=1← χ . If the following

advantage is negligible, we say that RLWEq,n,m,χ holds.
Theorem 1 ( [32]): Let α ∈ R+. Let m be a power of 2.

Let ` ∈ Z. 8m(x) = xm/2 + 1 is an m-degree cyclotomic
polynomial. Let R = Z[x]/〈8m(x)〉. Assume that the prime
q satisfies q ≡ 3mod 8 such that there exists another
prime p ≡ 1mod m satisfying p ≤ q ≤ 2p. Let αq ≥
n3/2k1/4ω(log9/4 n). There exists a PPT reduction algorithm
from the SIVP (or SVP) with an Õ(

√
n/α)-approximating

factor to RLWEq,n,m,χ .
Definition 7: Let8m(x) = xm/2+1 be anm-degree cyclo-

tomic polynomial. Given a random polynomial set {pi}ki=1
independently chosen from Rq = Z[x]/〈q,8m(x)〉, define a
vector p(x) ∈ Rq and find a nonzero vector z(x) ∈ Rk such
that

∑k
i=1 pizi = 0 satisfies ‖z‖2 ≤ β.

Lemma 2 ( [34]): Let Rq = Z[x]/〈q,8m(x)〉. Let q be a
power of 3. Let m ≥ 2dlog2 qe, σ ≥ ω(

√
ln nm), n ≥ 4. If we

chooseA← U (Rmq ) uniformly, sample a random vector xi←
DR,s(i = 1, . . . ,m) independently; then, the distribution
of
∑

i aixi is statistically close to the uniform distribution
over R.
Lemma 3 (Trapdoor Generation Algorithm [34]): The

randomized algorithm TrapGen outputs a vector a ∈ Rkq and
a matrix Ta ∈ Rk×k , where rot(aT )T ∈ Zn×nkq is a full-rank
matrix and rot(Ta) ∈ Znk×nk is a basis for 3⊥q (rot(aT )T )
such that a is negl(n)-close to uniform.
Lemma 4 (Preimage Sampling Algorithm [7]): The preim-

age sampling algorithm PreSample involves the input of a
vector a ∈ Rkq, a short basis Ta ∈ Rk×k as a trapdoor,
where rot(aT )T ∈ Zn×nkq is a full-rank matrix and rot(Ta) ∈
Znk×nk is a basis for 3⊥q (rot(aT )T ), a Gaussian parameter
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σ ≥ ‖rot(Ta)‖GS · ω(
√
log nk), and a vector u ∈ Rq. This

algorithm works as follows: First, it chooses an arbitrary
t ∈ Rkq via the linear algebra equation a ∗ t = u(mod q)
(except for a negligible fraction of rot(aT )T such that t always
exists). Then, the algorithm outputs e← (Dcoeff

3⊥φ(t)(rot(a
T )T ),σ

)k .

F. BONSAI TREE TECHNIQUE AND
SAMPLING ALGORITHM
Lemma 5 (Left Sampling Algorithm [33]): Let n be a

power of 2 and q be a prime such that q ≡ 3mod 8.
The randomized algorithm e ← SampleLeft(a,b,u,Ta, σ )
is defined such that, given vectors a,b ∈ Rkq, where
rot(aT )T and rot(bT )T ∈ Zn×nkq are full-rank, an element
u ∈ Rq, a matrix Ta ∈ Rk×k such that rot(Ta) ∈ Znk×nk
is the trapdoor basis of the lattice 3⊥(rot(aT )T ), and a
Gaussian parameter σ ≥ ‖rot(Ta)‖GS · ω(

√
log nk), the

algorithm outputs a vector e ∈ R2k sampled from a dis-
tribution that is negl(n)-close to Dcoeff

3⊥φ(u)

([
rot(aT )T |rot(bT )T

])
,σ
,

i.e.,
[
a|b
]
eT = u, φ(e) ∈ Z2nk is distributed according to

D
3⊥φ(u)

([
rot(aT )T |rot(bT )T

])
,σ
.

Lemma 6 (Right Sampling Algorithm [28]): The random-
ized algorithm e ← Sampleright(a, gb,R, y,u,Tgb , s) is
defined such that, given vectors a, gb ∈ Rmq , where b = aR+
ygb, such that rot(aT )T and rot(gb) ∈ Zn×nmq are full-rank
matrices, elements y ∈ R∗q and u ∈ Rq, a matrix R ∈ R

m×m,
a matrix TGb ∈ Rm×m such that rot(Tgb ) ∈ Znm×nm is the
basis of 3⊥(rot(gb)), and a Gaussian parameter s > s1(R) ·
‖rot(Tgb )‖GS · ω(

√
log nm), the algorithm outputs a vector

e ∈ R2m sampled from a distribution that is negl(n)-close to
Dcoeff

3⊥φ(u)

([
rot(aT )T |rot(bT )T

])
,s
, i.e., [a|b]eT = u, φ(e) ∈ Z2nm is

distributed according to D
3⊥φ(u)

([
rot(aT )T |rot(bT )T

])
,s
.

