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ABSTRACT In this paper, a novel nonsingular finite-time backstepping controller is constructed for
trajectory tracking of marine vessel subject to unknown external disturbances. Firstly, in the presence of
disturbances, a disturbance observer (DO) is proposed to estimate and compensate the disturbances exactly
in finite time. Secondly, a finite-time tracking controller is designed in the classical backstepping procedure,
however, the inevitable singularity appears in calculating the derivative of virtual control. Furthermore, for
overcoming this singularity, a nonsingular finite-time backstepping controller is designed by adopting a
finite-time command filter to estimate the derivative, instead of calculating it directly. Theoretical analysis
demonstrates the closed-loop system is finite-time stable. Finally, simulation results and comparisons
illustrate the effectiveness of the proposed method.

INDEX TERMS Finite-time command filter, disturbance observer (DO), nonsingular finite-time backstep-
ping controller, marine vessel, trajectory tracking.

I. INTRODUCTION
In the last decades, with the rapid development of marine
exploration, the trajectory tracking problem of marine ves-
sels has aroused more attention from both control engi-
neering and marine technology communities. As water sur-
face control is more complex than road surface, which is
usually full of external disturbances (e.g., water currents)
[1]. Simultaneously, the controlled marine vessel always has
some unmodeled uncertainties, such as parameter’s uncer-
tainty, model calculation error etc. Therefore, it is necessary
to design a robust trajectory tracking control scheme for
rejecting the external disturbances and unmodeled uncer-
tainties for marine vessels. Due to the remarkable features
in stronger robustness and disturbance rejection properties,
sliding mode control (SMC) has been applied to the motion
control of marine vessels. References [2] and [3] adopt SMC
to achieve tracking control of surface vessels. In [4], a new
revised SMC law is presented for an underactuated surface
vehicle (USV) with parameter uncertainties. Reference [5]
proposes a trajectory tracking SMC law for autonomous
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underwater vehicles (AUVs) with conquering the quantiza-
tion effect. However, since these prior methods include dis-
continuous term in SMC approach, so they will inevitably
appear well-known chattering phenomenon when control-
ling the marine vessels. Subsequently, several new control
methods appear, for instance, the adaptive control scheme
[6] proposes a novel fixed-time output feedback control
scheme for marine vessel tracking under unknown external
disturbance and unmeasured velocity, the neural-network-
based output feedback controllers [7]–[9] are proposed for
the reference tracking for USV, and other intelligent control
scheme [10]–[13] are also utilized to accomplish marine ves-
sel tracking tasks. However, to the best of our knowledge,
these methods mentioned above either exist the chattering
control or need a complex designing procedure, which are
difficult to use in practice.

In recent years, the nonlinear backstepping control
technique is proved with its effectiveness and design-
ing simplicity to use for controlling the marine vessels.
In [14] and [15], a disturbance observer is used to estimate
unknown external disturbance, then combining backstepping
method to accomplish trajectory tracking. Reference [16]
combines adaptive feedback approximation technique and
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backstepping to design an adaptive neutral network control.
Reference [17] proposes a state feedback fault-tolerant adap-
tive backstepping controller to track desired trajectory with
unknown disturbance. But it is inevitable to calculate the
derivation of virtual control in the backstepping methods
above. The computational processes are complicated, and it
may easily cause ‘‘explosion of complexity’’ problem [18].
To overcome the problems above, the dynamic surface con-
trol (DSC) is introduced firstly in [19]. In [20], it also uses a
first order filter to reach AUV path following. By designing
a first order filter, let virtual control pass through it as input
signal, then the output is the estimation of virtual control and
its derivation. It should be mentioned that the filtering error
is neglected. So, it will influence the control performance.
To eliminate the error, [21] proposes the command filtered
control firstly and is successfully used, which constructs an
error compensation mechanism to compensate filter error
[22]–[24]. References [23], [25], [26], using a finite-time
command filter based on Levant’s differentiator, combining
with error compensation mechanism, can quickly filter vir-
tual control and obtain its differential signals for nonlinear
system and robotic manipulator system. However, on the
surface of the water, the prior conventional backstepping
methods can not satisfy the finite-time tracking control with
the time-varying disturbances. In general, the tracking control
of marine vessels not only needs a theoretically high tracking
precision, but also requires both the fast finite-time conver-
gence [27] and strong disturbance rejection ability [28], [29].

