
Received September 23, 2019, accepted October 18, 2019, date of publication October 24, 2019, date of current version November 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2949455

Distributed Clustering of Text Collections
JUAN ZAMORA 1, HÉCTOR ALLENDE-CID2, AND MARCELO MENDOZA3
1Instituto de Estadística, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340023, Chile
2Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
3Centro Científico y Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile

Corresponding author: Juan Zamora (juan.zamora@pucv.cl)

The work of J. Zamora was supported by the Postdoctoral Project (Nr. 3180689) funded by CONICYT-FONDECYT, Government of Chile.
The work of H. Allende-Cid was supported by the Project (Nr. 11150248) funded by CONICYT-FONDECYT, Government of Chile. The
work of M. Mendoza was supported in part by PIA/Basal FB0821-CONICYT and in part by the Millennium Institute for Foundational
Research on Data, Government of Chile.

ABSTRACT Current data processing tasks require efficient approaches capable of dealing with large
databases. A promising strategy consists in distributing the data along with several computers that partially
solve the undertaken problem. Finally, these partial answers are integrated to obtain a final solution.
We introduce distributed shared nearest neighbors (D-SNN), a novel clustering algorithm that work with
disjoint partitions of data. Our algorithm produces a global clustering solution that achieves a competitive
performance regarding centralized approaches. The algorithm works effectively with high dimensional data,
being advisable for document clustering tasks. Experimental results over five data sets show that our proposal
is competitive in terms of quality performance measures when compared to state of the art methods.

INDEX TERMS Distributed algorithms, distributed text clustering, high dimensional data.

I. INTRODUCTION
As a consequence of the explosive growth of the web,
the integration of search engines into personal computers and
mobile devices, and the extensive use of social networks,
the clustering of text for document organization has become
a crucial aspect for web data management. Clustering is one
of the most critical tasks in text mining. It plays an essen-
tial role in efficient document organization, topic extraction,
summarization, and ad-hoc information retrieval. Nowadays,
the generation of large amounts of documents surpasses the
computational capacity of personal computers and even one
of the high-performance computers. Recent estimates indi-
cate that the amount of web pages indexed in the web is
higher than 50 billion.1 Therefore, it is of great interest to
develop algorithmic techniques able to organize, classify, and
summarize document collections. Accordingly, it is necessary
to implement algorithms that work with text collections dis-
tributed into multiple machines. Also, these algorithms have
to perform efficiently inmodern hardware, particularlywithin
parallel processing frameworks in multi-core architectures.

In real scenarios such as Collection Selection [4] for
distributed search engines, in which for a given query the

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaojie Guo.

1http://www.worldwidewebsize.com/, last access at 26th June 2019

node containing the most suitable collection must be picked,
the challenges related to scalability and efficiency of cluster-
ing methods have become very important [24]. Traditional
algorithms often assume that the whole dataset fits main
memory (RAM), and thus, every document can be accessed
at any time with no access latency. In scenarios where the
size of the collection is much bigger than RAM, this memory
allocation process is unfeasible.

There are two approaches successfully applied to the
construction of clustering algorithms able to process big
data. The first one introduces constraints on the number of
passes allowed on a document [32]. These types of algo-
rithms involve less computational costs than other methods,
although they tend to produce large clusters. Also, these
methods provide groups that have a strong dependence on the
order in which the data is processed. The second approach
exploits multi-core architectures to perform parallel process-
ing of the data [33]. Talia [28] identified three primary
strategies in the parallelism used in data mining algorithms.
1) Independent parallelism where each processor accesses to
the whole data to operate but do not communicate with each
other. 2) Task parallelism where each processor runs different
tasks in each partition or the entire data set. 3) Single Pro-
gram Multiple Data, or SPMD parallelism, where multiple
processors execute the same algorithm on different partitions
and exchange the partial results to cooperate. Most of the

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 155671

https://orcid.org/0000-0003-0003-182X

J. Zamora et al.: Distributed Clustering of Text Collections

parallel clustering algorithms follow the combinations of
task and SPMD parallelism using a master-slave architec-
ture. SPMD combines the computational power of a single
machine with the scalable storage capability of a distributed
system by partitioning the data into several independent
nodes connected through a network [27].

In general, SPMD algorithms work at two levels: local
level, and global level [17], [30], [31]. At the local level, all
nodes carried out a clustering algorithm independently from
the other nodes. Usually, the same clustering algorithm is
running in each node, producing a collection of local models.
Then, these models are transferred to a central node to form a
global model. The global model is then transmitted to nodes
to update the local models [31]. We adhere to this strategy to
design our algorithm.

SPMD seems promising since it allows us to exploit the
local capabilities of single computers with multi-core archi-
tectures. Within this research line, there are two variants
regarding the data generation scenario. On the one hand,
in some problems where the data set is extensive but col-
lected in a centralized fashion, the strategy employed con-
sists in partitioning the collection into several nodes. This
scheme leads to the transmission of a lot of data during
the execution of the algorithm [26]. On the other hand,
there are some problems inherent to distributed databases
as privacy issues [13] or costs involved in data consistency
constraints [21].

The focus of our work is to provide a clustering algorithm
capable of working with text collections. Text collections,
given how they are represented, lead to high-dimensional
vector representations. An effective way to cluster high-
dimensional data is to use the shared nearest neighbors (SNN)
algorithm [15]. SNN can process data according to a notion
of density, which works well with high dimensional data.

Ravichandran et al. [36] introduce a modification of SNN
to work with high dimensional data. It deals with the hubness
problem, i.e. how to discard the effect of highly connected
points in density estimation. The authors use a transformation
called unscented transform to sample the core points of the
SNN space. The transformation approximates a Gaussian,
from which a density sampling is performed on the candidate
points. The work shows that this modification in the density
sampling method could improve the robustness to noise and,
at the same time, limit the oversampling of hubness points.
The effects of this modification would indicate that the algo-
rithm could make a better estimate of the number of clusters
since it would limit the effect of noise and outliers in the
clustering process.

We take some inspiration from Ravichandran’s work to use
density-based sampling in an environment with distributed
data. Since density-based sampling shows good properties
to noise and outliers, we decided to study its properties on
disjoint text partitions. As a result, we introduce Distributed
Shared Nearest Neighbors clustering (D-SNN for short),
an algorithm that can work with distributed text datasets.
D-SNN is an extension of the C-SNN clustering algorithm

introduced by Ertoz et al. [10] that works with centralized
data. Our algorithm works over disjoint data partitions, con-
ducting sampling over core points in each node. Core points,
previously introduced in the famous algorithm DBSCAN [9],
are density prototypes. Our algorithm takes advantage of
core points using them to conduct density-based sampling
at the node level. Then, a master node collects each sample
to conduct a consolidation phase, producing a global cluster
solution. To validate our proposal, we conduct experiments
over five data sets, showing that our algorithm is feasible and
outperforms C-SNN. The use of core points as density pro-
totypes makes D-SNN resistant to white noise. This property
is a skill that D-SNN maintains since it uses density-based
sampling, just likeDBSCAN. SinceD-SNN searches for high-
density data regions, it can discard low-density regions with
white noise. However, the detection of core points introduces
two parameters,Eps andMinPts, the similarity threshold and
the minimum number of points in each data ball needed to tag
core points, respectively. To limit the effect of parameter sen-
sibility on cluster quality, we provide a data-driven approach
for parameter tuning.

To achieve this result, we explored several research
directions.
• We evaluate clustering algorithms in five differ-
ent datasets, showing that D-SNN outperforms its
competitors.

• We study the time complexity of C-SNN density-based
clustering.

• We study how to use density-based sampling favoring
resistance to white noise in low-density regions.

