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ABSTRACT This paper investigates the H∞ consensus of linear multi-agent systems with semi-Markov
switching network topologies and measurement noises. The information that each agent measures its
neighbors’s has multiplicative noises. The switching of the network topologies are modeled by a semi-
Markov process. Taking the external disturbance into account, H∞ consensus of multi-agent systems with
multiplicative noises is achieved under semi-Markov switching network topologies by using semi-Markov
jump theory, stochastic theory and algebraic graph theory. Finally, simulation example is provided to
illustrate the effectiveness of the theoretical results.

INDEX TERMS Multi-agent systems, H∞ consensus, semi-Markov switching topologies, multiplicative
noises.

I. INTRODUCTION
More and more attention has been paid to the distributed
coordination of multi-agent systems in recent years. As an
important and fundamental problem of the distributed coor-
dination of multi-agent systems, the consensus problem has
made considerable progress owing to its wide applications
in robotics [1], flocking and swarms [2], [3], and sensor
networks [4]. The consensus of multi-agent systems means to
design a distributed control protocol using local neighboring
information to achieve a global goal for all multi-agent states.

Recently, there has been an increasing interest in the
research for semi-Markov jump systems [16]–[22], which
can be considered as a generalisation of Markov jump sys-
tems. In multi-agent systems, the communication topolo-
gies among the agents may not be fixed, even randomly
changing due to uncertain factors such as random fail-
ures and the change of environments. This class of time-
varying random topologies can be considered to be switching
and the switching signals are described by a Markov
process. There are rich literatures on Markov switching
topologies [10], [23]–[26]. However, the Markov switching
topologies have many limitations in applications, since the
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sojourn time (the interval between two consecutive switch-
ing) obeys unique exponential distribution and the transition
rates are constant due to the memoryless property of the
exponential distribution. Unlike Markov switching topolo-
gies, the sojourn time of semi-Markov switching topologies
is permitted to obey more general distribution, which causes
the transition rates of semi-Markov switching topologies to
be time-varying and depend on the sojourn time. There-
fore, semi-Markov switching topologies are more general
and have broader application prospect than Markov switch-
ing topologies. However, relatively few efforts are devoted
to semi-Markov switching topologies. In [27], a leader-
following consensus of nonlinear multi-agent systems with
semi-Markovian switching topologies and communication
time-delay was considered, where each agent has general
linear dynamics. Dai et al [28] investigated the event-
triggered leader-following consensus for multi-agent systems
with semi-Markov switching topologies. The distributed con-
sensus problem of multi-agent systems with semi-Markov
switching topologies was solved by proposing a consensus
protocol with sampled-data information in [29]. Contain-
ment control of stochastic multiagent systems with semi-
Markovian switching topologies was considered in [34].

Meanwhile, due to the use of of sensors, quantization and
wireless fading channels in the network, the information that
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each agent receives from its neighbours are often corrupted
by various uncertain factors, such as random link failures,
transmission noises and quantization errors. There are a lot of
results about the stochastic consensus problem with additive
measurement noises [5]–[12], where a time-descending gain
is designed to reduced the effect of noises. There are also
some research on the consensus problem with multiplica-
tive noises, whose intensity depends on the states of agents.
Ni et al. [13] studied the mean square consensus and
strong consensus of continuous-time systems with multi-
plicative noises under fixed and switching network topolo-
gies by selecting properly consensus gains. In [14],
distributed consensus of high-dimensional first order agents
with relative-state-dependent measurement noises under an
undirected graph was investigated and several small con-
sensus gain theorems were given to ensure mean square
and almost square consensus. By giving the stability
criteria of stochastic differential delay equations, the nec-
essary and sufficient conditions for consentability of lin-
ear multi agent systems with time delays and noises were
revealed in [15]. To the best of our knowledge, con-
sensus problem of multi-agent systems with measurement
noises under semi-markov switching topologies still remains
open and challenging, which is the first motivation of our
study.

