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ABSTRACT The limited lifespan of the traditional Wireless Sensor Networks (WSNs) has always restricted
the broad application and development of WSNs. The current studies have shown that the wireless power
transmission technology can effectively prolong the lifetime of WSNs. In most present studies on charging
schedules, the sensor nodes will be charged once they have energy consumption, which will cause higher
cost and lower networks utility. It is assumed in this paper that the sensor nodes in Wireless Rechargeable
Sensor Networks (WRSNs) will be charged only after its energy is lower than a certain value. Each node
has a charging time window and is charged within its respective time window. In large-scale wireless sensor
networks, single mobile charger (MC) is difficult to ensure that all sensor nodes work properly. Therefore,
it is propoesd in this paper that the multiple MCs which are used to replenish energy for the sensor nodes.
When the average energy of all the sensor nodes falls below the upper energy threshold, each MC begins
to charge the sensor nodes. The genetic algorithm has a great advantage in solving optimization problems.
However, it could easily lead to inadequate search. Therefore, the genetic algorithm is improved by 2-opt
strategy. And then multi-MC charging schedule algorithm with time windows based on genetic algorithm is
proposed and simulated. The simulation results show that the algorithm designed in this paper can timely
replenish energy for each sensor node and minimize the total charging cost.

INDEX TERMS Wireless rechargeable sensor networks, charging schedule, time windows, multiple mobile
chargers, energy threshold.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) consist of various dis-
tributed sensor nodes (SNs) that collect useful information
from their ambiance. Sensor nodes then transmit sensed data
to the Base Station (BS) by either single-hop communication
or multi-hop communication. The extensive applications of
WSNs include intelligent medical care, industrial control,
and intelligent transportation, etc., which have flourishing
application prospects. A key constraint is that the sensor
nodes in WSNs are powered by batteries that have limited
energy storage, therefore, the lifetime of traditional Wireless
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Sensor Networks (WSNs) is usually limited. In order to pro-
long the lifetime of the networks, scholars have carried out
a large number of studies, including the rational deployment
of sensor nodes and obtaining energy from the surrounding
environment. However, they can not solve the problem from
the root, and the lifetime of networks is still a bottleneck
that limits the widespread application ofWSNs. For example,
the method of replacing batteries can prolong the lifetime of
the sensor nodes [1]. However, in large-scale wireless sensor
networks, these energy-limited nodes may be deployed in
remote areas, even in hostile environments, so it is difficult
to maintain once deployed. Additionally, it is not convenient
to replenish energy by replacing the battery of the sensor
nodes, so energy harvesting technologies have been proposed
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to extract environmental energy, such as solar energy, wind
energy and heat energy [2]. Although the energy harvesting
technology can provide energy effectively, the energy replen-
ishment still has lots of shortcomings, such as unpredictable
value, uncontrollable capacity and great influence by the
environments. It has great challenges in real applications.
The recent breakthrough in the Wireless Power Transmis-
sion (WPT) technology based on the magnetic coupling har-
monic resonance provides improved schemes to prolong the
lifetime ofWSNs [3]–[5]. In these schemes, one ormore vehi-
cles possessed with the WPT equipment follow the charging
path to wirelessly charge the sensor nodes in the WSNs. The
wireless power transmission can be achieved without contact,
therefore, it is not affected by the surrounding environment
and can provide continuous and stable energy supplement for
nodes [6]. Based on these benefits, WPT that adds a new
dimension to prolong the lifetime of WSNs has attracted a
lot of attention. The WSNs that can be recharged wirelessly
are calledWireless Rechargeable Sensor Networks (WRSNs)
and the charging vehicle is named Mobile Charger (MC).

Most existing studies on WRSNs assumed a MC to charge
the sensor nodes in the networks. However, it is not suit-
able for the large scale WRSNs. Therefore, multiple MCs
need to be employed, and multi-MC charging strategies are
studied [7]–[9]. However, most multi-MC charging strategies
assumed that a sensor node can be charged as long as its
energy is consumed. That may cause a higher cost of MC
and lower network utility. To solve this problem, the charging
time windows of each sensor node are given in this paper.
The lower bound of time window means it is unnecessary to
charge the sensor node when the time is less than this lower
bound. And the sensor node not be charged before the upper
bound of the time window will be die. Therefore, the sensor
nodes can be charged within its own time window. The devi-
ation from the time window will generate a certain penalty.
And then our multi-MC scheduling problem can be trans-
formed into a classical Vehicle Routing Problem with Time
Windows (VRPTW). Moreover, many researches assumed
that the mobile charger (MC) has infinite energy. However,
the MC is powered by batteries and the energy of the MC
is limited in reality. Under this condition, finding an optimal
tour for theMC to charge the sensor nodes before their energy
expirations poses a great challenge. In this paper, we will
track this challenge, and multiple MCs are prepared to charge
all sensor nodes in the networks. Furthermore, the limited
energy influences the working hours of the MC, therefore
reducing movement energy consumption is considered. And
then the objective is to minimize the total cost after charging
the WRSNs one time, including minimizing the total moving
distance of theMCs under limited energy of theMC, the num-
ber of MCs, and the violation of the time windows.