• We study how to provide a data driven approach for
parameter tuning.

By addressing all these problems, we show that it is pos-
sible to provide a distributed clustering algorithm to deal
with text collections. The main strength of the proposed
algorithm is its ability to use disjoint data partitions to return
high-quality clustering results. This strength will avoid cen-
tralizing data partitions in a single data node to provide a clus-
tering overview, reducing the computing load for clustering
distributed data partitions.

This article extends our prior contribution:
• D-SNN, suitable for distributed clustering in text collec-
tions (previously introduced in [40]).

Novel, unpublished contributions of this article are:
• a complete description of D-SNN, including diagrams,
pseudocode, and illustrative examples;

• a discussion about the computation complexity of
D-SNN;

• a new set of tests, based on Tipster datasets (DOE, ZF,
FR and SJMN);

• a new data-driven parameter tuning method, including
examples on Tipster datasets;

• results on computational load and feasibility of D-SNN
on distributed data partitions.

The remainder of this document is structured as follows.
First, a review of the literature on scalable and distributed

155672 VOLUME 7, 2019

J. Zamora et al.: Distributed Clustering of Text Collections

data clustering methods is presented in Section II. Next,
we introduce our algorithm in Section III. Experimental
design, along with the attained results, is presented and dis-
cussed in Section IV. Finally, we conclude in Section V
highlighting conclusions and discussing future work.

II. DISTRIBUTED CLUSTERING ALGORITHMS
As far as we know from the literature, most of the existing
efforts for the construction of clustering techniques capable of
operating in scenarios with distributed data have been focused
on low dimensional data (less than 100 attributes) in contrast
with document collections in which a document vector for a
small collection may have about 104 attributes. Nevertheless,
the main advances in distributed data clustering are detailed
below, especially highlighting those contributions focused on
methods capable of dealing with high dimensional data.

A. PARALLEL CLUSTERING ALGORITHMS
Xu et al. [31] presented a parallel version of DBSCAN
(PDBSCAN). The authors introduced the ‘shared-nothing’
architecture with multiple computers interconnected through
a network. A fundamental component of the shared-nothing
system is its distributed data structure. They introduced the
dR*-tree, a distributed spatial index structure in which the
data is spread among multiple computers and the indexes of
the data are replicated on every computer. Using this index,
the authors proposed a parallel version of DBSCAN which
could run simultaneously on several data partitions. Perfor-
mance evaluation showed that PDBSCAN offers nearly linear
speed-up and an excellent scale-up and size-up behavior.
Dhillon and Modha [7] presented an algorithm that exploits
the inherent data-parallelism in the k-means algorithm. They
analytically showed that the speed-up and the scale-up of the
algorithm approach the optimal as the number of data points
increases. The implementation of this proposal was done on
an IBM POWER parallel SP2 with 16 nodes. The authors
showed that the algorithm achieved nearly linear relative
speed-ups. Also, the algorithm achieved linear scale-up in the
size of the data set and the number of clusters desired. For a
2-gigabyte test data set, the implementation drives at more
than 1.8 Gigaflops.

Another scalable approach based on secondary memory
consists in designing algorithms able to work within the
MapReduce framework. In this context we highlight the
contributions made by Ene et al. [8] in which they tackle
the k-medians problem by using MapReduce. The authors
proposed a fast clustering algorithm with constant-factor
approximation guarantees. The algorithm uses sampling to
decrease the data size, running a time-consuming clustering
algorithm such as local search or Lloyd’s algorithm on the
resulting data set. The proposed algorithm has sufficient
flexibility to be used in practice since they run in a constant
number of MapReduce rounds. The experiments show that
the algorithms’ solutions are similar to or better than other
solutions.

Bahmani et al. [2] introduced a novel parallel imple-
mentation of k-means. The proposed algorithm, named
k-means++, obtains an initial set of centers that is close to
the optimum solution. Amajor limitation of k-means++ is its
sequential nature, which avoids its use on massive data. This
limitation is due to one must make k passes over the data to
find a good initial set of centers. Then, the authors show how
to drastically reduce the number of passes needed to obtain
a good initialization. The proposed initialization obtains a
nearly optimal solution after a logarithmic number of passes
and then shows that in practice a constant number of passes
suffices.

De Vries et al. [6] proposed a scalable algorithm that
clusters hundreds of millions of web pages into hundreds
of thousands of clusters. It does this on a single mid-range
machine using efficient algorithms and compressed docu-
ment representations. The algorithm was applied to two web-
scale crawls (ClueWeb09 and ClueWeb12) covering tens of
terabytes of text. The proposed algorithm uses the entire
collection in clustering and produces several orders of magni-
tude more clusters than the existing algorithms. Fine-grained
clustering is necessary for meaningful solutions in massive
collections where the number of distinct topics grows linearly
with collection size. Cluster quality was assessed in two
downstream tasks, the ad-hoc search of relevance judgments
and spam classification. These results show that the clustering
on massive data is useful for a number of web data manage-
ment tasks.

A parallel version of SNN was proposed by
Kumari et al. [37] using an R-tree structure. The parallel
version makes use of an implementation of the R-tree in
shared and distributed memory. The focus of the work is
on the efficiency of the algorithm, so the authors provide
evidence that indicates that its implementation is scalable
in massive datasets. Although they do not provide evidence
regarding the use of the algorithm in high dimensional data,
since the dataset of greater dimensionality used by the authors
is KDDCUPB74d, with vectors of 74 components, the exper-
iments show very competitive speed-ups in massive datasets.
A limitation of the work consists in the lack of evidence
concerning the quality of the clusters found.

Plattel [39] proposed a distributed version of SNN. In that
version, a centralized data structure is maintained fromwhich
the distribution of data to different machines is carried out.
That version of SNN requires the choice of a machine that
synchronizes the process of data distribution as well as the
creation of a structure that indexes the collection. The authors
indicate that it is enough to use a decision tree to index the
data. The tree is used to drive the clustering process helping
the phase of merging in the master node.

B. CLUSTERING ON DISTRIBUTED DATA
Kargupta et al. [16] proposed a method to conduct Princi-
pal Component Analysis (PCA) over heterogeneous and dis-
tributed data. Based on this contribution, they also introduced
a clustering method. Once the principal global components

VOLUME 7, 2019 155673

J. Zamora et al.: Distributed Clustering of Text Collections

are obtained by using the distributed method, they are trans-
mitted to each node. In each partition, the local data is pro-
jected onto the components, and then a traditional clustering
technique is applied. Finally, a master node integrates the
local clusters to obtain a global clustering solution.

Liang et al. [20] presented another algorithm for PCA over
distributed data. In that proposal, each node computes PCA
over its local data and transmit them to a master node. This
node uses the received components to estimate the principal
global components, which are then sent to each data node.
Then, in every node, each data partition is projected onto the
global components to compute a coreset. Finally, the global
coreset is used to obtain a global clustering model.

Li et al. [19] proposed an algorithm named CoFD, which
is a non-distance based clustering algorithm for high dimen-
sional data. Based on the Maximum Likelihood Principle,
CoFD attempts to optimize its parameter settings tomaximize
the likelihood between data points and the model generated
by the parameters. Then, a distributed version of the algo-
rithm, called D-CoFD, was proposed. The authors claim that
the experimental results on both synthetic and real data sets
show the efficiency and effectiveness of both algorithms.