On the other hand, in practical applications, multi-agent
systems are often affected by various disturbances such
as measurement or calculation errors and channel fading,
which may cause undesirable performance of the closed-
loop multi-agent systems. To restrain the effects of distur-
bances, there have been many useful results on H∞ control
problems [30]–[33]. Based on the aforementioned works and
the need to fill the gaps, in this paper, we discuss the H∞
consensus of linear multi-agent systems with semi-markov
switching network topologies and measurement noises by
using semi-markov jump theory, stochastic theory and alge-
braic graph theory. The main contributions of this paper
are summarized as follows: (1) compared with the existing
works with Markov switching topologies, communication
topologies in our paper are semi-Markov switching topolo-
gies, which is more general and challenging due to that the
transition rates of semi-Markov switching are time-varying.
(2) in practical application, networked systems are often in
uncertain environments and are inevitably affected by mea-
surement noises , therefore our paper considers the effects
of measurement noises, which is different from the existing
literatures with semi-Markov switching topologies and make
the analysis more difficult since the traditional definitions
and methods are not applicable to our problems due to the
existence of randomness. (3) taking the effects of external dis-
turbances into consideration,H∞ consensus is investigated in
our paper.

The paper is organized as follows. In section II, some
useful preliminary results are introduced and the problem
formulation is presented. In section III, the main results are
investigated. In section IV, simulation result is presented to

verify the theoretical analysis. In section V, the conclusion is
given.
Notations. The following notations will be used in this

paper. Rn denotes the n-dimensional Euclidean space;
AT stands for the transpose of the real matrix A; 1N denotes
theN -dimensional column vector with all ones; IN represents
an N × N identity matrix; ∗ denotes the term of matri-
ces generated by symmetry; for real symmetric matrix P,
P > 0(P ≥ 0) means that matrix P is positive (semi-)
definite; λmax(P) and λmin(P) denote its largest and smallest
eigenvalues, respectively. A⊗B denotes the Kronecker prod-
uct of matrices A and B. ‖ · ‖ indicates the Euclidean norm.
For a given random variable or vector x, E(x) represents its
mathematical expectation.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY
Let G = G (V ,E ,A ) be an undirected graph, where V =
{1, . . . ,N } is the set of nodes and node i represents the ith
agent. E ⊆ V × V is the set of edges. An edge (i, j) ∈ E
means that there is an edge from node i to node j, i.e., agent
i and j can receive information from each other. A path is
a sequence of connected edges in a graph. If there is a path
between any two nodes of a graph G , then G is said to be
connected, otherwise disconnected. A = [aij] ∈ RN×N is
called the adjacency matrix of graph G with aij = 1 if (i, j) ∈
E and aij = 0 otherwise. The set of the node i’s neighbours is
denoted by Ni, that is, for j ∈ Ni, aij = 1. The degree matrix
is defined as 1 = diag(11, . . . ,1N ), where 1i =

∑
j∈Ni

aij.

The Laplacian of graph G is defined as L = 1 − A , which
is symmetric.

B. SEMI-MARKOV SWITCHING TOPOLOGY
Let (�,F ,P) be a complete probability space and γ (t) be
a semi-Markov process. Denote the nth jump point of the
process γ (t) by tn and γ (t) = γn, t ∈ [tn, tn+1). The sojourn-
time of mode γn is denoted by τn = tn+1 − tn and τ (t) :=
t − sup{tn : tn ≤ t}. we give the following definition.
Definition 1: ( [17]) A stochastic process γ (t) is called a

semi-Markov process on the probability space if the follow-
ing conditions are satisfied for every i, j ∈ {1, . . . ,m}.
(i) P(γn+1 = j, τn+1 ≤ τ |γn, tn, . . . , γ0, t0) = P(γn+1 =

j, τn+1 ≤ τ |γn).
(iii) The probability P(γn+1 = j, τn+1 ≤ τ |γn = i) is

independent of n.
In this paper, G (V ,E (γ (t)),A (γ (t))) is used to describe
the semi-markov switching topologies, and γ (t) denotes the
semi-Markov switching signal with the following probability
transitions:

P{γ (t + h)=q|γ (t) = k}=

{
λkq(τ )h+ o(h), k 6= q
1+ λkq(τ )h+ o(h), k = q

(1)

where τ ≥ 0 is the sojourn time that indicates the
time duration between two successive mode transitions,
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limh→0
o(h)
h = 0, λkq(τ ) is the transition rate from mode k

at time t to mode q(6= k) at time t + h, and λkk (τ ) =
−
∑m

q=1,q 6=k λkq(τ ). In practice, λkq(τ ) is not easily obtained,
but the parameter λkq(τ ) belongs to a bounded interval, that
is, λkq(τ ) ∈ [λkq, λkq]. In this paper, we assume every graph
is connected.
Remark 1: Since the sojourn time τ follows a more gen-

eral distribution, the transition rates λkq(τ ) for the semi-
Markov process are time-varying and depend on τ . When
λkq(τ ) = λkq, the semi-Markov process becomes a Markov
process. Therefore, Markov process is a special case of semi-
Markov process.

C. PROBLEM FORMULATION
Consider a multi-agent system consisting of N agents. The
dynamics of the N agents are described by the following
systems:

ẋi(t) = Axi(t)+ Bui(t)+ Cωi(t) i = 1, 2, . . . ,N , (2)

where xi(t) ∈ Rn is the agent i’s state, A ∈ Rn×n, B ∈ Rn×s,
C ∈ Rn×q, ui(t) ∈ Rs is agent i’s input, and ωi(t) ∈ Lq2[0,∞)
is the external disturbance.

The agent i can receive the information from its neighbors:

yji = xj(t)+ µji(xj(t)− xi(t))ηji(t), j ∈ Ni (3)

where yji(t) denotes the measurement of xj(t) by agent i,
and ηji(t) ∈ R denotes the measurement noise, µji ≥ 0.
Denote µ = maxNi,j=1 µji. The noises satisfy the following
assumption.
Assumption 1: The noise processes ηji(t), i, j = 1, . . . ,N

satisfy
∫ t
0 ηji(s)ds = $ji(t),t ≥ 0, where {$ji(t), i, j =

1, . . . ,N } are independent Brownian motions.
Assumption 2: Brownian motions $ji(t), i, j = 1, . . . ,N

and the semi-Markov process γ (t) are independent.
We use the distributed protocol in the following form:

ui(t) = K (γ (t))
∑
j∈Ni

aij(γ (t))(yji − xi(t)) (4)

where K (γ (t)) ∈ Rs×n are the mode-dependent feedback
gain matrices to be designed. let e(t) = [(IN − JN )⊗ In]x(t),
where JN = 1

N 1N1
T
N , x(t) = [xT1 (t), . . . , x

T
N (t)]

T , and ω(t) =
[ωT1 (t), . . . , ω

T
N (t)]

T . Substituting the protocol (4) into the
system (2), and using Assumption 1, we get the following
matrix form:

dx(t) = (IN ⊗ A)x(t)dt − (L(γ (t))⊗ BK (γ (t)))x(t)dt

+ (IN ⊗ C)ω(t)dt +W1(t) (5)

where

W1(t) =
N∑

i,j=1

aij(γ (t))µji(Hi,j(γ (t))⊗ BK (γ (t)))e(t)d$ji(t)

and as defined in [15], Hi,j = [hkl]N×N is an N × N matrix
with hii = −aij, hij = aij and all other elements being zero,
i, j = 1, . . . ,N .

