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ABSTRACT Operation state calculation (OSC) provides safe operating boundaries for power systems. The
operators rely on the software-aid OSC results to dispatch the generators for grid control. Currently, the OSC
workload has increased dramatically, as the power grid structure expands rapidly to mitigate renewable
source integration. However, the OSC is processed with a lot of manual interventions in most dispatching
centers, which makes the OSC error-prone and personnel-experience oriented. Therefore, it is crucial to
upgrade the current OSC in an automatic mode for efficiency and quality improvements. An essential process
in the OSC is the tie-line power (TP) adjustment. In this paper, a new TP adjustment method is proposed
using an adaptive mapping strategy and a Markov Decision Process (MDP) formulation. Then, a model-free
deep reinforcement learning (DRL) algorithm is proposed to solve the formulated MDP and learn an optimal
adjustment strategy. The improvement techniques of ‘‘stepwise training’’ and ‘‘prioritized target replay’’ are
included to decompose the large-scale complex problems and improve the training efficiency. Finally, five
experiments are conducted on the IEEE 39-bus system and an actual 2725-bus power grid of China for the
effectiveness demonstration.

INDEX TERMS Operation state calculation, tie-line power adjustment, deep reinforcement learning,
stepwise training, prioritized target replay.

I. INTRODUCTION
Operators rely on operation state calculation (OSC) which
provides the grids’ safe operating boundaries to estimate
the security level of power systems. In recent years, due to
the development of the social economy, power consumption
and the access of renewable energy have continuously set
new records [1]–[3]. As a result, the grid structure expands
markedly, making the number of typical operation modes
(TOMs) and key transmission sections (KTSs) increase dra-
matically [4]–[7] as well. Therefore, it becomes a challenge
to complete the OSC today.

At present, the OSC of large-scale power grids is still
processed with a lot of manual interventions, and the calcu-
lation process can be divided into three stages: i. Forecast
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the load in the planned future; ii. Formulate TOMs based
on the load forecasting results; iii. For each TOM, calculate
the transfer capability limit (TCL) of each concerned KTS.
In practice, the stage iii is mainly achieved by adjusting the
tie-line power (TP) to different values manually and exe-
cuting transient simulation under preset faults to find the
safe operating boundaries. Due to the increasing amount of
TOMs and KTSs, the OSC has become tedious, arduous, and
repetitive requiring continuously updated operating experi-
ence in power grids’ operation states. Therefore, it is crucial
to develop an algorithm that can automatically complete the
OSC.

In recent years, numerous researches have focused on
the OSC from different perspectives. For TOM formulation,
Y. Zhang et al. [8] proposed a method for the integration
of multi-source data and auto-adjustment of power flow to
formulate the typical operation modes. H. Wang et al. [9]
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proposed a concept of approximate power flow (APF)
to deal with the convergence problem of power flow
calculation, which improves the efficiency of TOM formu-
lation significantly. Ren and Zhang [10] devised a gener-
alized microgrid power flow with good convergence for
analyzing the islanded microgrid. Taking into account the
impact of renewable energy uncertainties and load forecasts,
Reddy and Momoh [11] proposed an optimum day-ahead
scheduling strategy for a hybrid power system to minimize
both day-ahead and real-time adjustment costs. Lee et al. [12]
introduced a bus-dependent participation factor based on
generation-load incremental cost and proposed a new gen-
eration adjustment approach to operate the power system
economically. For the TCL calculation, Wang and Gao [13]
proposed a new method of analyzing the available transfer
capability of AC-DC power systems and the adjustment of
HVDC control which can provide a reference for power sys-
tem dispatch and operation. Liu et al. [14] used nonparamet-
ric analytics to estimate the TCL of a power system based on
online measurement. Xu and Miao [15] presented the multi-
area TCL calculation method based on improved Ward-PV
equivalents. Although the approaches above contribute a lot
to the OSC from different perspectives, it is hard to take
into consideration all the constraints of practical scenarios,
especially in large-scale AC-DC hybrid power systems. There
has not been a method that can complete the OSC without
manual interventions.