C. DISTRIBUTED APPROACHES FOR
DENSITY-BASED CLUSTERING
Klusch et al. [17] proposed a novel distributed clustering
algorithm based on non-parametric kernel density estimation,
which takes into account the issues of privacy and com-
munication costs that arise in a low dimensional distributed
data environment. Januzaj et al. [14] presented a scalable
version of DBSCAN that is also capable of operating over
distributed collections. First, the best local representatives are
selected depending on the number of points that each one
represents sending the chosen points to a master node. The
master node is in charge of clustering the local representatives
into a single new model, which is then transmitted to the data
nodes improving their local group structure. Unfortunately,
experimental results show that the algorithm does not work
well with high dimensional data.

D. DISTRIBUTED APPROACHES FOR
PARAMETRIC CLUSTERING
Merugu and Ghosh [25] introduced a framework for clus-
tering distributed data in unsupervised and semi-supervised
scenarios, taking into account several requirements, such as
privacy and communication costs. Instead of sharing samples
of the original data, the authors transmit the parameters of
suitable generative models built in each data node to a master
node. The authors show that the best representative of all the
data is a kind of "average" model. They show that this model
can be approximated by sampling the underlying local distri-
butions using Markov Chain Monte Carlo techniques. Also,
a new measure that quantifies privacy based on information-
theoretic concepts was proposed, showing that decreasing
privacy leads to a higher quality of the combined model. The
authors provide empirical results on different data types to

highlight the generality of their framework. The results show
that high quality distributed clustering can be reached with
little privacy loss and low communication cost.

Kriegel et al. [18] proposed a distributed model-based
clustering algorithm that uses the EM algorithm for detecting
local models in terms of mixtures of Gaussian distributions.
They present an efficient and effective algorithm for deri-
ving and merging local Gaussian distributions producing a
meaningful global model. In a broad experimental evaluation
they demonstrate that the framework scales-up in a highly
distributed environment.

E. DISTRIBUTED APPROACHES FOR
PROTOTYPE-BASED CLUSTERING
Forman and Zhang [11] introduced a technique to paral-
lelize a family of centroid-based data clustering algorithms.
The idea of the proposed algorithms is to communicate
only sufficient statistics, yielding linear speed-up with excel-
lent efficiency. The proposed technique does not involve
approximation and may be used in conjunction with sam-
pling or aggregation-based methods, such as BIRCH [23],
lessening the degradation of their approximation and han-
dling large data sets. The authors demonstrate that even for
relatively small problem sizes, it can be more cost-effective to
cluster the data in-place using an exact distributed algorithm
than to collect the data in one central location for clustering.

Balcan et al. [3] provides novel algorithms for dis-
tributed clustering for two popular prototype-based strategies,
k-median, and k-means. The proposed algorithms have algo-
rithmic guarantees and improve communication complexity
over existing approaches. The proposed algorithm maps the
problem of finding a clustering solution to finding a small
size coreset. The authors provide a distributed method for
constructing a global coreset which improves over the pre-
vious methods by reducing the communication complexity,
and which works over general communication topologies.
Experimental results on large scale data sets show that this
approach is feasible.

Mashayekhi et al. [22] proposed GDCluster, a fully
distributed clustering algorithm capable of dealing with
dynamic data. GDCluster works by merging cluster proto-
types obtained in each node employing a partition or density-
based algorithm. In the case of partition-based methods,
the prototypes correspond to centroids. For density-based
methods, they use core points. GDCluster presents an inter-
esting decentralized way of computing a summarized view
of the complete dataset through gossip-based continuous
cooperation. Its relation with our proposal corresponds to
the usage of DBSCAN-based core points as representatives
of each data node. Nevertheless, no experiments over high
dimensional data were presented by the authors.

Azimi and Sajedi [1] followed a similar strategy to
GDCluster introducing GDSOM-P2P. The method uses a
variation of the Self-Organizing Maps (SOM) to select rep-
resentative data in each data node, sharing this information
according to a gossip-based protocol. Besides, GDSOM-P2P

155674 VOLUME 7, 2019

J. Zamora et al.: Distributed Clustering of Text Collections

FIGURE 1. Overall scheme for the two stages of the proposed algorithm. P represents the set of data partitions
distributed across workers.

is a robust decentralized algorithm; its dependency on SOM
makes difficult its scalability for high dimensional data.

III. DISTRIBUTED SHARED NEAREST
NEIGHBORS CLUSTERING
We present a distributed clustering algorithm based on
Shared-Nearest-Neighbor (SNN) clustering [10]. This
method automatically identifies the number of underlying
groups in each data partition along with a set of representative
points for each one. We pose that this method can deal with
collections arbitrarily distributed across a Master/Worker
architecture. The algorithm operates in two stages: The first
one starts by processing the data in each partition, producing
a set of density-based samples, i.e., core points, transmitting
back a sample set of these core points to the master node.
In the second stage, the master node joins the sample points
received and then conducts an SNN clustering over them.
Finally, a set of representative points is labeled, also defining
a new set of core points that summarizes the overall collec-
tion. An overall scheme of the method is shown in Figure 1.
The circle symbolizes the master node, and each rectangular
block denotes the collection of workers. The continuous
arrows represent the communication flow and the labeled
boxes the tasks executed by the master or the workers.

A. PARAMETERS OF THE ALGORITHM
The proposed method comprehends four parameters,
namely k , and then we could define different values for the
parameters and ω. Note that the values of Eps and MinPts
may differ between the master and the workers. Accord-
ingly, we could define different values for these parameters
having Epsm and MinPtsm in the master node and Epsw
and MinPtsw in the workers. The value of k represents the
size of the neighborhood over which the SNN similarity
measure is computed. The neighborhood of each data point is
calculated using a proximity function in the original feature
space (e.g., term vector space in the case of documents).
In the SNN space, the value of Eps denotes the similarity

threshold beyond which two points are considered as close.
Then, the similarity in the SNN space corresponds to the num-
ber of shared neighbors between two different data points.
Additionally, a point is identified as a core point when the
number of points close to it in the SNN space surpasses the
value of the density parameter MinPts. Finally, the value of
the parameter η rules the size of the sample set of core points
that is transmitted to the master node.

B. STAGES OF THE ALGORITHM
The overall procedure performed by the master node is
depicted in Algorithm 1. Firstly, the dataset is randomly
partitioned in a set P of partitions with |W| data blocks,
assigning each one of them to a worker. Then, themaster node
is responsible for consolidating the partial results obtained in
each worker.

The initial stage starts by performing algorithm 2 in each
worker. This procedure starts by computing the shared-
nearest-neighbor similarity [15] between each pair of data
points and storing it into the matrix SNN. This matrix is
square and contains as many rows as points the dataset has.
Each coefficient SNN(i, j) denotes the size of the intersection
between the k-neighborhoods of two points i and j. In order
to deal with high dimensional data, we employ the cosine
similarity as the base measure. Note that this function can
be replaced with a different one depending on the nature
of the data. Then using the SNN matrix already computed,
each worker runs a centralized shared-nearest-neighbor clus-
tering [10], obtaining a set of core points and clusters. It is
after the complete execution of this procedure that the master
node receives the core points identified in each worker. Since
our method is based on DBSCAN, it may identify too many
core points in each cluster, especially under the presence of
dense groups. Therefore, only a weighted sample of points
from each cluster is transmitted to the master, limiting the
costs involved in data communication. The size of the sample
is controlled by η.

VOLUME 7, 2019 155675

J. Zamora et al.: Distributed Clustering of Text Collections

To explain how this sample is built, let us consider a
single worker and a cluster l from a clustering solution LX .
A weight is computed for each data point in l, according to
the expression:

1− (Nl/Nc)
2 · Nl

,

where Nc denotes the total number of core points in the
clustering solution andNl the number of core points in l. Note
that Nl corresponds to |l ∩ CX |, where Cx is the set of core
points of the data partition. This function was designed to
build a sample that represents both dense and sparse clusters
alike avoiding bias to dense clusters. On the one hand, if l
is dense, the fraction Nl

Nc
will be close to 1, so the weight

of each point in l will be small. On the other hand, if Nl is
small concerning Nc, the weight of each data point in l will
be higher. Finally, in this stage, each worker reports to the
master node the sample built from each cluster found.