According to the definition of e(t), for each fixed γ (t) = k ,
we have

de(t) = (IN ⊗ A)e(t)dt − (L(k)⊗ BK (k))e(t)dt

+
(
(IN − JN )⊗ C

)
ω(t)dt +W2(t) (6)

where

W2(t) =
N∑

i,j=1

aij(k)µji((IN − JN )Hi,j(k)⊗ BK (k))e(t)d$ji(t)

The controlled output function is defined as z(t) = e(t).
Definition 2: Given δ > 0, theH∞ consensus of the linear

multi-agent systems (2) is said to be achieved if there is
a protocol (4) such that the states of the agents satisfy the
following two requirements:

(i) When ω(t) = 0, the linear multi-agent systems (2) with
semi-Markov switching network topologies can reach mean
square consensus, that is

lim
t→∞

E‖xi(t)− xj(t)‖2 = 0, i, j = 1, 2, . . . ,N . (7)

(ii) When ω(t) 6= 0, the performance random variable z(t)
satisfies

E
∫
+∞

0
‖z(t)‖2dt < δ2E

∫
+∞

0
‖ω(t)‖2dt (8)

The control purpose of this paper is to find appropriate
feedback control gains K (k), k = 1, . . . ,m such that the
H∞ consensus of the multi-agent systems (2) and (4) can be
achieved.

III. MAIN RESULTS
Theorem 1: Suppose that Assumption 1 and 2 holds. For

a given index δ > 0, the H∞ consensus of linear multi-
agent systems (2) and (4) with semi-Markov switching net-
work topologies can be solved if there exist matrices P(k) to
guarantee the following matrix inequalities:

4(k)=
[

411(k) (IN − JN )⊗ P(k)C
(IN − JN )⊗ CTP(k) −δ2(IN ⊗ Iq)

]
<0

(9)

where

411(k)

= IN ⊗ (ATP(k)+ P(k)A)

−L(k)⊗
(
KT (k)BTP(k)+ P(k)BK (k)

)
+ IN ⊗ In +

m∑
q=1

λkq(τ )(IN ⊗ P(q))

+µ2 2(N − 1)
N

λmax(L(k))
(
IN ⊗ KT (k)BTP(k)BK (k)

)
(10)

Proof:Consider the following Lyapunov functional can-
didate:

V (e(t), γ (t)) = eT (t)(IN ⊗ P(γ (t))e(t) (11)

VOLUME 7, 2019 156091



M. Cong, X. Mu: H∞ Consensus of Linear Multi-Agent Systems

According the definition of derivative of EV (e(t), γ (t)),
we have

dEV (e(t), γ (t))
dt

= lim
h→0+

1
h
{E{V (e(t+h), γ (t+h))|e(t), γ (t)}

−EV (e(t), γ (t))} (12)

For γ (t) = k ,

dEV (e(t), γ (t))
dt

= lim
h→0+

1
h

[ m∑
q=1,q 6=k

P{γ (t + h) = q|

γ (t) = k}EV (e(t + h), q)+ P{γ (t + h) = k|γ (t) = k}

×EV (e(t + h), k)− EV (e(t), k)
]

= lim
h→0+

1
h

[ m∑
q=1,q 6=k

P{γn+1 = q, τn+1 ≤ τ + h|γn = k,

τn+1 > τ }EV (e(t + h), q)

+P{γn+1 = k, τn+1 > τ + h|γ (t) = k,

τn+1 > τ }EV (e(t + h), k)− EV (e(t), k)
]

= lim
h→0+

1
h

[ m∑
q=1,q 6=k

pkq(Dk (τ+h)− Dk (τ ))
1− Dk (τ )

EV (e(t + h), q)

+
1− Dk (τ + h)
1− Dk (τ )

EV (e(t + h), k)− EV (e(t), k)
]

(13)

where pkq = P{γn+1 = q|γn = k} is the probability of the
process frommode k tomode q andDk (t) = P(τn+1 ≤ t|γn =
k) is the cumulative distribution function of the sojourn time
when the topology stays in mode k . With a small h, the first-
order approximation of EV (e(t + h), q) is