For the fast finite-time convergence, terminal sliding mode
control (TSMC) is one of commonly used methods. For
instances, [30] and [31] achieve the tracking control of rigid
robotic manipulators in finite time. But the traditional TSMC
may occur singular phenomenon [31], so [29] proposes a
nonsingular TSMC. It can avoid the problem effectively.
A continuous finite-time control scheme for rigid robotic
manipulators is proposed using a new form of terminal sliding
modes [32]. In [30], it develops a nonsingular SMC scheme
combining with finite-time disturbance observer to accom-
plish marine vessel tracking in finite time. In [29], a continu-
ous higher order finite-time controller based on sampled-data
is proposed for the trajectory tracking. In [33], an adaptive
backstepping fuzzy neural network fractional-order control
using a nonsingular TSMC is proposed for the microgyro-
scope. In [34], an adaptive fuzzy-neural fractional-order cur-
rent control with finite-time SMC is used for the active power
filter. In [35]–[37], the combination of neural network (NN)
and SMC are used to control the complex system for the fast
finite-time convergence.

For the strong disturbance rejection ability, the disturbance
observer is the most common technique cooperated with
the trajectory tracking controller for marine vessels. Such
as exponential disturbance observer [14], [38], finite-time
disturbance observers [6], [39], finite-time extended state
observer [40], fixed-time extended state observer [6], [24],
TSMC disturbance observer [41], and adaptive disturbance
observer [42], [43]. In [44], the disturbance observer based

fuzzy SMC is used as a robust way of disturbance rejec-
tion. In [42], the active disturbance rejection adaptive control
is introduced in detail for the uncertain nonlinear systems.
In [43], the disturbance observer can be transformed to be
an output feedback approach for the time-varying input delay
compensation of the nonlinear systems with additive distur-
bance. And NN scheme [45] is also used to approximate
the external disturbance and model uncertainties. Since the
estimation capacity of disturbance observer will affect control
performance directly. So, it is vital to construct a disturbance
observer of high performance.

According to the researches above, the traditional back-
stepping technique aforementioned only can guarantee the
tracking error converge to a bounded region, in generally,
which may not accomplish zero error tracking in finite time.
So, we present a novel nonsingular finite-time backstepping
controller combining with a finite-time disturbance observer
in this paper. The main contributions are reflected as follows:

(1) A finite-time disturbance observer (FTDO) is con-
structed inspired by [28] and [41]. Compared with discon-
tinuous disturbance observer in [41], the proposed FTDO is
continuous, so it can avoid chattering phenomenon. And it
can estimate unknown disturbance within finite time.

(2) The traditional backstepping approaches [14], [15] can
only achieve the uniformly ultimately bounded convergence,
i.e., the tracking error only converges to a region. How-
ever, the proposed finite-time backstepping controller can
accomplish zero error tracking in finite time, which adopts
a finite-time command filter based on the first-order Levant
differentiator to obtain virtual control’s derivative. It can not
only greatly reduce the computational complexities compared
with the traditional backstepping approaches, but also avoid
singular phenomenon effectively.

This paper is organized as follows. The problem formula-
tion and preliminaries are presented in section 2. In section 3,
the design of disturbance observer is presented. In section 4,
the singular and nonsingular finite-time backstepping con-
trollers are developed respectively to achieve the trajectory
tracking for marine vessel, and their stabilities are proved.
In section 5, the algorithm structure of the proposed control
scheme is given. In section 6, the comparison simulations are
illustrated. And finally, we conclude this paper and propose
some future works in Section 7.

II. PROBLEM FORMULATION
This paper aims at constructing a DO to provide estimation
of external disturbance firstly, and then developing a novel
nonsingular finite-time backstepping controller to achieve
trajectory tracking within finite time when marine vessel is
affected by unknown time-varying disturbances satisfying
Assumption 1.