Most existing researches have used the heuristic or the
approximate algorithm to solve multi-MC scheduling prob-
lem, which can only obtain heuristic or near-optimal solution.
The multi-MC scheduling problem is similar to the Vehicle
Routing Problem (VRP). To deal with VRP, many scholars

use meta-heuristic algorithms, which have great advantages
in global searching ability and have fewer or no restric-
tions on the optimal objective function. However, little work
has been done to solve the multi-MC scheduling problem
with meta-heuristic algorithm. The genetic algorithm (GA)
is a kind of meta-heuristic algorithms. GA has the advan-
tage of simple encoding, genetic operation and flexible
search process. Moreover, it has been widely adopted for the
VRP [10]–[12]. Therefore, GA is adopted in this paper. How-
ever, it could easily lead to inadequate search, thus, the GA is
improved by 2-opt.

The main contributions of this paper are as follows.

1) In large scale networks, a multi-MC scheduling prob-
lem with Time Windows is investigated. In this paper,
each sensor node has its own charging time window,
and multiple MCs are prepared to prolong the lifetime
of the networks and minimize the total charging cost
under the limited energy.

2) The improved Genetic Algorithm (GA) is proposed
due to the NP-hard of the problem. GA has a great
advantage in solving optimization problems. However,
it may easily lead to inadequate search. Therefore,
GA is combined with 2-opt strategy to further enhance
its search ability.

The rest of this paper is organized as follows: Section II
introduced the related works. Section III states the network
model, the charging model and the time window model.
Section IV describes the multi-MC charging schedule algo-
rithm with time windows. To meet the time windows corre-
sponding to the sensor nodes, the objective of optimization
problem is to minimize the total cost. Section V concretes
the process of solving charging schedule problem. The supe-
riority of the proposed charging schedule algorithm is proved
through the simulations and experiments in Section VI.

II. RELATED WORK
In recent years, many scholars have done a lot of researches
on wireless energy transmission technology to prolong the
lifetime of WRSNs [13]–[16]. Shi et al. [17] studied the
sensor networks based on the wireless energy transfer system
for the first time. They introduced a mobile charger with
enough energy into wireless sensor networks and proposed
the concept of energy cycle. They used a MC to periodically
charge all sensor nodes along the shortest Hamilton circuit.
They investigated the optimization problem to maximize
the percentage of station time in a cycle and constructed
a feasible charging scheme. Peng et al. [18] assumed that
the time and energy consumption of MC can be ignored
when MC charges the sensor nodes. They combined the
considerations of the network routing and singleMC charging
strategy together and proposed a heuristic algorithm and a
joint optimization algorithm to maximize the lifetime cycle
of networks. Different from traditional charging scheduling
policies where sensor nodes passively wait for the arrival of
mobile vehicles, Liu et al. [19] proposed a novel dynamic
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clustering basedmobile-to-cluster (M2C) scheme to optimize
the service process for both sensor nodes and the vehicle in
an active way. In [20], the MC was regarded as a mobile sink
which not only charges sensor nodes but also collects data
from them. Thus, a distributed solution is proposed to max-
imize the utility of the sensor networks. However, the above
literatures ignored the limited energy of the MC, and the
schemes are not realistic. To solve this problem, Lyu et al.
considered the limited energy of MC. And [21] studied a
periodic charging planning with the optimization objective
of maximizing the docking time ratio. Moreover, a Hybrid
Particle Swarm Optimization Genetic Algorithm (HPSOGA)
is proposed. And in [22], a multi-node charging planning
algorithmwith energy-limitedMC is proposed. Besides, three
charging planning models and their corresponding charging
planning algorithms are proposed based on the different real
energy conditions of the MC. Unlike existing studies that
assumed a mobile charger must charge a sensor to its full
energy capacity, [23] assumed that each sensor can be par-
tially charged so that more sensors can be charged before their
energy depletions. And a charging scheme with objectives to
maximize the sum of sensor lifetimes and to minimize the
travel distance of the mobile charger is proposed. In WRSNs,
the MC is expensive in cost. If a MC can complete all the
charging tasks, there is no more MCs to improve the charging
service quality. Therefore, single MC charging strategy is
mainly used in small-scale sensor networks with relatively
simple charging schedule. However, the capacity of a MC
is usually limited. Although a MC can charge some sensor
nodes at the same time, it is still unable to meet the charging
task of large -scale sensor networks.