EV (e(t + h), q) = EV (e(t), q)+ E
(∂V (e(t), q)

∂e
f

+
1
2
tr
[
gT
∂2V (e(t), q)

∂e2
g
])
h+ o(h) (14)

where

f (e, q) = (IN ⊗ A)e(t)− (L(q)⊗ BK (q))e(t)

+
(
(IN − JN )⊗ C

)
ω(t),

g(e, q) = (g11, . . . , g1N , . . . , gNN ),

gij = aij(q)µji((IN − JN )Hi,j(q)⊗ BK (q))e(t)

Then we have

dEV (e(t), γ (t))
dt

= lim
h→0+

1
h

[ m∑
q=1,q 6=k

pkq(Dk (τ + h)− Dk (τ ))
1− Dk (τ )

[
EV (e(t), q)

+E
(∂V (e(t), q)

∂e
f (e, q)

+
1
2
tr[gT (e, q)

∂2V (e(t), q)
∂e2

g(e, q)]
)
h
]

+
1− Dk (τ + h)
1− Dk (τ )

[
EV (e(t), k)+ E

(∂V (e(t), k)
∂e

f (e, k)

+
1
2
tr[gT (e, k)

∂2V (e(t), k)
∂e2

g(e, k)]
)
h
]
− EV (e(t), k)

]
(15)

According to lim
h→0

Dk (τ+h)−Dk (τ )
(1−Dk (τ ))h

=λk (τ ), lim
h→0

Dk (τ+h)−Dk (τ )
1−Dk (τ )

=

0, lim
h→0

1−Dk (τ+h)
1−Dk (τ )

= 1, we have

dEV (e(t), γ (t))
dt

= E
{ m∑
q=1,q 6=k

pkqλk (τ )V (e(t), q)

+
∂V (e(t), k)

∂e
f +

1
2
tr[gT

∂2V (e(t), k)
∂e2

g]

− λk (τ )V (e(t), k)
}

(16)

Define λkq(τ ) = pkqλk (τ ), k 6= q, and λkk (τ ) =

−

m∑
q=1,q 6=k

λkq(τ ), then it follows

dEV (e(t), γ (t))
dt

= E
{ m∑
q=1

λkq(τ )V (e(t), q)+
∂V (e(t), k)

∂e
f

+
1
2
tr[gT

∂2V (e(t), k)
∂e2

g]
}

=E
{
eT (t)

[
IN ⊗ (ATP(k)+P(k)A)−(L(k)⊗KT (k)BTP(k))

− (L(k)⊗ P(k)BK (k))+
m∑
q=1

λkq(τ )(IN ⊗ P(q))e(t)
]

+ 2ωT (t)
(
(IN − JN )⊗ CTP(k)

)
e(t)

+

N∑
i,j=1

aij(k)µ2
jie
T (t)

(
HT
i,j(k)(IN − JN )

2Hi,j(k)

⊗KT (k)BTP(k)BK (k)
)
e(t)

}
(17)

Note that (IN − JN )2 = IN − JN , and
N∑

i,j=1
aij(k)HT

i,j(k)(IN −

JN )Hi,j(k) = 2N−1N L(k), hence we have

dEV (e(t), γ (t))
dt

≤ E
{
eT (t)

[
IN ⊗ (ATP(k)+ P(k)A)− L(k)

⊗
(
KT (k)BTP(k)+ P(k)BK (k)

)
+

m∑
q=1

λkq(τ )(IN ⊗ P(q))

+µ2 2(N−1)
N

λmax(L(k))
(
IN⊗KT (k)BTP(k)BK (k)

)]
e(t)

+ 2ωT (t)
(
(IN − JN )⊗ CTP(k)

)
e(t)

}
(18)
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When ω(t) = 0, denote

X (k) = IN ⊗ (ATP(k)+ P(k)A)