A. PRELIMINARIES
The two reference coordinate frames of ship motion
are defined commonly as Fig.1. For marine vessels, the
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FIGURE 1. Earth-fixed and body-fixed frame.

mathematical model in 3-DOF is described as follow:{
η̇ = R(ψ)v
Mv̇+ C(v)v+ D(v)v = τ + d

(1)

where η = [x, y, ψ]T denotes the north position, east
position and heading angle of marine surface vessel in the
earth-fixed inertial frame; v = [u, ν, r]T denotes surge
velocity, sway velocity, and yaw velocity in the body-fixed
reference frame. R(ψ) is a transformation matrix between
earth-fixed and body-fixed reference frame, i.e., R(ψ) =cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 and with the follow properties:

Ṙ(ψ) = R(ψ)S(r),

RT (ψ)S(r)R(ψ) = R(ψ)S(r)RT (ψ) = S(r),

S(r) =

0 −r 0
r 0 0
0 0 0

 ,
RT (ψ)R(ψ) = I and ||R(ψ)|| = 1,

M ∈ R3×3, C(v) ∈ R3×3, and D(v) ∈ R3×3 denote the iner-
tial mass matrix, Coriolis matrix and hydrodynamic damping
matrix, respectively. τ = [τ1, τ2, τ3]T is the control input,
d = [d1, d2, d3]T is the lumped disturbances including the
unknown external disturbances and the unknown unmodeled
uncertainties.
Assumption 1: The lumped disturbance d is unknown time-

varying but bounded, and there exists a positive constant dM
satisfying ‖ḋ‖∞ ≤ dM .
Lemma 1 [2]:An extended Lyapunov description of finite-

time stability can be given as:

V̇ (x)+ αV (x)+ βV γ (x) ≤ 0, 0 < γ < 1 (2)

and the setting time can be given by T ≤
1

α(1−γ ) ln
αV 1−γ (x0)+β

β
.

Lemma 2 [26]: For all xi ∈ R (i = 1, 2 . . . . . . n), and 0 <
p ≤ 1, then

(
n∑
i=1

|xi|)p ≤
n∑
i=1

|xi|p ≤ n1−p(
n∑
i=1

|xi|)p (3)

Lemma 3 [26]: Consider the following first-order Levant
differentiator:

β̇1 = z

z = −l1|β1 − α|
1
2 sign(β1 − α)+ β2

β̇2 = −l2sign(β2 − z)

(4)

where α is an input signal, l1 and l2 are positive constants.
If the parameters are selected properly, and in the absence of
noise, the following equalities hold:

β1 = α, z = α̇ (5)

Lemma 4 [28]: Let the input noise satisfy the inequality
|α − α0| < ε, then the following inequalities are established
in finite time by some positive constants µ1, ν1 depending
exclusively on the parameters of differentiator:|β1 − α0| ≤ µ1κ < %1

dβ̇1 − α̇0e ≤ ν1κ
1
2 < %2

(6)

Lemma 5 [28], [46]: The following system:ẋ1 = −k1sig
1
2 (x1)+ x2

ẋ2 = −k2sgn(x1)+ L
(7)

where |L| ≤ LM , LM is a positive constant, k1 and k2 are both
positive constants, the system is finite-time stable, sig

1
2 (x1)

and sgn(x1) are defined as following notations [6]:
λmin{·} and λmax{·} are defined respectively as the mini-

mum and maximum eigenvalue of a matrix {·}.
(1) Define x = {x1, x2, · · · xn}T ∈ Rn, sigα(x) =

[sigα(x1), sigα(x2), sigα(x3)]T , where sigα(x) = sgn(xi)|xi|α

(i = 1, 2, · · · n), xi ∈ R, α ∈ (0, 1). sgn(·) is a sign function
given by

sgn(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

(8)

(2) diag(x1, x2, x3) denotes a diagonal matrix, where x1, x2
and x3 are its elements respectively.

(3) When x ∈ R3, the vector x = [x1, x2, x3]T . When xi ∈
R3, the vector xi = [xi1, xi2, xi3]T .

III. DISTURBANCE OBSERVER DESIGN
For the purpose of estimating the unknown external distur-
bance, the DO is constructed as follows.

The new variable is introduced firstly:

5 = Mv−Mχ (9)
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The derivative of χ is designed as follows:

χ̇ = M−1[τ − Cv− Dv+ κ1sig
1
2 (5)+

∫ t

0
κ2sign(5)dt]

(10)

where κ1 and κ2 are both positive constants, and the estima-
tion of disturbance is designed as:

d̂ =
∫ t

0
κ2sign(5)dt (11)

Theorem 1: Under the Assumption 1, the disturbance
observer (9), (10) and (11) can precisely estimate the
unknown external disturbance in finite time when selecting
the proper parameters κ1 and κ2.