Therefore, many scholars began to study multiple MCs
charging scheme of sensor networks [24]–[26]. Lu et al.
[27] assumed that the sensor nodes are deployed in one
dimensional plane and multiple MCs with limited energy
are used to make collaborative charging. In the case of
equal power consumption of sensor nodes, push-wait sched-
ule algorithm is proposed to obtain the optimal solution.
The article [28] proposed a collaborative charging algorithm
based on the clustering information. Xu et al. [29] consid-
ered multiple MCs charging schedule, so that the sensor
nodes can work continuously in the cycle and a guaranteed
performance approximation algorithm is proposed to ensure
the MC traveling in the smallest distance. The article [30]
firstly put forward the charging on-demand strategy based
on the decoupling charging schedule and routing strategy.
The problem of minimizing the number of MC is proved to
be NP-hard, and an approximate algorithm is proposed to
solve the problem. The article [31] studied the upper and
lower bounds of single and multiple sources of Quality of
Energy Provisioning in one dimension. Dai et al. [32], [33]
proposed using multiple MCs to charge large-scale networks
in a two-dimensional plane, as well as using minimum num-
ber of MCs to keep the persistent work of each node. The
Min MCP problem was proved to be the classical Dynamic
Vehicle Routing Problem (DVRP) which is NP-hard and an

approximation algorithm was put forward to solve it. The
article [34] and [35] gave a multi-MC cooperative charging
strategy, which is different from the previous multiple MCs
charging issue. Hu et al. [36] proposed that each MC can
periodically charge the sensor nodes on multiple charging
circuits, and independently execute its own charging tasks.
This article divided the multi-MC charging schedule problem
into two steps: Firstly, solve the charging Tour Construction
Problem (TCP) to cover the whole WRSNs. According to
the greedy charging scheme, the energy of each sensor node
can be timely replenished. Secondly, a heuristic algorithm is
proposed to solve the charging loop assignment Tour Assign
Problem (TAP), which enables the MC to charge as many
charging circuits as possible, so as to use the minimum num-
ber of MCs.

However, these charging schedules did not fully consider
the energy condition of networks after charging. Some nodes’
energy in the networks is sufficient, while others may be very
limited or even depleted, and the distribution of energy in the
whole network is extremely uneven. The existing research
assumed that sensor nodes would be charged once energy
consumed. They may cause a higher cost and lower network
utility. Considering the actual and economic circumstances,
this paper proposes a multiple MCs charging schedule strat-
egy with time windows. We assume that the sensor nodes
will be charged when the average energy of the network
is less than a certain level. The remaining lifetime of each
sensor node when the energy decreases to the upper threshold
Ehigh is treated as the lower limit of the time window, and
the remaining lifetime of each sensor node when the energy
decreases to the lower threshold Emin is treated as the upper
limit of the timewindow. The timewindow includes the lower
charging time and the upper charging time for each sensor
node inWRSNs, and the sensor nodes will be charged in their
own time windows. In large-scale wireless rechargeable sen-
sor networks, service station periodically sends out multiple
MCs to provide one-to-one charging for sensor nodes. The
MC leaves immediately after a full charge. Each MC carries
limited energy, and it returns to the service station waiting for
the next round of charging schedule when all sensor nodes are
charged or the energy of MC is exhausted. The MC should
try to charge the sensor nodes within the time windows, and
the deviation from the time window will generate a certain
penalty. In principle, the farther the deviation is, the higher
the penalty cost is. Considering the actual situation, this paper
aims to minimize the total cost used in each round of charging
schedule.

III. PROBLEM STATEMENT AND MODEL
We consider a rechargeable wireless sensor network consist-
ing of n sensor nodes. The nodes are randomly distributed
over a two-dimensional area. Without considering the impact
of obstacles, a fixed sink base station (BS) and a charging
service station (CS) are located in the center of the region.
Sensor nodes, the base station and the service station will
not move after deployment. There is enough number of MCs
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TABLE 1. Symbol and definition.

at CS, and CS periodically dispatches MCs to charge the
sensor nodes inWRSNs, andMC returns to the service station
when the charging schedule is completed or the energy of the
MCs is nearly running out. Each sensor node is equipped with
battery whose initial capacity is Emax . In the very beginning,
each sensor node has corresponding upper and lower limit
of charging time. The sensor node requires to be charged
within the time window, where the location of each sensor
node is fixed and can be located accurately. DenoteEmin as the
minimum energy of battery. When the energy is below Emin,
the nodes cannot work normally. Denote pi(1 ≤ i ≤ n) as the
power consumption of each sensor node si, and pi is a constant
during the whole charging cycle. Denote EM as initial energy
of each MC, the energy is used to move along the charging
path and replenish energy for the sensor nodes. The symbols
used in this paper are shown in Table 1.