Lemma 7 (Bonsai Tree Technique [33]): Let n be a power
of 2 and q be a prime such that q ≡ 3mod 8. The deterministic
PPT algorithm ExtBasis(Ta, c = [a|b]) is defined such that,
given vectors a ∈ Rmq and b ∈ R

m
q , where rot(a

T )T ∈ Zn×nmq
and rot(bT )T ∈ Zn×nmq are full-rank matrices, and a matrix
Ta ∈ Rm×m such that rot(Ta) ∈ Znm×nm is the trapdoor basis
of 3⊥(rot(aT )T ), the algorithm outputs Tc ∈ Z(m+m)×(m+m)

q

such that rot(Tc) ∈ Zn(m+m)×n(m+m)q is the trapdoor basis of
3⊥

([
rot(aT )T , rot(bT )T

])
.

G. RECONCILIATION TECHNIQUES
Here, we present a brief description of the reconciliation
techniques, as the detailed explanation is elaborated in [35].
Let bxe = bx + 1

2c ∈ Z. Let I0 = {0, 1, . . . , b q4e − 1} and
I1 = {−b

q
4e, . . . ,−1}.

Definition 8: Amodular 2 rounding function is defined as

b·e2 :

Zq → Z2

x 7→
⌊2
q
· x
⌉

Definition 9: The cross-rounding function is defined as
follows:

〈·〉2 :

Zq → Z2

x 7→
⌊4
q
· x
⌋

Lemma 8 ( [35]): For an even module q, if x ∈ Zq is
uniformly random, the distribution of bxe2 is the randomly
uniform distribution over Zq given 〈x〉2.
Definition 10: For an even module q, for e ∈ E .

=

[− q
8 ,

q
8 )
⋂

Z, y ∈ Zq and b ∈ Z2, define the reconciliation
function rec : Zq × Z2→ Z2 as follows:

rec(y, b) =

{
0, if y ∈ Ib + E(mod q);
1, otherwise.

Definition 11: ( [35]) For an even module q, for e ∈ E =[
−

q
8 ,

q
8

)⋂
Z and x ∈ Z, if y = x + e(mod q), then

rec(y, 〈x〉2) = bxe2 = rec(x, 〈x〉2) holds, given 〈x〉2.
Definition 12: The randomization function is defined as

follows:

dbl :

{
Zq → Z2q

x 7→ x = 2x − e(mod 2q)

The random noise e ∈ Z2 can be 0, 1 or -1 with a probability
of 1

2 ,
1
4 or 1

4 , respectively.
Lemma 9 ( [35]): For an odd module q, if x ∈ Zq is uni-

formly random and x ← dbl(x) ∈ Z2q, then the distribution
of bxe2 is uniformly random given 〈x〉2.

H. HOMOMORPHIC COMPUTATION
We introduce the homomorphic computation and lemma
in [28]. Let d ∈ N. g−1b is a deterministic polynomial
time (PT) algorithm that inputs u ∈ Rq and outputs P =
g−1b (u) such that gbP = u. A hash function PubEvald :
(Rkq)

d
→ Rkq, which inputs b1, . . . ,bd ∈ Rkq, outputs a

vector in Rkq. If d = 1, we have PubEvald (b1, . . . ,bd ) =
b1. If d ≥ 2, we have PubEvald (b1, . . . ,bd ) =

b1g−1b (PubEvald−1(b2, . . . ,bd )).
Lemma 10 ( [28]): Let y1, . . . , yd ∈ R, a,b1, . . . ,bd ∈

Rkq, R1, . . . ,Rd ∈ Rk×k such that bi = aRi + yigb, ∀i ∈ [d].
Assume s1(Ri) ≤ B, ‖φ(yi)‖1 ≤ δ, ∀i ∈ [d]. Given y1, . . . , yd
and R1, . . . ,Rd , the algorithm PubEvald outputs R′ ∈ Rk×k

such that PubEvald (b1, . . . ,bd ) = aR′+y1 · · · · ·ydgb ∈ Rkq.