Proof: According to (9), the derivative of 5 can obtain:

5̇ = Mv̇−M χ̇ = −κ1sig
1
2 (5)−

∫ t

0
κ2sign(5)dt + d

(12)

Let ρ = −
∫ t
0 κ2sign(5)dt + d , then (12) can be written as:5̇ = −κ1sig

1
2 (5)+ ρ

ρ̇ = −κ2sign(5)+ ḋ
(13)

By Lemma 5, we can obtain 5 = 0 and ρ = 0 in finite
time td .

Then, we can obtain ρ = d−
∫ t
0 κ2sign(5)dt = d− d̂ = 0

after finite time td . So, the unknown disturbance can be
estimated by d̂ precisely in finite time.

IV. CONTROLLER DESIGN AND STABILITY ANALYSIS
In this section, we will design a finite-time vessel trajectory
tracking controller firstly. Next, in order to avoid the singu-
larity problem, we design a nonsingular finite-time trajectory
tracking controller.

A. FINITE-TIME TRAJECTORY TRACKING CONTROLLER
Step 1:

We define a position error vector z1 ∈ R3 as:

z1 = η − ηd (14)

where ηd is desired trajectory.
Next, we design a virtual control α ∈ R3 as:

α = RT (−k1z1 + η̇d − s1|z1|γ sign(z1)) (15)

where |z1|γ sign(z1) = [zγ11 · sign(z11) zγ12 · sign(z12) zγ13 ·
sign(z13)]T , s1 is a positive constant, k1 is a positive definite
matrix.

Define a Lyapunov function:

V1 =
1
2
zT1 z1 (16)

And its derivative with respect to time is:

V̇1 = zT1 ż1 = zT1 (η̇ − η̇d ) = zT1 (Rv− η̇d ) (17)

Step 2:
Then, define a velocity error vector z2 ∈ R3 as:

z2 = v− α (18)

According (15) and (18), then (17) can be rewritten as:

V̇1 = zT1 ż1
= zT1 (Rz2 + Rα − η̇d )

= zT1 (Rz2 − k1z1 + η̇d − s1|z1|
γ sign(z1)− η̇d )

= zT1 (Rz2 − k1z1 − s1|z1|
γ sign(z1)) (19)

According to (1) and (18), we can obtain:

Mż2 = M (v̇− α̇) = τ − (C + D)v+ d −M α̇ (20)

Define a Lyapunov function:

V2 = V1 +
1
2
zT2Mz2 (21)

From (19) and (20), taking the derivative of V2 yields

V̇2 = V̇1 + zT2Mż2
= zT1 (Rz2 − k1z1 − s1|z1|

γ sign(z1))

+ zT2 (τ − (C + D)v+ d −M α̇) (22)

We design the control law as follows:

τ = (C + D)v+M α̇ − RT z1 − k2z2 − d̂ − s2|z2|γ sign(z2)

(23)

where the form of |z2|γ sign(z2) is similar to (15), s2 is a
positive constant, k2 is a positive definite matrix. From (3)
and (23), then

V̇2 = zT1 (Rz2 − k1z1 − s1|z1|
γ sign(z1))

+ zT2 (−R
T z1 − k2z2 − s2|z2|γ sign(z2)+ d − d̂)

= −zT1 k1z1 − z
T
2 k2z2 − z

T
1 s1|z1|

γ sign(z1)

− zT2 s2|z2|
γ sign(z2)+ d − d̂

≤ −zT1 k1z1 − z
T
2 k2z2 − s1(z

T
1 z1)

γ+1
2 − s2(zT2 z2)

γ+1
2

+
1
2
zT2 z2 +

1
2
(d̂ − d)T (d̂ − d)

≤ −µ0V − µ1V
γ+1
2 + c (24)

whereµ0 = min{λmin(2k1), λmin(2k2)−1},µ1 = min{s1,s2},
c = 1

2 (d̂ − d)
T (d̂ − d).