A. NETWORK MODEL
It is assumed that CS can get the residual energy and energy
consumption rate of all sensor nodes at the initial time. N
stands for the set of sensor nodes, and L stands for the set of
nodes positions. N = {s0, s1, · · · , si, · · · , sn, sn+1} and L =
{l0, l1, · · · , li, · · · , ln, ln+1}, si and li refer to the ith sensor
node and the position of the ith sensor node respectively.
s0 = sn+1 and l0 = ln+1, where s0 represents the location
of the charging service station and l0 represents the location
of the CS in the network. As shown in Figure 1, each MC

FIGURE 1. Diagram of multi-MC charging path planning in WRSNs.

starts from CS and returns to CS after the charging task is
completed. Denote D = {di,j = d(li, lj)|li, lj ∈ L} as the
set of distance between any two sensor nodes and denote
di,0 as the distance between the ith sensor node and CS, and
d0,j is the distance between CS and the jth sensor node. The
residual energy set of all sensor nodes is expressed as E =
{e1, e2, · · · , ei, · · · , en}. Denote ei as the residual energy of
the sensor node i, and the time window of sensor node is
[t li , t

u
i ], we assume that the initial time is t = 0, and the ith

sensor node can be charged between time t li and time tui .

B. CHARGING MODEL
It is assumed that in WRSNs, there is only one charging
service station CS. All MCs start from CS and return to
CS after completing a charging schedule. The MC charges
sensor nodes in one-to-one way. Each sensor node should be
charged only once in a charging cycle and the time window
of each sensor node is set at the beginning time. If the MC
arrives outside the time window, a certain penalty will be
given. Each MC used for charging in WRSNs is the same
with the constant speed v during the moving process. Denote
qc as the charging power of the MC, qm as the mobile power
and η as the charging efficiency. Unlike the previous research
which assumed the sensor node be charged immediatelywhen
energy consumed, we assume that charging only happens
when the energy of the node is lower than Ehigh, and the
energy of each node should never be below Emin.

For the kth MC, it starts from CS at time t = 0, and
charges the sensor node Sk (⊆ N ), then returns to the ser-
vice station after the charging schedule has been completed.
Denote Rk = {πk0 , π

k
1 , π

k
2 , · · · , π

k
i , · · · , π

k
|Sk |
, πk
|Sk |+1

} as a
charging circuit corresponding to mobile charger k . Denote
both πk0 and π

k
|Sk |+1

as the CS, and πki as the ith sensor node
in Rk . During the entire process, the MC charges the sensor
node immediately after arriving at the node.

DenoteDk as the total traveling distance of mobile charger

k in Rk and Dk =
|Sk |∑
i=0

dπki ,πki+1
, so τ km = Dk/v is the

156220 VOLUME 7, 2019



Z. Wei et al.: Multi-MC Charging Schedule Algorithm With Time Windows in WRSNs

traveling time. To reduce the moving distance of MC under
the same replenished energy, a greedy charging strategy is
adopted, i.e., the node is charged to maximum energy each
time. Denote tkai as the time when mobile charger k arrives
at the ith sensor node, and the energy of the ith sensor node
is ei(tkai). The MC leaves the sensor node at time tkdi, and
the energy of the node is Emax . Denote Ekdi as the energy
of mobile charger k when it leaves sensor node i, and denote
τ ki as the charging time for sensor node i. So we have

τ ki = (Emax − ei(tkai))/(qcη − pi), 1 ≤ i ≤ n (1)

For the kth MC, the cycle time T k includes traveling
time τ km and charging time for nodes in corresponding path.
We have

T k = τ km +
|Sk |∑
i=1

τ ki , ∀k ∈ K (2)

For each MC, the effective charging power should be
higher than the power consumption pi of any sensor node.
Thus

pi < qc η, i = 1, 2, · · · , n (3)

In the whole process, the charging energy for each sensor
node should not be less than the minimum energy required
for normal work. We have

Emax − (T k − τ ki )pi ≥ Emin (4)

In the charging schedule, yki indicates whether the sensor
node is charged by mobile charger k . If mobile charger k
charges the node, its value is equal to 1, otherwise it will be 0.
And yki can be written as follows:

yki =

{
1, mobilechargerchargesfornodei
0, otherwise,

i = 1, 2, · · · , n; ∀k ∈ K (5)

The energy consumed by the mobile charger k during the
whole charging process cannot exceed its initial energy EM ,
so we have

qm Dk + qc

|Sk |∑
i=1

(τ ki yi,k ) ≤ EM , ∀k ∈ K (6)