III. THE PROPOSED SIGNCRYPTION SCHEME
A. CONSTRUCTION
• Setup(1n)
Let 1n be the security parameter. Generate the system
parameters and components as follows:

1) Let an odd prime q be a prime such that q ≡
3(mod 8). Let m = 2κ with κ ≥ 2. Let 8m(x) =
xm/2 + 1 be the m-degree cyclotomic polynomial.
Let R = Z[x]/(8m(x)) and Rq = Z[x]/(q,8m(x)).
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2) Choose a,b0, c0 ∈ Rmq with ` = O(n), and select

u ∈ Rq and d ∈ Rndlog qeq randomly. Let gb =
[1|2| · · · |2m−1], and defineG , In⊗gb as follows:

G =


gb

gb
. . .

gb

 ∈ Zn×nmq

Note that all of the elements of G on the primary
diagonal are gb, while the other elements are 0.

3) Choose the hash functions:
– Let the bits ∈ {0, 1}k

′

. Choose b0,bi,j ∈R
Rmq randomly for (i, j) ∈ [2] × [(k ′)1/2].
The deterministic function H1 : {0, 1}k

′

→

Rmq is defined as H1(bits) = b0 +∑
(i,j)∈[1,k ′]2 PubEvald (b1,j1 , . . . ,b2,j2 ).

– H2 : {0, 1}∗ → {0, 1}128 is a pairwise indepen-
dent hash function.

– H3 : {0, 1}∗ → Rq is a universal one-way hash
function.

4) The chameleon hash function is CM[
b0|c0

] : Rmq ×
Rmq → Rq. Output the public key HKR =

[
b0|c0

]
,

and keep the private key CKR = Tc0 as a secret,
where rot(Tc0 ) ∈ Znm×nmq is the trapdoor basis
of the lattice3⊥(rot(c0T )T ). This chameleon hash
function inputs

[
h ∈

(
Dcoeff

Zn,σ1
)m
|s1 ∈

(
Dcoeff

Zn,σ1
)m]

and outputs

cM , CM[
b0|c0

](h, s1) = b0 ∗ h+ c0 ∗ s1.

Verify the properties of chameleon hash function
as follows:
– Collision-resistant property: Suppose there

exists a collision [h|s1] 6= [h′|s′1] ∈(
Dcoeff

Zn,σ1
)m
×
(
Dcoeff

Zn,σ1
)m; then, t = [h− h′|s1 −

s′1] 6= 0 is a solution of [b0|c0] ∗ t = 0, which
satisfies

‖t‖2 ≤ ‖h− h′‖2 + ‖s1 − s′1‖
2
≤ 8σ 2

1mn.

That is, ISISq,n,m,2
√
2mn,σ1

is solvable. Thus,
CM[

b0|c0
] is collision-resistant.

– Trapdoor collision: Input h,h′ ∈ Rmq , s1 ←(
Dcoeff

Zn,σ1
)m, and find s′1 ∈

(
Dcoeff

Zn,σ1
)m such

that CM[
b0|c0

](h, s1) = CM[
b0|b0

](h, s′1);
i.e., solve a short vector that satisfies the follow-
ing equation:

c0 ∗ s′1 = b0 ∗ (h− h′)+ c0 ∗ s1 , X(mod q).

According to Lemma II.4, there exists a
PPT algorithm that outputs a trapdoor basis
Tc0 ∈ Rm×m. Solve the short vector s′1
that is negl(n)-close to

(
Dcoeff

Zn,σ1
)m by using

PreSample(Tc0 ,X)(mod q). In fact, in the

preimage sampling algorithm, the solution vec-
tor s′′1 ∈

(
Dcoeff

Zn,σ1
)m is computed by solving the

equation c0 ∗ s′′1 = X(mod q). Next, a vector
z is chosen randomly under the condition that
z belongs to ∧⊥q (rot(c0

T )T ) and z is close to
−s′′1 . Then, the vector s

′

1 = z− (−s′′1) is output.
c0 ∗ s′1 = c0 ∗ [z− (−s′′1)] = c0 ∗ z+ c0 ∗ s′′1 =
X(mod q).

– Uniformity: Because c0 ← U (Rmq ), s′1 ∼(
Dcoeff

Zn,σ1
)m, by part 2 of Lemma II.1, we have

that the distribution of c0∗s1 is statistically close
to the uniform distribution over R. On the other
hand, due to b0 ← U (Rmq ), h ∼

(
Dcoeff

Zn,σ1
)m,

and part 2 of Lemma II.1, we have a distribu-
tion of b0 ∗ h that is statistically close to the
uniform distribution over R. By Lemma II.3,
we have that the output distribution ofCM[

b0|c0
]

is statistically close to the uniform distribution
over R.

5) AES-128-bit algorithm
∑
= (EK ,DK ).

The public parameter PP contains (q, m, R, a, b0, c0, G,
H1, H2, H3, CM[b0|c0], 6).