When t ≤ td , from Section A, defining e as disturbance
estimation error, we can obtain e = d − d̂ = d −∫ t1
0 κ2sign(5)dt . The d is bounded, and sign(5) is a bounded
function, so the e is bounded, and it satisfies c = 1

2e
T e ≤ �,

when t ≤ td , where � is a positive constant. So it can not
escape into infinite region when t ≤ td .
When t ≥ td , c = 0, according Lemma 1, V2 is finite-

time stable after ts, so z1 converges to zero in finite time
Ts = td + ts.
However, we can see that it is necessary to compute the

derivative of virtual control α in the control law’s designing.
When computing virtual law’s derivative, it will appear the

165900 VOLUME 7, 2019



Y. Dai et al.: Finite-Time Trajectory Tracking for Marine Vessel by Nonsingular Backstepping Controller

term of |z1|γ−1ż1 in control force, so it is singular when
z1 = 0, ż1 6= 0. In order to avoid the singularity prob-
lem, we will design a nonsingular controller in the next
section.

B. NONSINGULAR FINITE-TIME TRAJECTORY TRACKING
CONTROLLER
In this section, we present the nonsingular finite-time
trajectory tracking controller to accomplish control task by
introducing a finite-time command filter.

Step1:
We define a position error vector z1 ∈ R3 as:

z1 = η − ηd (25)

where ηd is desired trajectory.
Next, we design a virtual control α ∈ R3 as:

α = RT (−k1z1 + η̇d − s1|ω1|
γ sign(ω1)) (26)

where |ω1|
γ sign(ω1) = [ωγ11 · sign(ω11) ω

γ

12 ·

sign(ω12) ω
γ

13 ·sign(ω13)]T , k1 is a positive definite matrix,
s1 and γ1 are positive constants, and 0 < γ1 < 1, ω1 will be
designed later.

In order to avoid computing the virtual control law’s
derivative. So, we introduce a finite-time command filter by
Lemma 3 as follow:

β̇ = z

z = −l1|β − α|
1
2 sign(β − α)+ w

ẇ = −l2sign(w− z)

(27)

where A = diag(|β1 − α1|
1
2 , |β2 − α2|

1
2 , |β3 − α3|

1
2 ), α is an

input vector, the finite-time command filter’s output β and β̇
are utilized to estimate α and its derivative.

However, the filter error β − α is omitted in traditional
DSC technique, in order to obtain more accurate filter signal,
introducing a filter error compensation mechanism inspired
by [21] and [22]

ξ̇1 = −k1ξ1 + R(β − α)+ Rξ2 − ρ1sign(ξ1) (28)

where ξ2 will be designed later.
Define a compensation tracking error vector ω1 ∈ R3 as:

ω1 = z1 − ξ1 (29)

Then, the Lyapunov function is constructed as:

V1 =
1
2
ωT1 ω1 (30)

And its derivative with respect to time is:

V̇1 = ωT1 ω̇1 = ω
T
1 (ż1 − ξ̇1) = ω

T
1 (η̇ − η̇d − ξ̇1) (31)

According to (1) and (28), we have

V̇1 = ωT1 (Rv− η̇d + k1ξ1 − R(β − α)− Rξ2+ρ1sign(ξ1))

(32)

Step2:
Define

ξ̇2 = M−1(−k2ξ2 − Rξ1 − ρ2sign(ξ2)) (33)

And a velocity error vector z2 ∈ R3 as:

z2 = v− β (34)

Define the compensation tracking error vector ω2 ∈ R3 as:

ω2 = z2 − ξ2 (35)

According to (26), (34) and (35), then (32) can be rewritten
as:

V̇1 = ωT1 [Rz2 + R(β − α)+ Rα − η̇d + k1ξ1 − R(β − α)

−Rξ2 + ρ1sign(ξ1)]

= ωT1 [Rz2 − k1z1 + η̇d − s1|ω1|
γ sign(ω1)− η̇d

+ k1ξ1 − Rξ2 + ρ1sign(ξ1)]

= ωT1 [Rω2 − k1ω1 − s1|ω1|
γ sign(ω1)+ ρ1sign(ξ1)]

(36)

By (1), (33), (34) and (35), we have

M ω̇2

= M (ż2 − ξ̇2) = M (v̇− β̇ − ξ̇2)

= τ − (C + D)v+ d −M (β̇ + ξ̇2)