Algorithm 1 Procedure Executed by the Master Node
Data: D: dataset, W: set of workers, η: sampling

fraction
Result: Clustering solution and noise points
Function master_procedure(D,W , η, Epsm,
MinPtsm, Epsw, MinPtsw, k):

P ← π1 ∪ π2 . . . π|W | uniformly drawn from D
S ← {}
foreach w ∈W do

Sw← stage1(πw, η,Epsw,MinPtsw, k)
S ← S ∪ Sw

SNN← snn_similarity(S, k)
C ′,L ′← C_SNN(SNN,Epsm,MinPtsm)
LC ′ ← []
foreach l ∈ L ′ do /* pick core points */

append {l ∩ C ′} to LC ′

L ← LC′
N ← ∅
foreach w ∈W do

Lw,Nw← stage2(πw,LC ′ ,Epsw, k)
N ← N ∪ Nw
foreach l ∈ Lw do /* adding to the
overall cluster */

find j ∈
[
1, |L|

]
s.t. (L[j] ∩ l) 6= ∅

L[j]← L[j] ∪ l

return L,N

The master procedure (see Alg. 1) continues after all work-
ers transmit their data point samples to the master node,
merging them into a single setS. After calculating the shared-
nearest-neighbor similarity on S, the centralized shared-
nearest-neighbor clustering procedure is applied obtaining a
new set of core points C′ and a global clustering solution L ′.
Then, the master node calculates a new set of data points, LC ′ ,

Algorithm 2 Stage 1 – Worker Procedure
Result: Set of corepoints and a set with sample data

from each group
Function stage1(X , η, Epsw, MinPtsw, k):

SNN← snn_similarity(X , k)
CX ,LX ← C_SNN(SNN,Epsw,MinPtsw)
Sw← {}
foreach l ∈ LX do

Sl ← sample η ∗ |l| points from l using:
1− (|{l ∩ CX }|/|CX |)

2 · |{l ∩ CX }|
Sw← Sw ∪ {Sl}

return Sw

Algorithm 3 Stage 2 – Worker Procedure
Result: Groups of data points assigned to the worker

and points identified as noise
Function stage2(X , LC′ ,Epsw, k):

SNN← snn_similarity(X , k)
Nw← ∅
Lw← LC′
foreach x ∈ X do

s∗← 0
i∗← ∅
for i = 1 to |LC′ | do

s← max
q∈LC′ [i]

SNN(x, q)

if s > s∗ then
s∗← s
i∗← i

if s∗ ≥ Epsw then
Lw[i∗]← Lw[i∗] ∪ {x}

else /* mark as noise */
Nw← Nw ∪ {x}

return Lw,Nw

which corresponds to the core points of each cluster identified
in the global solution, L ′. Then, a consolidated clustering
solution L is initialized with LC ′ . After transmitting LC ′ to
each worker, the final stage starts running algorithm 3. Each
worker w executes the algorithm 3 using its original data par-
tition πw. Within this procedure, each data point is associated
with the cluster of its nearest core point in LC ′ , excluding
those points whose proximity to its nearest core point in LC ′
is lower than Epsw. These last points are marked as noise
points and added to a set of noise points Nw. Then, the set
of noise points Nw, and the list of clusters Lw consolidated in
each worker are sent to the master node for a final labeling
step.

In the final part of the algorithm 1 the local clusters Lw and
the noise sets Nw reported by the workers are merged into
the global clustering solution. Finally, the overall clustering

155676 VOLUME 7, 2019

J. Zamora et al.: Distributed Clustering of Text Collections

FIGURE 2. Simulated data used in our example proposed initially to study the performance of the CURE algorithm [12].

FIGURE 3. Final result after D-SNN clustering with Eps = 50.

represented by the set of clusters L and the set of noise points
N is reported by the master node.

ILLUSTRATIVE EXAMPLE
We provide an illustrative example by applying D-SNN over
the synthetic 2-dimensional data set shown in Figure 2, which
was used by Guha et al. [12] when introducing the CURE
algorithm. As figure 2 shows, the data set contains five
clusters, depicted with different colors. The dataset contains
many noise points (more than 2k points over a data set of
70k data points). The algorithm was executed over eight
disjoint data partitions created using uniform sampling at
random. The SNN similarity was computed using Euclidean
neighborhoods of 90 data points. Parameter MinPts is set
to 30 and parameter ω is set to 0.3. The attained results
when using parameter Eps equal to 50 and 60 are shown
in figures 3 and 4, respectively.

Figures 3 and 4 show the effectiveness of our algorithm
and its robustness to the presence of noise. By contrasting
Figure 2 against 3 and 4, it is noticed that the noise layer
was successfully removed by our clustering algorithm in

both cases. Note that the Eps value had an impact on the
sensitivity of the algorithm to detect noise points, i.e., a higher
value for this parameter is accompanied by an increasing rate
of points marked as noise as it is especially noticed in the
bridge of points that connect both ellipsoids in Figure 2.

C. COST OF THE ALGORITHM
Assuming thatD has n data points and the system works over
P nodes, the cost of the SNN space construction per node is

2

(
n2

P2

)
. The cost of the labeling process per node is linearly

upper bounded by the partition size O(
n
P
) (the worst case

happens when the entire partition is marked as core point).
The cost of data transmission per node is ruled by η and is
upper bounded by the partition size O(η ·

n
P
). In the master

node, the size of the centralized sample S is upper bounded
by O(η · n). Then, the construction of the SNN space over
S costs 2

(
η2 · n2

)
. The cost of the labeling process is upper

bounded by the size of S. Then its cost is O(η · n).

VOLUME 7, 2019 155677

J. Zamora et al.: Distributed Clustering of Text Collections

FIGURE 4. Final result after D-SNN clustering with Eps = 60.

TABLE 1. Description of the data sets employed in terms of the number of instances, size of the vocabulary (that is the dimensionality of the document
vectors), number of classes and percentage of non-zero values in the document-term matrix.

As the costs are governed by the quadratic costs involved
in SNN construction, the total cost of D-SNN is ruled by

2

((
1
P2
+ η2

)
· n2

)
. The factor

1
P2
+ η2 represents the

fraction of C-SNN that D-SNN is able to reduce.

IV. METHODOLOGY AND EXPERIMENTAL RESULTS
In this section, we assess the performance of D-SNN on five
data sets comparing its effectiveness against C-SNN [10].
Also, we include two methods in the evaluation: Firstly,
an SNN-graph bisection method successfully employed in
text clustering tasks [34]. Secondly, a parallel version of
K-means++ proposed by Bahmani et al. [2] and success-
fully implemented into the Spark framework. In this section,
the former algorithm is denoted as Graph Clust and the latter
is denoted as Kmeans||.
Each data set was partitioned into four disjoint parti-

tions produced by a uniform sampling process at random.
Then, each partition was distributed onto different data nodes
in which the initial stage procedure was conducted. Then,
the results obtained after performing the final stage procedure
in the master node were assessed.

A. DATA SETS
The experiments were performed over 5 data sets containing
documents represented as vectors in high dimensional term
spaces. We use the well-known text data set 20-Newsgroups
(M5 partition), a document collection that contains
almost 5000 news coming from different subjects, namely
computers, motorcycles, baseball, science, and politics.