−L(k)⊗
(
KT (k)BTP(k)+ P(k)BK (k)

)
+

m∑
q=1

λkq(τ )(IN ⊗ P(q))

+µ2 2(N−1)
N

λmax(L(k))
(
IN⊗KT (k)BTP(k)BK (k)

)
(19)

We get

dEV (e(t), γ (t))
dt

≤ λmin(X (k))E‖e(t)‖2

≤
λmin(X (k))
λmin(P(k))

EV (e(t), γ (t)). (20)

According to comparison theorem, we have

EV (e(t), γ (t)) ≤ V (0) exp
{λmin(X (k))
λmin(P(k))

t
}

(21)

By Schur complement, the inequality (9) implies X (k) < 0.
Thus, we obtain

lim
t→∞

E‖e(t)‖2 = 0 (22)

When ω(t) 6= 0, using (18), we obtain

dEV (e(t), γ (t))
dt

+ E(zT (t)z(t)− δ2ωT (t)ω(t))
≤ E(ηT (t)4(k)η(t)) (23)

where η(t) = (eT (t), ωT (t))T . Consequently, based on (9),
we get

E
∫ t

0
(‖z(t)‖2−δ2‖ω(t)‖2)dt≤−EV (e(t), r(t)) (V (0)=0)

(24)

Thus E
∫ t
0 ‖z(t)‖

2dt < δ2E
∫ t
0 ‖ω(t)‖

2dt . Let t → ∞,
we have

E
∫
+∞

0
‖z(t)‖2dt < δ2E

∫
+∞

0
‖ω(t)‖2dt

Hence, the H∞ consensus is obtained. The proof is
completed. �
The sufficient condition for mean square consensus of

multi-agent systems with semi-markov switching network
topologies and measurement noises is given in theorem 1.
Based on theorem 1, we give the design of controller gain
below.
Theorem 2: Suppose that Assumption 1 and 2 holds. For

a given index δ > 0, the H∞ consensus of linear multi-agent
systems (2) and (4) with semi-Markov switching network
topologies can be solved if there exist matrices P̄(k), K̄ (k)
to guarantee the following linear matrix inequalities:
811(k) 812(k) 813(k) 814(k) 815(k)
∗ 822(k) 0 0 0
∗ ∗ 833(k) 0 0
∗ ∗ ∗ 844(k) 0
∗ ∗ ∗ ∗ 855(k)

 < 0,

(25)

k = 1, . . . ,m, where

811(k) = IN ⊗ (P̄(k)AT + AP̄(k))

−L(k)⊗ (K̄T (k)BT + BK̄ (k))

+ λkk (τ )(IN ⊗ P̄(k))

812(k) = IN ⊗ K̄T (k)BT

813(k) = IN ⊗ P̄(k)

814(k) = (IN − JN )⊗ C

815(k) =
[√
λk1(τ ), . . . ,

√
λk,k−1(τ ),

√
λk,k+1(τ ),

. . . ,
√
λk,m(τ )

]
H (k)

H (k) = diag {IN ⊗ P̄(k), . . . , IN ⊗ P̄(k)}︸ ︷︷ ︸
m−1

822(k) = −µ−2
N

2(N − 1)
λ−1max(L(k))(IN ⊗ P̄(k))

833(k) = −(IN ⊗ In)

844(k) = −δ2(IN ⊗ Iq)

855(k) = −diag{IN ⊗ P̄(1), . . . , IN ⊗ P̄(k − 1),

IN ⊗ P̄(k + 1), . . . , IN ⊗ P̄(m)}

and the controller gain matrices can be designed by K (k) =
K̄ (k)P̄−1(k), k = 1 . . . ,m.