= τ − (C + D)v+ d −M β̇ + k2ξ2 + Rξ1 + ρ2sign(ξ2)

(37)

Then, we design the marine vessel trajectory tracking control
law as below:

τ = (C + D)v+M β̇ − RTω1 − k2z2 − d

− s2|ω2|
γ sign(ω2) (38)

where |ω2|
γ sign(ω2) = [ωγ21 · sign(ω21) ω

γ

22 ·

sign(ω22) ω
γ

23 · sign(ω23)]T , k2 is a positive definite matrix,
s2 and γ2 are positive constant, and 0 < γ2 < 1.
Theorem 2: Consider the marine vessel model (1) in the

presence of unknown time-varying disturbances d(t). Under
the Assumption 1, marine vessel trajectory tracking control
law (38), and finite-time command filter (27), the tracking
error will converge to zero in finite time t ≥ max{Tn,T1},
where Tn and T1 are given by the following proof. The
parameters of (26) and (38) are chosen as: s1 > 0, s2 > 0,
λmin(2k1) > 0, λmin(2k2)− 1 > 0, k1 > 0, λmin(2k2M−1) >
0, and ρ1 > 0, (2M−1)

1
2 ρ2 > 0.

Proof: Define a Lyapunov function:

V2 = V1 +
1
2
ωT2Mω2 (39)

By (36), (37) and (38), taking the derivative of V2 yields

V̇2 = V̇1 + ωT2M ω̇2

= ωT1 (Rω2 − k1ω1 + ρ1sign(ξ1)− s1|ω1|
γ sign(ω1))

+ωT2 (τ − (C + D)v+ d −M β̇ + k2ξ2
+Rξ1 + ρ2sign(ξ2))

VOLUME 7, 2019 165901



Y. Dai et al.: Finite-Time Trajectory Tracking for Marine Vessel by Nonsingular Backstepping Controller

FIGURE 2. The algorithm structure of the proposed control scheme.

= −ωT1 k1ω1 + ω
T
1 ρ1sign(ξ1)

− s1ωT1 (|ω1|
γ sign(ω1))− ωT2 k2ω2

− s2ωT2 (|ω2|
γ sign(ω2))+ ωT2 ρ2sign(ξ2)+ ω

T
2 (d − d)

(40)

By Lemma 2 and Young’s inequality, it yields:

V̇2 ≤ −ωT1 k1ω1 − s1(ωT1 ω1)
γ+1
2 − ωT2 k2ω2

− s2(ωT2 ω2)
γ+1
2 +

ρ1ω
T
1 ω1

2
+
ρ2ω

T
2 ω2

2

+
1
2
zT2 z2 +

ρ1sign(ξ1)T sign(ξ1)
2

+
ρ2sign(ξ2)T sign(ξ2)

2
+

1
2
(d̂ − d)T (d̂ − d)

≤ −µ2V − µ3V
γ+1
2 + c1 (41)

whereµ2 = min{λmin(2k1), λmin(2k2)−1},µ3 = min{s1,s2},
c1 =

ρ1sign(ξ1)T sign(ξ1)
2 +

ρ2sign(ξ2)T sign(ξ2)
2 +

1
2 (d − d)

T (d − d)

. Then, we can obtain ρ1sign(ξ1)T sign(ξ1)
2 +

ρ2sign(ξ2)T sign(ξ2)
2 ≤

3ρ1
2 +

3ρ2
2 if t ≤ td and c1 ≤

3ρ1
2 +

3ρ2
2 +�, where the � is

defined in Section A. So it can not escape into infinite region
when t ≤ td . Meanwhile, if t > td , d − d = 0, so c1 =
ρ1sign(ξ1)T sign(ξ1)

2 +
ρ2sign(ξ2)T sign(ξ2)

2 ≤
3ρ1
2 +

3ρ2
2 = γ . Then,

(41) can be written as:

V̇2 ≤ −µ2V2 − µ3V
γ+1
2

2 + γ (42)

Furthermore, according to [26], the compensation track-
ing error ‖ω1‖ will converge to the region of max{

√
γ
µ0
,√

2( γ
2µ0

)
2
λ+1 } in finite time Tn = td + tn, where tn is the time

that ‖ω1‖ reaches the region after td . And the parameters are
chosen as: s1 > 0, s2 > 0, λmin(2k1) > 0, and λmin(2k2) −
1 > 0.