The remaining four document sets were extracted from the
Tipster collection.2

In specific, we include in our evaluation DOE, a data set
which contains short abstracts of the Department of Energy,
FR which contains reports of actions taken by U.S. govern-
ment agencies, SJMN, a collection of news published by the
San Jose Mercury News, and ZF, a collection of news about
computers published by Ziff-Davis Publishing Co.

In table 1, we summarize the number of documents,
the size of the vocabulary, the number of classes and the
percentage of non zero values (a measure of the sparsity of
the collection) per data set. Note that all these collections
are quite sparse and also their document vectors are spread
onto high dimensional term spaces with tens of thousands of
features.

FIGURE 5. Document processing steps used in our work.

B. TEXT PROCESSING
To obtain a representative set of terms for each collection,
the documents were processed following the steps indicated
in Figure 5. This figure shows standard text processing steps

2https://tac.nist.gov/data/data_desc.html

155678 VOLUME 7, 2019

J. Zamora et al.: Distributed Clustering of Text Collections

commonly used in information retrieval and text mining
tasks. Firstly, as documents within the Tipster collections
come in SGML format, their content was retrieved. Then,
spacing and punctuationmarks were removed. After this step,
the set of terms was filtered using an English stop-word list,
which aids to remove meaningless words (e.g. the, of, by).

None other process was applied to the documents in this
work (e.g., stemming or lemmatizing) in order to keep the text
content as similar as possible to the source and especially to
allow subsequent generalizations of the performance results
without any tie to a specific data set. Finally, the selected
terms within each collection were sorted, and then the vocab-
ulary was determined (the vocabulary size reported in table 1
corresponds to the vocabulary obtained after document
processing).

After the vocabulary of each collection was built, the num-
ber of occurrences of its terms in each document was com-
puted and used to build the vector representation of each
document. Let fi,j be the number of occurrences of a term i
of the vocabulary V in the document j of the collection. Let
ni be the number of documents of the collections that contain
the term i. The following expression quantifies the weight of
term i within a document j:

wi,j =
fi,j

maxt∈V ft,j
· log

n
ni

which corresponds to the Tf-Idf weighting scheme of the term
i for the document j.

FIGURE 6. Similarity matrix plot for the 20 Newsgroup dataset (20NG).

We use the cosine proximity to measure the similar-
ity between each pair of documents in each data set.
To understand differences and resemblances across data sets,
we plot the similarity matrix of each dataset by sorting
the documents consecutively by their class labels. A gray-
scale was employed for each plot in which darker spots
denote higher similarity values. These matrices are depicted
in figures 6 to 10.

The matrices mentioned above show darker rectangular
patches along the diagonal line, showing the presence of
clusters. Also, 20NG (Fig. 6) and ZF (Fig. 10) show pairwise

FIGURE 7. Similarity matrix plot for the Department of Energy
dataset (DOE).

FIGURE 8. Similarity matrix plot for the Federal Register dataset (FR).

FIGURE 9. Similarity matrix plot for the San Jose Mercury News
dataset (SJMN).

similarities notmuch higher than the ones outside the clusters,
suggesting that the data points in these data sets are very
sparse. In the case of the DOE collection (Fig. 7), some
spots outside the diagonal appear suggesting the existence
of cluster overlapping. Finally, both SJMN (Fig. 9) and FR
(Fig. 8) collections show small squares embedded into big
squares along the diagonal, suggesting the existence of nested
clusters.

VOLUME 7, 2019 155679

J. Zamora et al.: Distributed Clustering of Text Collections

FIGURE 10. Similarity matrix plot for the Ziff/Davis dataset (ZF).

C. CLUSTERING QUALITY MEASURES
In this work, we used external validation measures to assess
cluster quality. To this end, we employed the Adjusted-
Mutual-Information, Homogeneity, Completeness and
V-Measure.

The Adjusted-Mutual-Information (AMI) measure was
proposed byNguyen et al. [29] and evaluates howmuch infor-
mation of a ground truth class is represented into the resulting
clustering. The Homogeneity (HOM) metric measures the
extent in which the clusters contain only data points which
are members of a single class. The Completeness (COM)
metric accounts for the extent to which all the data points that
are members of a given class belong to the same cluster. The
V-Measure (VM) corresponds to the harmonic mean
between Homogeneity and Completeness. These metrics
take positive values within [0, 1], except for the Adjusted-
Rand-Index, which is within [−1, 1]. For all of these mea-
sures, larger values denote a better clustering quality.

D. GRID SEARCH OF PARAMETERS
To report the best performance found for each algorithm,
we conducted a grid search for K , Eps and MinPts. The
results were evaluated in terms of V-Measure. We used the
same grid for C-SNN and D-SNN. The grid used consists of
432 configurations with K in {15, 30, 50, 70, 90, 110}, Eps
in {3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50} and MinPts in
{5, 10, 15, 20, 25, 30}. For the Graph Clust algorithm we
tested the same values for K but no difference in the per-
formance was detected. Additionally, since the Graph Clust
and Kmeans|| algorithms require the number of groups as
a parameter (k-direct algorithms), this parameter was set to
the known number of classes of each dataset, allowing to
evaluate a fair comparison between our algorithm and our
competitors. We show the best parameters for C-SNN and D-
SNN in Tables 2 and 3, respectively.

In the case of D-SNN, we run our experiments using
w = 0.3 over 4 partitions.

E. RESULTS
The results of our experiments are shown in Table 4.
Bold fonts indicate the best result for each experimental
configuration.

TABLE 2. Parameters of the C-SNN clustering algorithm selected after the
grid search of parameters.

TABLE 3. Parameters of the D-SNN clustering algorithm selected after the
grid search of parameters.

TABLE 4. Performance attained by the graph clustering algorithm, C-SNN
algorithm, and D-SNN over the text collections. The best values for each
measure in each dataset appear in bold fonts.

Table 4 shows that D-SNN obtains the best performance
in almost all the experiments, showing that our algorithm can
improve clustering quality by conducting density sampling
over disjoint partitions. These results are due to the robustness
of D-SNN to the presence of noise points. Also, as density
sampling is conducted over disjoint partitions, the perfor-
mance of the algorithm increases. Then, the robustness of the
algorithm to the presence of noise limits the influence of noise
points on clustering solution. The last finding explains why
D-SNN outperforms C-SNN.

As depicted in figures 6 and 10, 20NG and ZF exhibit a low
discrimination power of the underlying similarity measure in
the vector term space spanned by the document vectors in
each collection. Table 4 shows that this phenomenon affects
both centralized algorithms, especially C-SNN in 20NG,
by hindering their capability of identifying homogeneous
clusters. The lower values of the AMI scores support this
finding.

155680 VOLUME 7, 2019

J. Zamora et al.: Distributed Clustering of Text Collections

Also, the similarity matrix for DOE (Fig. 7) shows an
unbalanced data set, a fact that can be evidenced by observing
the uneven patch sizes along the diagonal in its similarity
matrix. Table 4 shows that D-SNN works well under this
scenario. This finding suggests that the shared near neighbor
approach helps to address this obstacle.

Finally, similarity matrices for data sets FR (Fig. 8) and
SJMN (Fig. 9) show embedded square patches along the diag-
onal, which suggests a hierarchical structure of the underlying
classes. Table 4 shows that D-SNN works well under this
scenario, and accordingly, the impact on the performance of
nested clusters is successfully drawn by D-SNN.