Replace τ ki into the upper equation, the constraint (6) can
be rewritten as

qm Dk + qc

|Sk |∑
i=1

(
Emax − ei(tkai)

qcη − pi
yi,k ) ≤ EM , ∀k ∈ K (7)

Denote Ekai as the energy of mobile charger k when it
arrives at sensor node i, and then denote Ekdi as the residual
energy of mobile charger k after the completion of charging
for sensor node i and Ekdi = Ekai −

1
η
(Emax − ei(tkai)). When k

arrives at sensor node i, the energy of MC should guarantee

that MC can return to CS after charging for node i. Then we
have

Ekai −
1
η
(Emax − ei(tkai)) ≥ qmdi,0 (8)

xki,j=1 means that mobile charger k moves from sensor
node i to j, otherwise xki,j=0. That can be written as

xki,j =

{
1, mobilecharger fromitoj
0, otherwise,

i, j = 1, 2, · · · , n; ∀k ∈ K (9)

When themobile charger k arrives at sensor node i, the time
window constraint should also be considered. The traveling
time from the sensor node i to node j must satisfy the condi-
tion that the time window is lower than the upper time limit,
so we have

n∑
i=1

K∑
k=1

xki,j(t
k
ai + τ

k
i + τi,j) ≤ t

u
j , j = 1, 2, · · · , n (10)

C. TIME WINDOW MODEL
The start time of each charging schedule cycle is set as t = 0.
The initial energy of each sensor node is ei. According to the
upper and lower threshold of the energy, the corresponding
time window [t li , t

u
i ] can be obtained. It means that the sensor

node should be charged between the lower time t li and the
upper time tui . We have

t li =


ei (t0)− Ehigh

pi
, Ehigh ≤ ei (t0)

0, Emin ≤ ei (t0) < Ehigh,

tui =
ei (t0)− Emin

pi
(11)

In a cycle of charging schedule, the MC charges sensor
nodes in the time windows of the sensor nodes by satisfying
the upper and lower constraints of the charging time. Mean-
while, it realizes the energy supplement with the minimum
total cost of the distance, the number of MCs and viola-
tion of time windows, so that the sensor nodes can work
continuously.

D. PENALTY FUNCTION MODEL
In this paper, multi-MC charging schedule strategy with time
window constraints is studied, and the charging path con-
struction problem can be transformed into a classical Vehicle
Routing Problem with Time Windows (VRPTW). However,
charging schedule is not like the VRPTW problem. VRPTW
problem only assumed that the vehicle capacity constraints
do not include the walking distance constraints and each
demand is a fixed value. For the charging schedule problem,
the energy of sensor nodes gradually decreases with time,
and the charging time increases gradually, and the current
residual energy of the MC used to charge the sensor nodes
is also related to the travelling time. Moreover, the charging
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problem can be derived from the m-TSP problem, and the
article [29] proves that m-TSP is a NP-hard problem, and so
is the charging problem.

Unlike the traditional charging schedule that the sen-
sor nodes are charged once they have energy consumption,
we assume that the sensor nodes start to be charged when
the energy of sensor nodes is below Ehigh, which effectively
prevents the frequent charging for those nodes with sufficient
energy. The initial time is set to 0, and then the time used to
charge for the node i is between t li and t

u
i . In order to effi-

ciently use the energy of MC, the MC should avoid charging
the sensor nodes once the node’s energy is lower than Ehigh,
but when the number of nodes whose energy is less than Ehigh
reaches a certain scale, they begin to dispatch more MCs to
charge sensor nodes. Denote Eav(t) as the average energy of

nodes and Eav(t) =
n∑
i=1

ei(t)/n, if Emin ≤ Eav (t) ≤ Ehigh,

then the CS starts to dispatch MCs to replenish energy for
sensor nodes. To fully utilize the energy ofMCs to achieve the
purpose of minimizing the total cost of the charging schedule,
eachMC should charge asmany sensor nodes as possible, and
the residual energy of MC should be enough to return to the
charging service station.

When the MC arrives at the sensor node, it starts to charge
the nodes immediately. Each MC tries to reach the sensor
nodes within the time windows. If there is a deviation from
the time window, certain penalty will be given, the principle
of penalty is that more deviation get higher cost. The charging
schedule allows the MC’s arriving before the lower limit
time with some penalty but does not allow the MC to arrive
after the node’s energy is totally consumed. Assume that
the penalty function increases linearly. Denote pl as penalty
coefficient when the MC reaches before the lower limit of the
time window and denote pu as penalty coefficient when the
MC reaches after the upper limit time. To avoid the arrival
of the MC when the sensor nodes deplete its energy, it is
assumed that the penalty coefficient is infinitely large in this
case, set pu → ∞. The penalty function is expressed as
follows:

PFi(tkai) =


pl(t li − t

k
ai), tkai < t li

0, t li ≤ t
k
ai ≤ t

u
i

pu(tkai − t
u
i ), tkai > tui

(12)

The penalty function can be transformed into:

PF i(tkai) = pl max(t li − t
k
ai, 0)+ pu max(t

k
ai− t

u
i , 0) (13)

IV. OPTIMIZATION OBJECTIVE
The objective of this paper is to minimize the total cost
(Total Rechargeable Cost, TRC) of sensor nodes on the basis
of meeting time window constraints in WRSNs. The corre-
sponding objective function value is f . Considering the actual
situation in WRSNs, the problem can be stated formally

as:

OPT : minTRC = α
n∑
i=0

n∑
j=0

K∑
k=1

di,jxki,j + β
n∑
j=1

K∑
k=1

xk0,j

+ γ

n∑
i=1

K∑
k=1

PF i(tkai) (14)

s.t. (4),(5),(7),(8),(10)-(13),

K∑
k=1

yik = 1, i = 1, 2, · · · , n (15)

n∑
i=1

xk0,i =
n∑
j=1

xkj,0 ≤ 1, ∀k ∈ K (16)

The formula (14) shows that the optimization goal is the
total cost minimization of the distance, the number of MCs,
and the violation of the time windows. Denote α as the unit
distance cost, β as single MC cost and γ as unit time window
cost. The constraint (15) indicates that each sensor node is
only charged by one MC in a cycle. The constraint (16)
indicates that all MCsmust go back to the service station after
leaving it, and it can also indicate whether mobile charger k
is used in the charging schedule.

V. CHARGING SCHEDULE ALGORITHM
This paper studies the multi-MC charging schedule problem,
in which each sensor node has a time window in WRSNs.
This problem is NP-hard. Genetic algorithm and 2-OPT
strategy are combined to solve the problem. Suppose the
population has a number of chromosomes. The main idea of
genetic algorithm is as follow, in each iteration, the offspring
population is generated by performing selection, crossover
and mutation operation on chromosomes in parent popula-
tion. The process will repeat until the number of iterations
satisfy the termination condition. And then the chromosome
in latest population with lowest objective function value is
the optimal solution. As for the proposed charging schedule
algorithm, the final result is obtained after the optimal solu-
tion obtained by genetic algorithm is exchanged by 2-OPT
strategy. As described above, the flow chart of our charging
schedule algorithm is shown below. Details of each step will
be discussed in section A to section D.

A. CHROMOSOMES CODING AND DECODING
The population size affects the implementation efficiency and
the final result of genetic algorithm. In this paper, a set of
different chromosomes Gh(h = 1, 2, · · · ,m) is generated
randomly, where m is the number of chromosomes in the
initial population.
The multi-MC schedule problem in WRSNs with time

window constraints is related to the charging order of sensor
nodes. The charging path of MC and the charging time that
sensor nodes take are combinatorial optimization problems
based on sequence. Therefore, this paper uses natural number
coding to sequentially encode the sensor nodes charged in all
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FIGURE 2. The flow chat of the proposed algorithm.

paths into a chromosome, and the chromosomes are repre-
sented by denoting vector Gh. Denote Gh=(g1, g2, · · · , gn),
where each gene gi is a natural number ranging from 1 to
n without overlapping with each other. By adopting such a
coding method based on direct arrangement of sensor nodes,
it is possible to ensure that each sensor node is charged only
once, and simplify the handling of constraints in mathemati-
cal models.

Detailed decoding operation process is given as follows:
Firstly, we select the gene from left to right and insert it
into the current path according to the gene sequence of a
chromosome. If the insertion of a gene does not meet the
energy constraints of MCs or the time windows of sensor
nodes, we begin to construct a new charging path. The above
process is repeated until all the sensor nodes are assigned to
the corresponding charging path.

B. SELECTION, CROSSOVER AND MUTATION OPERATION
The purpose of selection is to choose better individuals from
the current population and keep them to next generations
as parents or create new individuals by mutation. In this
paper, the selection strategy combines the elite choice with
the expectation value, which is used to improve the perfor-
mance of selection operation and maintain the individuals
with the best fitness. And the individuals with larger fitness
value are more likely to be passed on to the next generation.
The specific process is given as follows: Firstly, we suppose

the size of the population is n, the objective function value
fh of each chromosome Gh will be in ascending order, and
the chromosome with the lowest fh will be kept directly to
the next generation. The remaining n− 1 chromosomes in the
next generation are selected by the roulette method.