We construct a Lyapunov function about ξi (i = 1, 2),

Vξ =
1
2
ξT1 ξ1 +

1
2
ξT2 Mξ2 (43)

Its derivative can be written as

V̇ξ = ξT1 ξ̇1 + ξ
T
2 ξ̇2

= −ξT1 k1ξ1 − ξ
T
2 k2ξ2 + ξ

T
1 R(β − α)

− ξT1 ρ1sign(ξ1)− ξ
T
2 ρ2sign(ξ2) (44)

By (6), 0 ≤ |β − α| ≤ % can be achieved in finite time tf ,
where % is a nonnegative constant. Let f = |R||β−α|, and the
f be written as f = [f1, f2, f3]T . If the elements of matrix R is
bounded, so the f is bounded, and it satisfies f < χ , where χ
is a positive constant. Then, according to Lemma 2, we have

V̇ξ ≤ −min{λmin(2k1), λmin(2k2M−1)}(
1
2
ξT1 ξ1 +

1
2
ξT2 Mξ2)

−
√
2min{(ρ1 − f1), (ρ1 − f2), (ρ1 − f3)}(

1
2
ξT1 ξ1)

1
2

− (2λmin(M−1))
1
2 ρ2(

1
2
ξT2 Mξ2)

1
2

≤ −κ0Vξ − κ1V
1
2
ξ (45)

where the parameters are selected as κ0 = min{λmin(2k1),
λmin(2k2M−1)}, κ1 =

√
2min{(ρ1− f1), (ρ1− f2), (ρ1− f3)},

(2λmin(M−1))
1
2 ρ2 > 0, λmin(2k1) > 0, λmin(2k2M−1) > 0,

and ρ1 − f1 > 0, ρ1 − f2 > 0, ρ1 − f3 > 0, (2M−1)
1
2 ρ2 > 0.

Overall, we can obtain β − α = 0 from (5) in the
absence of noise, then f = 0, so the parameters are selected
as λmin(2k1) > 0, λmin(2k2M−1) > 0, and ρ1 > 0,
(2M−1)

1
2 ρ2 > 0. By Lemma 2 and (45), we can have ξi = 0

(i = 1, 2) after tξ = 2
κ0

ln( κ0V
1
2+κ1
κ1

), i.e., c1 = γ = 0. Then,
according to (42) and Lemma 1,ω1 converges to zero in finite
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FIGURE 3. The trajectory under the singular and the nonsingular
finite-time backstepping.

time T , when T ≥ max{Tn,T1}, where T1 = tf + tξ , so we
can conclude that z1 also converges to zero in finite time T
from (29). Theorem 1 is thus proved.

V. THE ALGORITHM STRUCTURE OF THE PROPOSED
CONTROL SCHEME
In Fig. 2, the detailed block diagram of the proposed approach
is shown. The novel nonsingular finite-time backstepping
controller is constructed for trajectory tracking of marine
vessel subject to unknown external disturbances. A finite-
time command filter is used to estimate the derivative of
virtual control. The proposed FTDO is used to estimate and
compensate the disturbances exactly in finite time.

VI. SIMULATION STUDIES
In this section, simulation results are presented to illustrate
the efficiency of the proposed control algorithm. And the
marine vessel model is selected as Cyber Ship II. Its model
parameter inertia matrix M , Coriolis matrix C , and the non-
linear damping matrix D are selected as

M =

25.8 0 0
0 33.8 1.015
0 1.0015 2.76

 ,
C =

 0 0 −33.8v− 1.0115r
0 0 25.8u

33.8v+ 1.0115r −25.8u 0

 ,
D =

0.72+ 1.33|u| + 5.87u2 0
0 0.8896+36.5|v|+0.805|r|
0 0.0313+3.96|v|−0.130|r|

0
7.25+ 0.845|v| + 3.45|r|
1.90− 0.080|v| + 0.75|r|

 .
In this simulation, we assume that marine vessel’s ini-

tial states are η(0) = [−0.5, 0.6, pi/4], v(0) = [0, 0, 0].

FIGURE 4. The singular finite-time backstepping control signal.