In summary, our experiments show that the extraction of
core-points, together with the sampling strategy followed
to transmit the representatives to the central node, enable
more precise discrimination of each group. Regarding the
Kmeans|| algorithm implemented within the Spark frame-
work, it attained poor performance scores over all data sets.
This observation is due to the high dimensional nature of text
data. Another factor that explains this poor performance is
class unbalance. Finally, it is important to stress that Spark
Kmeans|| currently corresponds to one of the most successful
implementations of a distributed clustering algorithm in terms
of scalability.

F. AN HEURISTIC FOR PARAMETER TUNING
In the previous section, we showed that D-SNN outperforms
C-SNN in almost all the experiments. However, the compari-
son was made using the best values found for the parameters
using a grid search. The performance of each parameter
assignment was evaluated in terms of V-Measure, a perfor-
mance measure that uses actual labels to measure cluster
quality. In an unsupervised learning scenario, D-SNN will
work with unlabeled data. As observed by Rukmi et al. [38],
SNN is an algorithm sensitive to the choice of the parame-
ters k, MinPts, and Eps. Indeed, a high value of k determines
that the number of neighbors of each document may include
documents with low similarity, deteriorating the quality of the
clusters found. Likewise, a high value of Eps produces more
documents classified as noise. Finally, a high value of MinPts
causes SNN underestimating the actual value of the number
of clusters. Given the implications that an unfortunate choice
of SNN parameters has on the quality of the results, a data-
driven tuning strategy of these parameters is required.

In this section, we discuss how to tune the parameters of
D-SNN on unlabeled data. In order to do this, we present a
useful and straightforward data-driven heuristic to tune Eps
and MinPts.
Our heuristic is inspired by the sorted k-sim graph used by

Ester et al. [9] in DBSCAN. The k-sim graph corresponds
to the graph of similarities of each point to its k-nearest
neighbor. The sorted k-sim graph is the k-sim graph with
similarities sorted in decreasing order. As was pointed out
by Ester et al. if we use k = MinPts, the sorted k-sim
graph shows an inflection point. They selected Eps from the
sorted k-sim graph, a value that is identified using the knee of

the curve. However, they did not provide a way to determine
the value of MinPts.

Our heuristic comes from an observation made on sorted
k-sim graphs. Note that, in addition to Eps and MinPts,
C-SNN and D-SNN has an additional parameter named k ,
which determines the size of the neighborhood where the
SNN space is computed. We calculate a set of sorted k-sim
graphs for different values of k . Note that k corresponds to the
parameter used in the SNN space for similarity calculation,
and k is the parameter of the sorted k-sim graph, then k and
k are different.

We noted that the shape of each plot is almost insensitive
to k . Different values of k produce a rescaling of the plot in
terms of distances, but the shape remains the same. As sorted
k-sim graphs are insensitive to k , we need to fix k considering
other criteria. On the one hand, an important criterion to
fix k is to avoid unnecessary computation. A high value
of k will demand the maintenance of large neighborhoods
lists for SNN calculation. On the other hand, a low value
of k may discard close points in high-density regions. Then,
we propose to use a value for k , considering the density of the
dataset. This parameter will be proportional to the density of
the data set in the original space. The higher the density of the
space, the higher the value of k . To avoid a linear increment
on k due to data size, we introduce a sublinear factor log(np),
where np corresponds to the size of the data partition. Note
that for C-SNN, np = n, where n corresponds to the size of
the dataset. Therefore, we estimate k by:

k =
n · nnz
100

· log(np).

For instance, in 20NG as n = 4743, and nnz = 0.167, then
k ≈ 63 for C-SNN and 52 for D-SNN. Then we round k to
the closest number multiple of 5.

FIGURE 11. k-sim graph for 20 Newsgroup dataset (20NG).

To tune MinPts, we use sorted k-sim plots for several
values of k. The highest value of k= k (rounded), is useful to
start the search of k from k in decreasing order in decrements
of 10. These curves are shown in figures 11 to 15. Note that
low values of k produce less convex curves and high values of
similarities. Ester et al. [9] observed convex curves for k-sim
graphs (DBSCAN was evaluated using k=4). We propose to

VOLUME 7, 2019 155681

J. Zamora et al.: Distributed Clustering of Text Collections

FIGURE 12. k-sim graph for the Department of Energy dataset
dataset (DOE).

FIGURE 13. k-sim graph for the Federal Register dataset (FR).

FIGURE 14. k-sim graph for the San Jose Mercury News dataset (SJMN).

use the sensitivity to k of sorted k-sim graphs to tune MinPts
and Eps.
We set the value of MinPts to the lower value of k that

produces convexity in the k-sim plot. We conduct a search for
MinPts, starting from k . A binary search on k is advisable
to avoid unnecessary computation of k-sim curves when k
is high. Figures 11 to 15 show the results of this proce-
dure over the five data sets used in this work. In some data
sets, the curves are almost equivalent in terms of convexity
(e.g., see figures 11 and 14). In these cases, we choose the
value that is in the middle of the search range. In other
cases, the change in convexity is more notorious (e.g., see
figures 13 and 15). Note that Eps is retrieved using the knee
of the curve (the projection of the point to the y-axis). These
figures also show that the values found using our heuristic

FIGURE 15. k-sim graph for the Ziff/Davis dataset (ZF).

are similar to the ones showed using grid-search. The only
exception to this finding was observed in 20NG, where the
value of k was over-estimated. The results of both algorithms
using our tuning heuristic in terms of cluster quality are
shown in Table 5.

TABLE 5. Performance attained by C-SNN and D-SNN over the text
collections using our tuning heuristic. Clustering quality results in terms
of V-Measure are shown in the last column.

Table 5 shows the results in terms of the V-Measure after
using our tuning procedure. This scenario is close to a real
in production scenario, where the clustering task is conducted
over unlabeled data, and accordingly, the search for the opti-
mum clustering solution is, at some extent blind. We note
that D-SNN outperforms C-SNN in all the comparisons. The
results show that C-SNN and D-SNN are sensitive to param-
eter tuning. Accordingly, an incorrect parameter setting may
decrease the performance of D-SNN.

D-SNN performs well in these experiments. We under-
stand that the use of partitions and the distributed nature
of the algorithm can reduce the impact of parameter tuning
on performance. In general, density-based clustering algo-
rithms are susceptible to parameter tuning. We evidence that
a distributed density-based algorithm can limit parameter
sensitiveness, finding an additional suitable property to our
algorithm.

In summary, the results show that our algorithm performs
well in distributed collections being precise in detecting the
cluster structure of the analyzed data. In addition, the data-
driven tuning method reduces the impact of parameter
sensibility.

155682 VOLUME 7, 2019

J. Zamora et al.: Distributed Clustering of Text Collections

FIGURE 16. CPU Load of a single DSNN execution with 4 workers plus the Master node.

G. EMPIRICAL ASSESSMENT OF THE
COMPUTATIONAL COST
In order to illustrate the distributed nature of the proposal in
a real scenario, a randomly selected 50% of the full 20NG
dataset (10k documents) is clustered by DSNN with 4 work-
ers. The CPU load of each node is recorded and contrasted
against the stages of the algorithm described in section III-B.
Figure 16 depicts this information along with two task flows
corresponding to the main stages carried by the master and
each one of the workers.

In the first part of the plot of Figure 16, until time step 0,
the master and the workers records a computational load
due to initialization operations. From time step 0 onward,
data partitioning and distribution are performed by the master
until time step 10. Some steps before time step 10, Stage 1
begins by invoking the clustering and sampling tasks in each
worker. Around time step 25, all workers start to send back
their core points along with the sampled points to the master,
which starts a centralized clustering task over these summary
data. After this procedure is finished around the time step 32,
labels are sent from the master to each worker to re-cluster its
initially assigned partition and send back the updated labeling
to the master node. Finally, around time step 42, the master
starts to consolidate the final clustering of the whole dataset.
The plot illustrates how the algorithm works in a distributed
environment and shows the alternation in the computational

load between the master and the worker nodes. It can be seen
that the workers carry a good part of the load and that the
stages executed by the master have a shorter duration, which
favors the scalability of the algorithm preventing the master
from transforming into a bottleneck for DSNN.