Proof:According to Schur complement,4(k) < 0 if and
only if the following inequality hold:

−δ2(IN ⊗ In) < 0 (26)

and

IN ⊗ (ATP(k)+ P(k)A)− L(k)⊗
(
KT (k)BTP(k)

+P(k)BK (k)
)
+ IN ⊗ In +

m∑
q=1

λkq(τ )(IN ⊗ P(q))

+µ2 2(N − 1)
N

λmax(L(k))
(
IN ⊗ KT (k)BTP(k)BK (k)

)
+ δ−2(IN − JN )2 ⊗ P(k)CCTP(k) < 0 (27)

Obviously, (26) is always right. Denote P̄(k) = P−1(k),
K̄ (k) = K (k)P̄(k). Pre-multiplying and post-multiplying the
inequality (27) by IN ⊗ P−1(k), we get

IN ⊗ (AP̄(k)+ P̄(k)AT )− L(k)⊗
(
K̄T (k)BT + BK̄ (k)

)
+ P̄(k)

[ m∑
q=1

λkq(τ )(IN ⊗ P(q))
]
P̄(k)

+ IN ⊗ P̄2(k)+ µ2 2(N − 1)
N

λmax(L(k))(IN

⊗ K̄T (k)BTP(k)BK̄ (k)
)
+ δ−2(IN − JN )2 ⊗ CCT < 0

(28)

Based on Schur complement, the inequality (25) leads to (28).
This completes the proof. �
In theorem 1, the term λkj(τ ) is time-varying, so it is

difficult to solve infinite number of linear matrix inequalities
due to the fact that different τ produces different inquality.
As in the works [16] and [27], the following theorem is given
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to get solvable conditions by using the the upper and lower
bounds of the transition rate.
Theorem 3: Suppose that Assumption 1 and 2 holds. For

a given index δ > 0, the H∞ consensus of linear multi-agent
systems (2) and (4) with semi-Markovian switching network
topologies can be solved if there exist matrices P̄(k), K̄ (k) to
guarantee the following linear matrix inequalities:

811(k) 812(k) 813(k) 814(k) 815(k)
∗ 822(k) 0 0 0
∗ ∗ 833(k) 0 0
∗ ∗ ∗ 844(k) 0
∗ ∗ ∗ ∗ 855(k)

 < 0,

(29)
811(k) 812(k) 813(k) 814(k) 815(k)
∗ 822(k) 0 0 0
∗ ∗ 833(k) 0 0
∗ ∗ ∗ 844(k) 0
∗ ∗ ∗ ∗ 855(k)

 < 0,

(30)

k = 1, . . . ,m, where

811(k) = IN ⊗ (P̄(k)AT + AP̄(k))− L(k)⊗ (K̄T (k)BT

+BK̄ (k))+ λkk (IN ⊗ P̄(k))

811(k) = IN ⊗ (P̄(k)AT + AP̄(k))− L(k)⊗ (K̄T (k)BT

+BK̄ (k))+ λkk (IN ⊗ P̄(k))

815(k) =
[√
λk1, . . . ,

√
λk,k−1,

√
λk,k+1, . . . ,

√
λk,m

]
H (k)

815(k) =
[√
λk1, . . . ,

√
λk,k−1,

√
λk,k+1, . . . ,

√
λk,m

]
H (k)

H (k) = diag {IN ⊗ P̄(k), . . . , IN ⊗ P̄(k)}︸ ︷︷ ︸
m−1

Moreover, the controller gain matrices can be designed by
K (k) = K̄ (k)P̄−1(k), k = 1, . . . ,m.

Proof: The proof is similar to Theorem 2 in [16] and is
omitted.
Remark 2: The conditions in theorem 3 are relatively con-

servative. In order to decrease the conservativeness, a method
that partitions the sojourn-time into S sections was proposed
in [16].