• KeyGen(1n,PP)
Execute TrapGen to generate (pks = as ∈ Rmq , sks =
Tas ∈ Rm×m) and generate (pkr = ar ∈ Rmq , skr =
Tar ∈ Rm×m). rot(Tas ) ∈ Znm×nm is the trapdoor
basis of 3⊥q (rot

(
asT )T

)
, while rot(Tar ) ∈ Znm×nm is

the trapdoor basis of 3⊥(rot
(
ar T )T

)
. We explain the

algorithm TrapGen in detail below. Generate the random
polynomials a1 = (a1, . . . , am1 )

T
∈ Rm1×1

q . Construct a
random matrix a2 with a structured matrix Tas ∈ R

m×m

such that Tas ∗ as = 0 and Tas is a basis of the module
3⊥(rot

(
asT )T

)
, where as = [a1|a2]. First construct an

HNF-like basis F of the module3⊥(rot
(
asT )T

)
with as.

Next, construct a unimodular matrix Q such that Tas =

QF is a short basis of the module. More precisely,
Tas has the following form:(

V P
D B

)
=

(
−Im1 P
0 B

)
︸ ︷︷ ︸

Q

·

(
H 0
U Im2

)
︸ ︷︷ ︸

F

By setting B, the lower triangular matrix with diagonal
coefficients, equal to 1, the matrix Q is unimodular.
In this design principle, we hope that F ∗ as = 0.
Hence, we should set H ∗ a1 = 0 and a2 = −U ∗ a1.
By setting H to be an HNF-like matrix, we can guar-
antee that H is a basis of 3⊥q (rot

(
a1T )T

)
and that F

is a basis of 3⊥q (rot
(
asT )T

)
. By setting U = W + R,

with W and R being a random matrix, we have that
a2 is almost uniformly random in R. The i-th row of
R is chosen from ({−1, 0, 1}n)r × ({0}n)m1−r . The spe-
cific construction methods of H and W are described
in [34], so we omit them here. In a similar way, we can
generate Tar .
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• Signcrypt(msg ∈ {0, 1}`, sks, pkr )
1) Compute h = H1(msg, ar ) ∈

(
Dcoeff

Zn,σ1
)m.

2) Choose τ ← U ({0, 1}`) randomly, and compute
aτ =

[
as|a + 6`i=1τ [i] · ai

]
∈ R2mq . Compute the

trapdoor basis rot(Tτ ) ∈ Z2nm×2nm of 3⊥q (aτ ) by
invoking ExtBasis

(
Taτ , aτ

)
.

3) Sample s1 ←
(
Dcoeff

Zn,σ1
)m, and compute the

chameleon hash function as follows

cM , CM[
b0|c0

](h, s1) = b0 ∗ h+ c0 ∗ s1.

cM is used to define uM = u + d · bin(cM ) ∈
Rq, where cM = G · bin(cM ). By utilizing the
trapdoor basis Taτ , solve a short vector solution
v ← D3uM (aτ ),σ2 of the following equation: aτ ∗
v = uM (mod q). In fact, this step invokes v ←
SampleLeft(aτ ,uM ,Taτ , σ2) to output the vector v
that is negl(n)-close to Dcoeff

3⊥
φ(uM )

(
rot
(
aτ T
)T )

,σ2

. Out-

put (τ, v, s1).
4) Parse v as v =

[
v1 ∈ Rmq |v2 ∈ Rmq

]
. Select

s2 ∈ Rq randomly, sample e2 ← χσ2 , and choose
r2 ∈ {0, 1}` randomly. Let c0 = H3(r2, v1), and
compute w = s2c0 + e2, w← dbl(w), c1 =

〈
w
〉
2,

and c2 =
⌊
w
⌉
2.

5) Let c3 = H1(c1, v2) ∈ Rmq , and compute
E =

[
ar |c3

]
∈ R2mq .

6) Sample e3 = [e3,1|e3,2] ←
(
Dcoeff

Zn,σ1
)2m, and

compute c4 = s2E+ e3 ∈ R2mq .
7) Compute

c5 = EKH2(c2)
(
msg‖φ(v2)‖φ(s1)‖r2

)
.

Finally, output the ciphertext

C = (τ, c0, c1, c3, c4, c5).

• Unsigncrypt(C, skr , pks)
1) Compute E =

[
ar |c3

]
.

2) Sample e3 ∈ Rmq , where each column vector of the
matrix rot(e3T )T ∈ Zn×nmq follows DZnm,2.

3) By using skr = Tar , find the short solution z =
e2 ∈ Rmq of the equation

ar ∗ z = c0 − c3 ∗ e3.

4) Compute w1 = c4 ∗
[
e2|e3

]
, rec(w1, c1) =

⌊
w1
⌉
2.