H. LIMITATIONS OF THE METHOD
Undoubtedly, one of the limitations of clustering algorithms
is their sensitivity to hyperparameters. In the case of density-
based algorithms, such as DBSCAN and our distributed
version D-SNN, the parametric sensitivity determines the
quality of the clusters found. By providing a data-oriented
parameter tuning strategy, D-SNN decreases the impact of
this weakness.

Clustering algorithms tend to be noise sensitive. Since
D-SNN uses density-based sampling, it is capable of dealing
with noise that produces points in low-density regions. A lim-
itation of density-based clustering algorithms is the inability
to distinguish between data sources and noisy point sources.
Consequently, D-SNN could confuse a point source of noise,
marking it as a cluster if the density sampling conditions
allow choosing enough samples from such a source.

V. CONCLUSION AND FUTURE WORK
In this work, a distributed clustering method able to deal
with text collections was proposed. In order to assess its

VOLUME 7, 2019 155683

J. Zamora et al.: Distributed Clustering of Text Collections

utility, especially for recovering the cluster structure under-
lying each collection, its performance was compared against
two centralized approaches (C-SNN and Graph Clust). Also,
its performance was compared to k-means||, a fast implemen-
tation of the famous prototype-based clustering algorithm
implemented in Spark. Our algorithm outperformed all these
algorithms on five different data sets. The results corroborate
the ability that D-SNN has to work in a high-dimensional
dataset, such as those produced with tf-idf vectorization on
text.

Five real text collections were employed to show the
weaknesses and strengths of the shared-nearest-neighbor
approach. The results indicate that D-SNN, in addition to its
power to process distributed data collections, maintains the
functional properties of C-SNN. Also, D-SNN improves the
capability of dealing with high-density spaces.

The proposed method can be easily extended to impute
a label for each data point of a given collection. That is,
after the final stage in the central node, the labels of the
clustered core-points can be re-transmitted to their original
workers. Then, each document can be labeled according to
their nearest core-point. Nevertheless, although this task is
essential for automatic tagging (e.g., automatic generation
of Web directories), we think that the main contribution of
this work lies in collection summarization. Our algorithm can
obtain a summary of the groups hidden in an extensive and
distributed collection, a task that is unfeasible on a single
machine.

As future work, we propose to provide an implementation
of D-SNN on a big-data framework as Mahout or Spark.
With such an implementation, we will able to take advantages
from the scalability of our proposal. As our experiments show
that D-SNN is very useful in terms of clustering quality,
the addition of scalability properties will provide at the same
time a fast and effective distributed clustering algorithm for
researchers and practitioners.

REFERENCES
[1] R. Azimi and H. Sajedi, ‘‘A decentralized gossip based approach for data

clustering in peer-to-peer networks,’’ J. Parallel Distrib. Comput., vol. 119,
pp. 64–80, Sep. 2018.

[2] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
‘‘Scalable k-means++,’’ Proc. VLDB Endowment, vol. 5, pp. 622–633,
Mar. 2012.

[3] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, ‘‘Distributed κ-means and
κ-median clustering on general topologies,’’ in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 26, 2013, pp. 1–9.

[4] F. Crestani and I. Markov, ‘‘Distributed information retrieval and applica-
tions,’’ in Proc. 35th Eur. Conf. Inf. Retr. Berlin, Germany: Springer, 2013,
pp. 865–868.

[5] A. S. Das, M. Datar, A. Garg, and S. Rajaram, ‘‘Google news personaliza-
tion: Scalable online collaborative filtering,’’ in Proc. 16th Int. Conf. World
Wide Web, 2007, pp. 271–280.

[6] C. M. De Vries, L. De Vine, S. Geva, and R. Nayak, ‘‘Parallel streaming
signature EM-tree: A clustering algorithm for Web scale applications,’’ in
Proc. 24th Int. Conf. World Wide Web, 2015, pp. 216–226.

[7] I. S. Dhillon and D. S. Modha, ‘‘A data-clustering algorithm on distributed
memorymultiprocessors,’’ in Large-Scale Parallel DataMining, vol. 1759,
no. 802. Berlin, Germany: Springer, 1999, pp. 245–260.

[8] A. Ene, S. Im, and B. Moseley, ‘‘Fast clustering using MapReduce,’’ in
Proc. KDD, 2011, pp. 681–689.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters,’’ in Proc. 2nd Int. Conf. Knowl. Discovery Data
Mining, 1996, pp. 226–231.

[10] L. Ertöz, M. Steinbach, and V. Kumar, ‘‘Finding clusters of different sizes,
shapes, and densities in noisy, high dimensional data,’’ in Proc. SIAM Int.
Conf. Data Mining. Philadelphia, PA, USA: SIAM, 2003, pp. 47–58.

[11] G. Forman and B. Zhang, ‘‘Distributed data clustering can be efficient and
exact,’’ ACM SIGKDD Explor. Newslett., vol. 2, no. 2, pp. 34–38, 2000.

[12] S. Guha, R. Rastogi, and K. Shim, ‘‘CURE: An efficient clustering algo-
rithm for large databases,’’ ACM SIGMOD Rec., vol. 27, no. 2, pp. 73–84,
1998.

[13] G. Jagannathan andR. N.Wright, ‘‘Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data,’’ in Proc. 11th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2005, pp. 593–599.

[14] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, ‘‘Scalable density-based dis-
tributed clustering,’’ in Proc. Eur. Conf. Princ. Data Mining Knowl. Dis-
covery. Berlin, Germany: Springer, 2004, pp. 231–244.

[15] R. A. Jarvis and E. A. Patrick, ‘‘Clustering using a similarity measure
based on shared near neighbors,’’ IEEE Trans. Comput., vol. C-22, no. 11,
pp. 1025–1034, Nov. 1973.

[16] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson, ‘‘Distributed clus-
tering using collective principal component analysis,’’ Knowl. Inf. Syst.,
vol. 3, no. 4, pp. 422–448, 2001.

[17] M. Klusch, S. Lodi, and G. Moro, ‘‘Distributed clustering based on sam-
pling local density estimates,’’ inProc. Int. Joint Conf. Artif. Intell. (IJCAI),
2003, pp. 485–490.

[18] H.-P. Kriegel, P. Kr, A. Pryakhin, andM. Schubert, ‘‘Effective and efficient
distributed model-based clustering,’’ in Proc. 5th IEEE Int. Conf. Data
Mining (ICDM), Nov. 2005, p. 8.

[19] T. Li, S. Zhu, andM. Ogihara, ‘‘Algorithms for clustering high dimensional
and distributed data,’’ Intell. Data Anal., vol. 7, pp. 305–326, Feb. 2003.

[20] Y. Liang, M.-F. Balcan, and V. Kanchanapally, ‘‘Distributed PCA and
k-means clustering,’’ in Proc. Big Learn. Workshop NIPS, 2013, pp. 1–8.

[21] J. Liu, J. Z. Huang, J. Luo, and L. Xiong, ‘‘Privacy preserving dis-
tributed DBSCAN clustering,’’ in Proc. Joint EDBT/ICDT Workshops,
2012, pp. 177–185.

[22] H. Mashayekhi, J. Habibi, T. Khalafbeigi, S. Voulgaris, and M. Van Steen,
‘‘GDCluster: A general decentralized clustering algorithm,’’ IEEE Trans.
Knowl. Data Eng., vol. 27, no. 7, pp. 1892–1905, Jul. 2015.