Denote λkj,s and λkj,s as the lower and upper bounds of the
transition rates during the sth section (s = 1, 2 . . . , S), then
we get the following less conservative corollary.
Corollary 1: Suppose that Assumption 1 and 2 holds. For

a given index δ > 0, the H∞ consensus of linear multi-
agent systems (2) and (4) with semi-Markov switching net-
work topologies can be solved if there exist matrices P̄(k, s),
K̄ (k, s) to guarantee the following linear matrix inequalities:

811(k, s) 812(k, s) 813(k, s) 814(k) 815(k, s)
∗ 822(k, s) 0 0 0
∗ ∗ 833(k) 0 0
∗ ∗ ∗ 844(k) 0
∗ ∗ ∗ ∗ 855(k, s)

<0,

(31)


811(k, s) 812(k, s) 813(k, s) 814(k) 815(k, s)
∗ 822(k, s) 0 0 0
∗ ∗ 833(k) 0 0
∗ ∗ ∗ 844(k) 0
∗ ∗ ∗ ∗ 855(k, s)

<0,

(32)

where 8ij(i, j = 1, . . . , 5) are defined similarly as in theo-
rem 3, except that P̄(k), K̄ (k) are replaced by P̄(k, s), K̄ (k, s).
Moreover, the controller gain matrices can be designed by
K (k, s) = K̄ (k, s)P̄−1(k, s), k = 1, . . . ,m, s = 1, 2 . . . , S.

IV. SIMULATION RESULT
In this section, we use an example to illustrate our theoretical
results.
Example: Consider a linear multi-agent system with four

agents where

A =
[
−2 1
0 0.6

]
, B =

[
1
2

]
, C =

[
1
1

]
.

The communication topologies are semi-Makov switching
with two modes and the Laplacian matrices are gained

L(1) =


1 −1 0 0
−1 3 −1 −1
0 −1 1 0
0 −1 0 1



L(2) =


2 −1 0 −1
−1 1 0 0
0 0 1 −1
−1 0 −1 2

 .
The transition rates are assumed to be λ11(k) ∈

[−4,−2], λ12(k) ∈ [0.5, 4], λ21(k) ∈ [1.2, 3.5], λ22(k) ∈
[−3,−1.5]. By solving the LMIs in the theorem 3 with
δ = 0.4, µ = 0.15, we get

P̄(1)=
[
1.7183 0.0540
0.0540 0.1891

]
, P̄(2)=

[
1.7219 0.0553
0.0553 0.1929

]
,

K̄ (1)=
[
0.2266 0.4743

]
, K̄ (2)=

[
0.2480 0.4938

]
,

By simple calculation, we have

K (1)=
[
0.05352.4929

]
, K (2)=

[
0.06242.5420

]
,

The semi-Markov switching signal is shown in Fig.1. The
external disturbance is given by ω(t) = e−2t and the initial
states of the agents are chosen as x1(0) = (5,−2.5)T , x2(0) =
(−3, 2)T , x3(0) = (2,−6)T , x4(0) = (−5, 6)T . Based on
the above parameters, we get the simulation results in Fig.2.
From Fig.2, it can be seen that the state trajectories of errors
with ω(t) can be convergent to zero, which implies that the
agents can achieve H∞ consensus. The simulation results
demonstrate the control output possesses robustness against
the external disturbance and the uncertainty induced by the
semi-Markov switching graphs and the measurement noises.
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FIGURE 1. Semi-markov switching signal.

FIGURE 2. The error variable with ω(t).

V. CONCLUSION
In this paper, we have investigated the H∞ consensus of
linear multi-agent systems with semi-Markov switching net-
work topologies and measurement noises. Each agent can
measure or receive the information of its neighbours with
multiplicative noises. By using semi-Markov jump theory,
algebraic graph theory and stochastic theory, some sufficient
conditions are given to ensure mean square consensus to be
achieved when the external disturbance is absent. Meanwhile,
H∞ consensus of multi-agent systems is achieved when the
external disturbance exists.

For further research, we have not minimized the perfor-
mance index δ when solving the proposed LMIs. Moreover,

it is interesting to consider the case with time-delay and
nonlinear dynamics, and containment control.
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