5) Compute DK
H2

(⌊
w1

⌉
2

)(c5), and parse the result as(
m̃sg‖φ̃(v)‖φ̃(s1)‖r̃2

)
.

6) Recover φ−1
(
φ̃(v)

)
= ṽ, and parse ṽ =

(
ṽ1 ∈

Rmq , ṽ2 ∈ R
m
q
)
.

7) Compute h̃ = H1(m̃sg, ar ) ∈ Rmq , and build c̃M =
b0 ∗ h̃+ c0 ∗ φ−1

(
φ̃(s1)

)
. Next, verify whether the

following two conditions hold{
aτ ∗ ṽ = u+ d · bin

(
c̃M
)

‖φ (̃v)‖2 ≤ σ2
√
2mn

If the conditions hold, output m̃sg; otherwise,
output ⊥.

B. CORRECTNESS
Lemma 11: If 4σ1mn +

√
n · (1 + 2σ1) ≤

q
4 , the receiver

can correctly unsigncrypt with an overwhelming advantage.
Proof: Compute

w1 = c4 ∗
(
e2
e3

)
= (s2E+ e3) ∗

(
e2
e3

)
= s2E ∗

(
e2
e3

)
+ e3 ∗

(
e2
e3

)
= s2

[
ar |c3

]
∗

(
e2
e3

)
+ e3 ∗

(
e2
e3

)
= s2

(
ar ∗ e2 + c3 ∗ e3

)
+ e3 ∗

(
e2
e3

)
= s2

(
c0 − c3 ∗ e3

)
+ s2c3 ∗ e3 + e3 ∗

(
e2
e3

)
= s2c0 + e3 ∗

(
e2
e3

)
.

w1 − w = s2c0 + e3 ∗
(
e2
e3

)
− (s2c0 + e2)

= e3 ∗
(
e2
e3

)
− e2.

Let e be the random noise of e ← dbl(w); then, we have
w = 2w− e. The receiver can unsigncrypt correctly with an
overwhelming advantage if ‖2e + e‖ ≤ q

4 holds, i.e., if the
following condition holds:

‖2e+ e‖2 ≤ 2
∥∥[e3,1|e3,2] ∗ ( e2

e3

)∥∥
2 + 2‖e2‖2 + ‖e‖2

≤ 2
√
2σ1
√
mn · (

√
2σ1
√
mn)+ 2σ1

√
n+
√
n

= 4σ1mn+
√
n · (1+ 2σ1)

≤
q
4
.

C. SECURITY
Theorem 2: The proposed signcryption scheme has

EUF-CMA security under the ISISq,n,m hard problem.
Proof: Suppose there exists a forger F that can forge the

signcryption and that there exists a simulator that can forge
the signature of the SUF-CMA signature scheme.

Initiation. F executes KeyGen and Signcrypt to obtain
PP and (A∗s ,T

∗
s ) and sends PP and A∗s to F .

Signcryption. F executes the signcryption oracle as
follows: F submits msg and Ar . C executes C′ ←
Signcrypt(msg,Ar ,T∗s ) and sends C′ to F .
Forgery. F outputs (A∗r ,T

∗
r ) and fresh ciphertext C∗.

C executes the following steps:
1) Use sk∗r to decrypt c2.
2) Use H2

(⌊
w2
⌉
2

)
to decrypt c5 such that F obtains

msg‖φ(v2)‖φ(s1)‖r2.
3) Parse φ(v) = [φ(v1)|φ(v2)].

Since the signature scheme has SUF-CMA security, the pro-
posed signcryption scheme has SUF-CMA security.
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Theorem 3: The proposed signcryption scheme has
IND-CCA2 security under the RLWE

q,n,m,
(
Dcoeff

Zn,σ1

)m hard

problem.
Proof: Define the following games between the chal-

lenger and the adversary. Ei denotes the event b′ = b.
Game0 This game is similar to the game defined for

IND-CCA2 security. The ciphertext space is {0, 1}l × Rq ×
{0, 1}mn×Rmq ×R

2m
q ×�. In the challenge stage, the adversary

A sets C∗ ←R {0, 1}l × Rq × {0, 1}mn × Rmq × R2mq × �
and outputs a guess b̂. Finally, the challenger C sets b′ = b̂.
By definition, we have

∣∣Pr[E0]− 1
2

∣∣ = ε.
Game1 This game changes the key generation algorithm.