[23] T. Zhang, R. Ramakrishnan, and M. Livny, ‘‘BIRCH: An efficient data
clustering method for very large databases,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data (SIGMOD). New York, NY, USA: ACM, 1996,
pp. 103–114.

[24] M. Mendoza, M. Marín, V. Gil-Costa, and F. Ferrarotti, ‘‘Reducing hard-
ware hit by queries inWeb search engines,’’ Inf. Process. Manage., vol. 52,
no. 6, pp. 1031–1052, 2016.

[25] S. Merugu and J. Ghosh, ‘‘Privacy-preserving distributed clustering using
generative models,’’ in Proc. 3rd IEEE Int. Conf. Data Mining (ICDM),
Nov. 2003, pp. 211–218.

[26] N. K. Nagwani, ‘‘Summarizing large text collection using topic modeling
and clustering based on MapReduce framework,’’ J. Big Data, vol. 2, p. 6,
Jun. 2015.

[27] M. Sarnovsky and N. Carnoka, ‘‘Distributed algorithm for text docu-
ments clustering based on k-means approach,’’ in Advances in Intelligent
Systems and Computing, vol. 430. Cham, Switzerland: Springer, 2016,
pp. 165–174.

[28] D. Talia, ‘‘Parallelism in knowledge discovery techniques,’’ in Proc. 6th
Int. Conf. Appl. Parallel Comput. Adv. Sci. Comput. Berlin, Germany:
Springer, 2002, pp. 127–138.

[29] N. X. Vinh, J. Epps, and J. Bailey, ‘‘Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction
for chance,’’ J. Mach. Learn. Res., vol. 11, pp. 2837–2854, Oct. 2010.

[30] N. K. Visalakshi, K. Thangavel, and P. Alagambigai, ‘‘Distributed cluster-
ing for data sources with diverse schema,’’ in Proc. 3rd Int. Conf. Converg.
Hybrid Inf. Technol., 2008, pp. 1056–1061.

[31] X. Xu, J. Jäger, and H. Kriegel, ‘‘A fast parallel clustering algorithm for
large spatial databases,’’ in High Performance Data Mining, vol. 290.
Springer, 1999, pp. 263–290.

[32] J. Yi, L. Zhang, J. Wang, R. Jin, and A. K. Jain, ‘‘A single-pass algo-
rithm for efficiently recovering sparse cluster centers of high-dimensional
data,’’ in Proc. 31st Int. Conf. Mach. Learn., vol. 3, Beijing, China, 2014,
pp. 2112–2127.

[33] J. Zhang, G.Wu, X. Hu, S. Li, and S. Hao, ‘‘A parallel clustering algorithm
with MPI—MKmeans,’’ J. Comput., vol. 8, no. 1, pp. 10–18, 2013.

155684 VOLUME 7, 2019

J. Zamora et al.: Distributed Clustering of Text Collections

[34] Y. Zhao and G. Karypis, ‘‘Evaluation of hierarchical clustering algorithms
for document datasets,’’ inProc. 11th Int. Conf. Inf. Knowl. Manage., 2002,
pp. 515–524.

[35] C. Haydar and A. Boyer, ‘‘A new statistical density clustering algo-
rithm based on mutual vote and subjective logic applied to recommender
systems,’’ in Proc. 25th Conf. User Modeling, Adaptation Personaliza-
tion (UMAP), 2017, pp. 59–66.

[36] M. Ravichandran, K. M. Subramanian, P. Ganesan, and R. Jothikumar,
‘‘A modified method for high dimensional data clustering based on the
combined approach of shared nearest neighbor clustering and unscented
transform,’’ J. Comput. Theor. Nanosci., vol. 15, nos. 6–7, pp. 2050–2054,
2018.

[37] S. Kumari, S. Maurya, P. Goyal, S. S. Balasubramaniam, and N. Goyal,
‘‘Scalable parallel algorithms for shared nearest neighbor clustering,’’ in
Proc. IEEE 23rd Int. Conf. High Perform. Comput. (HiPC), Dec. 2016,
pp. 72–81.

[38] A. M. Rukmi, D. B. Utomo, and N. I. Sholikhah, ‘‘Study of parameters of
the nearest neighbour shared algorithm on clustering documents,’’ J. Phys.,
Conf. Ser., vol. 974, no. 1, pp. 12–61, 2018.

[39] C. J. Plattel, ‘‘Distributed and incremental clustering using shared nearest
neighbours,’’ M.S. thesis, Dept. Inf. Comput. Sci., Utrecht Univ., Utrecht,
The Netherlands, 2014.

[40] J. Zamora, H. Allende-Cid, and M. Mendoza, ‘‘A distributed shared near-
est neighbors clustering algorithm,’’ in Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications (Lecture Notes in
Computer Science), vol. 10657, M. Mendoza and S. Velastín, Eds. Cham,
Switzerland: Springer, 2018.

JUAN ZAMORA received the Ph.D. degree from
the Universidad Técnica Federico Santa María,
Chile, in 2016. He is currently an Assistant Profes-
sor with the Instituto de Estadística of Pontificia
Universidad Católica de Valparaíso. His research
interests include data mining, text mining, and
clustering algorithms.

HÉCTOR ALLENDE-CID received the Ph.D.
degree from the Universidad Técnica Federico
Santa María, Chile, in 2015. He is currently an
Assistant Professor with the Escuela de Ingeniería
Informática, Pontificia Universidad Católica de
Valparaíso. He is also the Founder and the current
President of the Chilean Association of Pattern
Recognition. His research interests include super-
vised algorithms, distributed regression methods,
and image processing.

MARCELO MENDOZA received the master’s
degree in informatics from the Universidad Téc-
nica Federico Santa María, Chile, and the Ph.D.
degree in computer science from the Universidad
de Chile. He held a postdoctoral position at Yahoo
Research. He is currently a Faculty Professor with
the Department of Informatics, Universidad Téc-
nica Federico Santa María, where he is also the
Head of the master’s in informatics program, and
an Electronic Engineer. He is the Founder and

the former President of the Chilean Association of Pattern Recognition.
He is currently a Researcher with the Valparaíso Center of Science and
Technology and also an Associate Researcher with the Millennium Insti-
tute for Foundational Research on Data. His research interests include
text mining, information retrieval, and data mining in social networks.

VOLUME 7, 2019 155685

	INTRODUCTION
	DISTRIBUTED CLUSTERING ALGORITHMS
	PARALLEL CLUSTERING ALGORITHMS
	CLUSTERING ON DISTRIBUTED DATA
	DISTRIBUTED APPROACHES FOR DENSITY-BASED CLUSTERING
	DISTRIBUTED APPROACHES FOR PARAMETRIC CLUSTERING
	DISTRIBUTED APPROACHES FOR PROTOTYPE-BASED CLUSTERING

	DISTRIBUTED SHARED NEAREST NEIGHBORS CLUSTERING
	PARAMETERS OF THE ALGORITHM
	STAGES OF THE ALGORITHM
	COST OF THE ALGORITHM

	METHODOLOGY AND EXPERIMENTAL RESULTS
	DATA SETS
	TEXT PROCESSING
	CLUSTERING QUALITY MEASURES
	GRID SEARCH OF PARAMETERS
	RESULTS
	AN HEURISTIC FOR PARAMETER TUNING
	EMPIRICAL ASSESSMENT OF THE COMPUTATIONAL COST
	LIMITATIONS OF THE METHOD

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	JUAN ZAMORA
	HÉCTOR ALLENDE-CID
	MARCELO MENDOZA