The purpose of the crossover operation is to enable genetic
algorithm to search for new gene space and this brings diver-
sity to the new populations. This paper adopts the like-PMX
(Partially Matched Exchange) crossover method, which is
different from the method of direct exchanging chromosome
segments. The like-PMX method first moves the crossover
segment to the head of the other chromosome, and then
removes the same genes and results in a new individual after
the crossover. This crossover operation can still perform iter-
ative optimization if two crossover individuals are the same,
to get different individuals from their parents, jump out of the
local optimum, and improve the global search capability.

The mutation operation can overcome the premature con-
vergence phenomenon in the crossover process and improve
the local search ability to a certain extent. In this paper, two
mutation points are randomly selected from a chromosome
in a population by using a basic mutation operator, and then
the gene values corresponding to the two mutation points are
exchanged with probability pm to obtain mutated individuals.

C. TERMINATION RULE OF EVOLUTION
In this paper, the number of iterations is used as the termi-
nation rule to determine whether the number of iterations
meets the prescribed level Gen. If so, evolution ceases and
the charging schedule corresponding to the best performing
chromosome Gh is selected as the final solution.

D. 2-OPT ALGORITHM
GA could easily lead to inadequate search. The solution
obtained by genetic algorithm may not be optimal solution,
and the corresponding charging path is not necessarily the
optimal path. Some adjustments must bemade to the obtained
charging path for local optimization. In this paper, the effi-
cient and simple 2-OPT local search algorithm proposed
in [37] is used to optimize the charging path.

E. REALIZATION OF CHARGING SCHEDULE ALGORITHM
Based on the proposed genetic algorithm and 2-OPT algo-
rithm, this paper solves the problem of multi-MC charging
schedule in WRSNs. The concrete steps of its realization are
given as follows

Algorithm 1 Minimize the Total Cost of Charging the
Sensor Nodes in WRSNs, and Get the Corresponding
Optimal Charging Schedule

input: Emax ,Ehigh,Emin, li(x, y), pi, ei, EM , qc, qm, η, v, α,
β, γ, pl, pu

output: The minimum total cost for charging nodes in
the WRSNs, the corresponding charging schedule,
the number of MCs, and the charging path corresponding
to each MC
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1: Calculate the time window [t li , t
u
i ] of each sensor node at

the initial time;
2: Set the terminate number of iterations Gen, crossover

probability pc, andmutation probability pm;
3: Generate a set of initial population G(0) containing N

random chromosomes, define and initialize the number
of iterations variables gen = 0;
// It is assumed that the charging completion time of j− 1
th sensor node is td(j−1), when the remaining energy of
theMC isEd(j−1), the node distance and time correspond-
ing to j− 1 to j are dj−1,j and tj−1,j

4: for i = 1 to N do
5: for j = 1 to L do

//It is assumed that the node corresponding to the
gene j− 1 is the last node of the current path, so the
time of arrival at j is taj = td(j−1) + tj−1,j. Then
discuss whether the node corresponding to j can join
the current path

6: if MC arrives at sensor node j then
7: Calculate the remaining energy of node j of this

moment is ej(taj) = ej(t0)− pjtaj. The remaining
energy of MC is Eaj = Ed(j−1) − qmdj−1,j when
the MC arrives at j, and the energy of node j that
needs to be replenished is echj (taj) = Emax −
ej(taj);

8: if ej(taj) > 0 and Eaj− 1
η
(Emax−ej(taj)) ≥ qmdj,0

then
9: Add node j to the current path, update the

charging time at j, energy value of j, the cost
of distance and the violation of time windows
corresponding to the current path after node j
has been charged;

10: else
11: Add another charging path, update the current

time t = 0;
12: end if
13: end if
14: end for
15: Calculate the total distance, the number of MCs,

the total cost of violating the time windows and the
total cost of the three individuals corresponding to
chromosomes in the population;

16: end for
17: According to the elite selection strategy, select the chro-

mosomes with the lowest fh into the next generation. The
other N − 1 chromosomes are selected by the roulette
strategy. Finally, we getN chromosomes belonging to the
next generation;

18: Carry out like-PMX cross and basic reversal
mutation operations and reorganize to generate new
individuals;

19: Set the number of iteration variables gen = gen+ 1;
20: if the termination condition of genetic algorithm is satis-

fied then
21: Go to step 17;

22: else
23: Go to step 5;
24: Use 2-OPT local algorithm to optimize the charging

path to get a new charging schedule;
25: if the total cost is less than that before optimization

then
26: Keep the optimized charging schedule;
27: else
28: Maintain the previous optimization;
29: end if
30: end if
31: return result

VI. NUMERICAL RESULTS
A. SIMULATION SETTINGS
In this section, MATLAB R2015a is adopted for simulation
experiments and some numerical results are presented to
demonstrate how our charging schedule achieved a less total
cost. We randomly distribute 20 sensor nodes in a 1000 m ×
1000 m square area. The BS and CS both are located at coor-
dinate (500m, 500m). We here set Emax=10.8KJ ,Emin =

540J ,EM = 108KJ , v = 8m/s, qc = 10W , qm = 100J/m
[38], [39]. The consumption rate of each node is randomly
generated within [0.1, 1] J/s. The location of each sensor
node was shown in table 2.