Let pkr be a randommatrix, and execute TrapGen to generate
pks, sks. The other steps are identical to the corresponding
steps in Game0. For m0,m1 ∈ Z, m0 ≤ m1, c ∈ Z+.
Let [m0,m1]R,c =

{
6c−1
i=0 bix

i
|bi ∈ [m0,m1],∀i ∈ [0, i −

1]
}
⊆ R. This notation denotes a set that consists of all

polynomials whose degrees are below d − 1, and the coef-
ficients are chosen form [m0,m1]. The challenger chooses
y0 ←R

[
− κ(cn)d ,−1

]
R,(c−1)d+1, yi,j ←R [1, n]R,c, (i, j) ∈

[d] × [`], y = (y0, {yi,j}(i,j)∈[d,`]). Define Fy(bits) = y0 +
6(j1,...,jd )∈S(bits)y1,j1 · · · yd,jd . The challenger checks whether
the following condition holds Fy(bit∗) = 0 ∧ Fy(bits1) ∈
R∗q ∧ · · · ∧ Fy(bitsq) ∈ R∗q. bits

∗ is the challenge bit, while
bits1, · · · , bitsq are the bit strings that the adversary queries
to H3. If the above-mentioned condition does not hold,
the challenger omits the output of the adversary, sets b′ ←R
{0, 1}, and terminates the challenge. If it holds, the challenger
sets b′ = b̂. In this case, we have

∣∣Pr[E1 − 1
2

]∣∣ ≤ negl(n).
Game2 Change the game such that when Fy(bit∗) does not

hold, the challenger terminates at the end of the game. The
challenger C chooses R0,Ri,j←R [−λ, λ]k×k ,∀(i, j) ∈ [d]×
[`] and computes b0 = aτR0+y0gb and bi,j = aτRi,j+yi,jgb.
The other steps are identical to those of Game1. By part 2 of
Lemma II.1., we obtain that the following distributions are
statistically indistinguishable:(

aτ , aτR0 + y0gb,
{
aτRi,j + yi,jgb

})
≈S

(
aτ ,b0, {bi,j}

)
Then, we have

∣∣Pr[E2]− Pr[E1]∣∣ ≤ negl(n).
Game3 For bits∗ ∈ {0, 1}∗, define Rbits = R0 +

6TrapEvald (R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd ) Furthermore,
we have H3(bits) = aτRbits + Fy(bits)gb, Pr[E3] = Pr[E2].

Game4 In this game, the challenger randomly chooses
aτ ←R R2mq . When the adversary queries the bit string
to H3, the challenger first computes Rbits. If Fy(bits) /∈

R∗q, the challenger terminates the challenge and com-
putes v← SampleRight

(
aτ , gb,Rbits,Fy(bits),uM ,Tgb , σ2

)
.

When we choose the parameter σ2 properly, the above dis-
tribution is statistically close to the following distribution:
v← SampleLeft

(
aτ ,uM ,Taτ , σ2

)
Thus, we have |Pr[E4]−

Pr[E3]| ≤ negl(n).
Game5 Randomly choose v ←R R2mq , and label v =[

v1 ∈ Rmq |v2 ∈ Rmq
]
. Randomly choose s2 ←R Rq, sample

e2← χσ1 , randomly choose r2 ∈ {0, 1}l , let c0 = H3(r2, v1),
and compute w = s2c0 + e2, w ← dbl(w), c1 =

〈
w
〉
2,

c2 =
⌊
w
⌉
2, and c∗3 = H1(c1, v2). If b = 0, the challenger

produces the valid ciphertext. If b = 1 and Fy(bits∗) =
0 hold, the challenger selects s ←R Rq, samples e ←(
Dcoeff

Zn,σ1
)m, computes v = saτ + e ∈ R2m, and then com-

putes c ∈ Z2nm
q ← ReRand

(
rot
([
Ik |Rbits∗

])
, φ(v), σ1, σ ′

2σ1q

)
.

Note that c =
(
φ(s)rot

(
aτ
))
· rot

([
Ik |Rbits∗

])
= φ(s) ·

rot
([
aτ |H (bits∗)

])
+e′ = φ

(
s
[
aτ |H (bits∗)

])
+e′ with e′←R(

Dcoeff
Zn,σ ′

)m. Let T = {6n
i=0aix

i
|ai ∈ {−1, 1}

}
, and randomly

choose T∗ ∈ Tm×m (all else being equal). Compute e3 that
satisfies e = (c3 − c∗3)

−1c0. Let e2 = −T∗e3 such that the
following equation holds: aτ ∗e2+(c3−c∗3)∗e3 = c0.Because
c4 = φ−1(c) ofGame5 is statistically close to that ofGame4,
we have

∣∣Pr[E5]− Pr[E4]∣∣ ≤ negl(n).
Game6 If b = 0, the challenger chooses v0 ←R Rq,

v′ ←R Rmq , and e′ ←
(
Dcoeff

Zn,σ
)m and executes c ←

ReRand
(
rot
([
Ik |Rbits∗

])
, φ(v), σ1, σ ′

2qσ1

)
with v = v′ + e′.