The nonsingular finite-time backstepping controller’s param-
eters are selected as: l1 = diag(200, 200, 200), l2 =
diag(4000, 4000, 4000), k1 = diag(0.05, 0.05, 0.05), k2 =
diag(120, 120, 120), ρ1 = 10, ρ2 = 10, γ = 0.6,
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FIGURE 5. The nonsingular finite-time backstepping control signal.

the proposed FTDO’s parameters are chosen as: κ1 =
diag(20, 20, 20), κ2 = diag(6, 6, 6).
In order to show the proposed control law’s superiority,

we adopt the nonsingular finite-time backstepping control

FIGURE 6. The trajectory under the nonsingular finite-time backstepping
and the traditional backstepping.

FIGURE 7. Actual disturbances and their estimation by the proposed
FTDO.

law to compare with singular finite-time backstepping control
law and traditional backstepping control law as follow:

Traditional backstepping control:{
α = RT (−k1z1 + η̇d )
τ = (C + D)v+M α̇ − RT z1 − k2z2 − d̂

(46)

Singular finite-time backstepping control:
α = RT (−k1z1 + η̇d − s1|z1|γ sign(z1))
τ = (C + D)v+M α̇ − RT z1 − k2z2 − d
− s2|z2|γ sign(z2)

(47)
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FIGURE 8. Position tracking error under the nonsingular finite-time
backstepping and the traditional backstepping.

Nonsingular finite-time backstepping control:
α = RT (−k1z1 + η̇d − s1|ω1|

γ sign(ω1))
τ = (C + D)v+M β̇ − RTω1 − k2z2 − d
− s2|ω2|

γ sign(ω2)

(48)

FIGURE 9. The estimation results of the FTDO used with and without
measurement noise.

where ω1 and ω2 are defined in Section 4B, β̇ is the
finite-time command filter’s output.

For fair comparisons, the parameters of the virtual con-
trol α and the control law τ above are chosen equally. The
reference trajectory is equivalently planned according to [6]
and [14]: 

xd = 4sin(0.02t)
yd = 2.5(1− cos(0.02t))
ψ = 0.02t

(49)

The unknown disturbance is considered as:
d1 = xd = 13+ 20sin(0.02t)+ 15sin(0.1t)
d2 = yd = −9+ 20sin(0.02t − pi/6)+ 15sin(0.3t)
d3 = ψ = −10sin(0.09t + pi/3)− 40sin(0.01t)

(50)

From the Fig. 3, Fig. 6 and Fig. 8, we can obtain that
nonsingular finite-time backstepping approach is faster and
more accurate to track actual trajectory than the singular
finite-time backstepping approach and the traditional back-
stepping approach. From the Fig. 4, we can see that it will
occur the singular problem in the beginning of simulation and
in time 0.25s. However, the proposed controller is nonsingu-
lar as shown in the Fig. 5. In the Fig. 7, it is observed that
the proposed FTDO is able to estimate the unknown distur-
bances. It is obviously shown that the proposed controller can
force the trajectory tracking error to reach zero in finite time.

From the figures above, we can obtain that the proposed
method has better tracking performance than the traditional
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backstepping approach. Simultaneously, it also can avoid the
singular phenomenon compared with the singular finite-time
backstepping approach.

Comment 1: The unknown disturbance in equation (50)
is considered. In Fig. 9, the estimation accuracy with and
without noise is compared by our proposed FTDO, it can
be seen that the real disturbance is better estimated by the
FTDO in working without the noise, but the one with noise
also satisfies the practical usage in a small bias. Therefore,
the estimation with noise can be completed, and our proposed
FTDO is robust for overcoming the unknown disturbance.

VII. CONCLUSION
In this paper, for precisely estimating the unknown external
disturbances, the FTDO is designed firstly. Secondly, a novel
singular finite-time backstepping controller is designed for
marine vessel trajectory tracking considering unknown exter-
nal disturbances. In order to avoid the singular phenomenon,
we introduce a finite-time command filter, which can filter
input signal quickly and estimate virtual control’s derivative,
instead of calculating it directly. Then, the simulation results
made by our proposed control scheme have better control per-
formance than the singular finite-time backstepping approach
and the traditional backstepping approach. For the future
work, due to complex marine environment, fault-tolerant
control and input saturation for the trajectory tracking of
marine vessels will be considered to improve control system
performance.
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