TABLE 2. Location of 20 sensor nodes.

B. RESULTS
The crossover and mutation probabilities are pc = 0.9, pm =
0.05 respectively. Set Gen = 100 as the terminate number of
iterations. AWRSN consisting of 20 sensor nodes is analyzed
in details. The results are shown in Table 3:

The first time in the table stands for the number of
iterations that get the final solution for the first time.
It can be seen from Table 3 that the obtained average
value of the total charging cost is 328.7. Nine of the
experimental results are higher than the average, the total
cost of the optimal final solution is 304.8, the chromo-
some is [13,3,6,1,8,5,4,10,18,2,9,20,14,11,19,16,12,15,7,17].
As shown in Table 4, we can get its corresponding charging
schedule path after the feasibility analysis.

It can be seen from Table 4 that the total cost of each
charging path corresponding to the optimal charging schedule
is similar, and the residual energy of the MC is less than
1/20 of the initial energy and smaller than the initial energy of
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TABLE 3. Charging schedule results.

TABLE 4. Charging sequence.

FIGURE 3. Best charging paths for the sensor network consisting
of 20 nodes.

the sensor nodewhen theMCfinally returns to CS. This paper
shows that the solution can indeed charge as many nodes as
possible. Figure 3 shows the charging paths corresponding
to the randomly distributed 20 nodes which are charged by
3 MCs respectively. The total cost of the moving distance,
violation of the time windows and the number of the MCs
corresponding to the charging schedule in this case is the
lowest. It can be seen from Figure 4 that the proposed charg-
ing schedule algorithm shows a decreasing corresponding

FIGURE 4. Effect of iteration on objective function value.

FIGURE 5. Effect of the number of sensor nodes on the total charging
cost.

objective function value with the increasing of the num-
ber of iterations and a better and more reasonable result is
achieved.

In the WRSNs’ region, 20, 30,. . . , 100 nodes are respec-
tively generated. Figure 5 and Figure 6 show the impacts
on the total charging cost and the number of MCs as the
number of sensor nodes changes in the charging schedule
respectively. It can be seen that when the number of sensor
nodes in the WRSNs increases, the total charging cost cor-
responding to the MC charging process increases, and the
size of the network increases. However, the initial energy
of each MC is limited. Therefore, without more MCs to
charge the sensor nodes, the sensor nodes may not work
perpetually. In this case, more MCs are needed. Overall,
when the WRSNs become larger, the number of sensor nodes
requiring to be charged and the corresponding total moving
distance increase, unit distance and unit charger cost remain
unchanged, and even if each sensor node is charged within a
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FIGURE 6. Effect of the number of sensor nodes on the total number of
MCs.

time window, its corresponding total cost will also increase.
After using 2-OPT local optimization algorithm, there is no
obvious change in the number of MCs. This is because the
WRSNs charging schedule is based on time window and
each sensor node should satisfy the time window constraint.
After the local adjustment, the corresponding total cost is
reduced by 18% when compared with the genetic algorithm
due to the reduction of the moving distance, while the greedy
algorithm performs well under the condition that fewer nodes
exist in the network. However, in the large-scale networks,
the number of MCs corresponding to its solution is larger,
and the total cost is about 29.4% higher than ours.

VII. CONCLUSION
This paper studies the problem of multi-MC charging sched-
ule forWRSNs with time windows.When the average energy
of the sensor networks is lower than a certain value, the MC
begins to charge the sensor nodes. Compared with the charg-
ing strategy in which the sensor nodes are charged once
they have energy consumption, our charging schedule can
effectively prevent sensor nodes with sufficient energy from
being charged frequently. Additionally, the energy carried
by MC is limited, so more MCs are required to charge for
large-scale sensor networks. The purpose of this paper is to
minimize the total cost of moving distance, the number of
MCs and violation of time windows. Due to the NP-hard of
the problem, elite retention strategy and genetic algorithm are
used together to get final solution, and then the 2-OPT local
search algorithm is used to adjust the final solution, so as to
achieve the optimal solution.

The simulation results show that the proposed algorithm
can effectively reduce the charging consumption of MC and
prolong the lifetime of the networks.Moreover, the final solu-
tion of the proposed algorithm is better than the basic genetic
algorithm and greedy algorithm. This paper also has some
limitations: the solution depends on the initial population

overly and does not consider the priority of the sensor nodes,
etc. We will study the charging schedule based on the priori-
tization of sensor nodes in our future research.
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