Compute and output the challenge ciphertext. As demon-
strated below, Game5 and Game6 are statistically indis-
tinguishable. Assume that there exists an adversary A that
can differentiate Game5 and Game6 with an overwhelming
advantage. Then, we can construct a distinguisher D that
breaks the RLWE problem as follows:
• Initiation. D inputs the RLWE instances

{
ai, vi

}m
i=0 ∈(

Rq × Rq
)m+1. Without loss of generality, suppose that

vi = v′i+e
′
i with e

′
i←R Dcoeff

Zn,σ .F differentiates between
v′i = ais2 and v′i←R Rq.

• Setup. D sets u , a0, a = (a1 . . . , am), and v =
(v1 . . . , vm), chooses y according to Game1, chooses
R0,Ri,j,b0 and bi,j according to Game2, and returns
b0,u,d, a,b0, c0,bi,j and ai to A. D randomly selects
b ←R {0, 1} and keeps it secretly. Stage 1 and stage 2
respond to the queries from A using R0,Ri,j.

• Challenge.When A queries for the challenge bit bits∗,
D computes Fy(bits∗). If Fy(bits∗) 6= 0, D sets b′ ←R
{0, 1}. If Fy(bits∗) = 0, D computes Rbits∗ and c and
outputs c, when b = 0.D randomly choosesw, c2 ∈ Rq,
c4 ∈ R2mq and outputs the ciphertext, when b = 1.

• Guess. A outputs the guess b̂. D sets b′ = b̂. If b′ = b,
D outputs 1; otherwise, it outputs 0.

• Analysis. When w is randomly chosen,
⌊
w
⌉
2 is a

uniform distribution given
〈
w
〉
2. D simulates the view

{ai, v′i+ei = ais2+ei}mi=0 inGame6 and the view v′i←R
Rq in Game5. Therefore, we have

∣∣Pr[E6]− Pr[E5]∣∣ ≤
Adv

RLWE
n,m+1,q,

(
Dcoeff
Zn,σ1

)m
D .

Game7 Randomly choose v ←R R2m, c3 ←R Rmq , and

e3,1, e3,2 ←
(
Dcoeff

Zn,σ1
)m, compute E =

[
ar |c3

]
, c4 = s2E +

[e3,1|e3,2], and output the ciphertext. Observe φ(v) = φ(v′ +
e) = φ(e′) + φ(e) ∈ Znmq with φ(e) ← DZnm,σ . In addition,
note that c = φ(v′) · rot

([
Im|Rbits∗

])
+ e′ = φ

([
v′|v′Rbits∗

])
.

The distribution of e′ is statistically close to the distribution of
e′ ←R DZ2nm,σ ′ . The distribution of c1 = φ−1(c) in Game7
and the distribution of that in Game6 are statistically indis-
tinguishable. Thus, we have

∣∣Pr[E7]− Pr[E6]∣∣ ≤ negl(n).
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Game8 The challenge generates the challenge ciphertext
C = (τ, c0, c1, c3, c4, c5). c4 in Game7 and the uniform
distribution over R2mq are statistically indistinguishable under
the RLWE

q,n,m,
(
Dcoeff

Zn,σ1

)m assumption. Choose v′, v′′ ∈R Rmq ,

and compute v′Rbits∗ . The distribution of
[
v′|v′Rbits∗

]
is sta-

tistically close to the uniform distribution over R2mq . Thus,
we have

∣∣Pr[E8]− Pr[E7]∣∣ ≤ negl(n).
Theorem 4: The proposed signcryption scheme has

ciphertext anonymity (INDK-CCA security) under the
RLWE

q,n,m,
(
Dcoeff

Zn,σ1

)m hard problem.
Proof: Assume that there exists a PPT distinguisher D

that has a non-negligible advantage over the INDK-CCA
security of the proposed scheme; then, there exists an algo-
rithm B that solves the RLWE

q,n,m,
(
Dcoeff

Zn,σ1

)m problem. B uses

A to solve this instance and plays the role of D’s challenger.
B executes TrapGen to generate (pkr,0 = ar,0 ∈ Rmq , skr,0 =
Tar,0 ∈ Rm×m) and generate (pkr,1 = ar,1 ∈ Rmq , skr,1 =
Tar,1 ∈ Rm×m). pkr,0 and pkr,1 are given to D. D performs
queries. The signcryption queries and unsigncryption queries
are treated as in the proof of Theorem III.3.
Once stage 1 ends, D outputs two private keys sks,0 =

Tas,0 , sks,1 = Tar,1 and a plaintext msg. B sends the fake
ciphertext C = (τ, c0, c1, c3, c4, c5), where c0 , c1, c3, c4, c5
are chosen randomly. D cannot distinguish c4 ∈ R2mq and

c4 = s2E + e3, where e3 = [e3,1|e3,2] ←
(
Dcoeff

Zn,σ1
)2m,

because of the RLWE
q,n,m,

(
Dcoeff

Zn,σ1

)m hard problem. Therefore,

D cannot realize that this ciphertext is fake, and the simula-
tion remains.

In stage 2, D performs the queries that are executed in
stage 1. Finally, D outputs a guess (f , f ′), which is ignored
by B. B cannot obtain (msg, ar,0) or (msg, ar,1) from H1.
If D can output f and f ′ such that (f , f ′) = (b, b′), then it
can find a collision H1(msg, ar,f ′ ) = H1(msg, ar,b′ ). We use
AdvcollisionD to denote thatD finds a collision. In short, we have
the following conclusion:

AdvINDKD ≤ Adv

RLWE
n,m+1,q,

(
Dcoeff
Zn,σ1

)m
D + AdvcollisionD

≤ negl(n).

D. PERFORMANCE ANALYSIS AND COMPARISON
In this section, the performance of our scheme is analyzed
from four aspects: the PK size, SK size, ciphertext overhead
and concrete execution time. Meanwhile, we compare our
scheme with other lattice-based schemes in [12], [20]–[23]
to demonstrate that our scheme achieves better performance.
The schemes in [26] and [27] are not anti-quantum sign-
cryption schemes. It is assumed that the output of the hash
algorithm is 128 bits and that the random number is 128 bits
to achieve AES-128 security.

1) COMPUTATIONAL OVERHEAD
Here, we mainly consider the operation time of the hash
function th, the dot multiplication td , the polynomial

multiplication tp, the Gaussian sampling algorithm tg and
the pairing operation time tpair . We have implemented these
cryptography operations using the C/C++ PBC library on
a 64-bit Windows 10 Thinkpad X1 notebook and a 64-bit
Ubuntu 14.4 LTS Think Center desktop as shown in Table 1.
In addition, Table 2 shows the implementation time of the
related schemes when n = 256, m = 512, and q = 4093.

TABLE 1. Time for the cryptography operation.

TABLE 2. Comparison of the execution times.

2) COMMUNICATION OVERHEAD
In Fig. 1, to simplify the analysis, we set q = 277063.
We compare our scheme with YWL [12], SS [20], GM [21],
LHY [22] and ZXX [23] in terms of the communication

FIGURE 1. Comparison of the communication overheads of the existing
signcryption schemes based on lattices.
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overhead when choosing different dimensions n. Accord-
ing to Fig. 1, the communication costs of our signcryption
schemes are lower than those of other lattice-based signcryp-
tion schemes. The measurement units of the vertical coordi-
nate are kilobytes (KB).

TABLE 3. Comparison of the PK/SK sizes.

TABLE 4. Comparison of the ciphertext overheads.

Let q be the modulus. Let n be the lattice dimension. `s(`e)
denotes the number of attributes in a signing (encryption)
predicate. |As|(|Ad |) denotes the number of signing (decryp-
tion) key attributes. ϕ(e) denotes the number of encryption
attributes required in the designcryption process. BG denotes
the bit length of an element of the group G. Btt denotes the
bit length of the time stamp. |msg| denotes the bit length

TABLE 5. Concrete comparison.

TABLE 6. Comparison of the computational efficiencies.

of a message or plaintext. Table 3 shows a comparison of
the PK/SK sizes. A comparison of the ciphertext overhead
is listed in Table 4. Table 5 shows a concrete comparison
for realizing 128-bit security when q = 277063, σ = 3.4,
and n = 540. In Table 6, we use MV , SD and SP to denote
the vector multiplication, discrete sample, and preimage sam-
ple, respectively. Ex denotes the exponential operation in G.
Pa denotes the pairing operation.

IV. CONCLUSION
In this paper, we have proposed a more efficient stan-
dard model signcryption scheme based on lattices by care-
fully combining the partitioning technique with several
favourable algebraic properties of the tag-based lattice trap-
door, the RLWE problem and the ISIS problem. Compared to
current lattice-based signcryption schemes, the proposed
scheme not only provides a novel construction idea but also
reduces the sizes of the public keys, private keys and cipher-
texts. With the rapid development of cloud services, key
exposure has been highlighted as a serious security issue.
Inspired by [36], it will be interesting to construct an efficient
lattice-based key-exposure resilient aggregate signcryption
scheme for secure cloud storage, which we leave for future
work.
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