Recently, model-free methods that do not depend on sys-
tem model information have achieved great success in solv-
ing complex decision-making problems [16], [17]. These
achievements have inspired the development of model-free
methods in power systems [21]. For the power system oper-
ation, R. Yousefian et al. [18] proposed a Wide Area Control
design based on reinforcement learning (RL) and neural net-
work to enhance the transient stability of power systems inte-
grated with doubly fed induction generators. Zhang et al. [19]
introduced a load shedding scheme against voltage instability
based on deep reinforcement learning (DRL) using spatial
and temporal information. Yan an Yu [20] used DRL in a
continuous action domain to minimize the frequency devi-
ation with stronger adaptability and quicker response speed.
For the electricity market, Wan et al. [21] formulated the real-
time EV charging scheduling problem as a Markov Decision
Process (MDP) and determined the optimal strategy based on
a representation network and a Q network. Ruelens et al. [22]
applied the RL algorithm to control an electric water heater
with lower energy consumption in practice. The reinforce-
ment learning was also applied in energy and load man-
agement [23]–[25]. More applications in power systems are
introduced in [26]. Overall, the DRL based model-free meth-
ods have achieved success in the complex decision-making
problems of power systems. Similarly, the OSC involves lots
of decision-makings as well. Nevertheless, to the best of our
knowledge, few applications of DRL in the OSC have been
reported in the literature.

This paper focuses on upgrading the transfer capability
limit (TCL) calculation process with a model-free method.
From stage three of the OSC, it is easy to know that the key
to calculate the TCL automatically is to develop an algorithm
that can automate the TP adjustment of a KTS. The manual
adjustment process is converted into an MDP from the grid
operators’ perspective, and a model-free method is proposed
to determine the optimal adjustment strategy. The proposed
method uses the target TP ranges of all concerned KTSs as its
input and outputs the adjusted power flow result. Unlike tra-
ditional model-based methods, the proposed method requires
less manual interventions. In this paper, we only consider the
active power adjustment.

The contributions of this paper are listed as follows:
• A Markov Decision Process is constructed from the
operators’ perspective to formulate the tie-line power
adjustment problem based on a specific mapping
strategy.

• A DRL based model-free method is proposed to gen-
erate the optimal generator adjustment strategy. The
input information only contains the target KTSs and the
related TP ranges.

• The ‘‘stepwise training’’ and the ‘‘prioritized target
replay’’ are proposed to decompose large-scale complex
problems and improve training efficiency.

The rest of this paper is presented as follows. The prob-
lem formulation for tie-line power adjustment is introduced
in section II. Section III presents a new adaptive mapping
strategy for tie-line power adjustment. Section IV proposes a
model-free method based on DRL to learn the optimal adjust-
ment strategy. In section V, experimental results demon-
strate the effectiveness of the proposed method. In the end,
section VI provides the concluding remarks.

FIGURE 1. TP adjustment process in actual projects. St is the state of the
power flow at time step t . bt, ct , dt , and et are the actions executed
between adjacent states.

II. PROBLEM FORMULATION
A. TIE-LINE POWER ADJUSTMENT PROCESS
Ageneral tie-line power (TP) adjustment process is illustrated
in Fig. 1. The St and St+1 represent the power flow state at the

VOLUME 7, 2019 156161



H. Xu et al.: Deep Reinforcement Learning-Based Tie-Line Power Adjustment Method for Power System OSC

current time step t and the next time step t+ 1. In between St
and St+1, there are commonly four actions as the generator
choosing (bt ), generator state setting (ct ), generator group
selecting (dt ) and power compensating (et ). Fig. 1 takes the
IEEE 39-bus system as an example. The three red tie-lines
constitute one KTS, and the green arrow shows the positive
direction. Gen 3 or Gen 4 is changed in bt and ct . Gen 1,
Gen 6, and Gen 9 are under adjustment of dt and et .
After the power system state is transformed from St to

St+1, the actions bt+1, ct+1, dt+1, and et+1 will be executed
until the TP of the target key transmission section (KTS)
reaches its target value. It is worthmentioning that power flow
convergence should be guaranteed at each time step.

B. MDP FORMULATION
The Markov Decision Process (MDP) is a mathematical
structure for decision-making process modeling. It can be
denoted as a five-tuple (S, A, P, R, γ ), where S is the system
state, A is the action set, P is the state transition probability,
R is the immediate reward, and γ is a discount factor [28].
The TP adjustment problem is a decision-making process.

Inspired by [21], we formulated the TP adjustment as a finite
MDP. Given a target tie-line power Pm,tarC of the KTS m, the
adjustment action is then determined in every time step. For
instance, at time step t , the system state st , which contains
the current power flow state and the adjustment target is
observed. Based on st , an adjustment action at is executed.
Then, a new system state st+1 is obtained, and action at+1 is
executed until the target TP is achieved. Details of the MDP
components and formulation for the TP adjustment are shown
as follows.
1) System State: The system state at time step t is defined

as a vector st = (m,PtG,τ1 ,P
t
G,τ2

, . . . ,PtG,τNG
,Pm,tarC ), τi ∈ �.

The vector st contains three types of variables: (1)m indicates
the sequence number of a target KTS (a label to distinguish
different KTSs); (2) PtG,τi represents the adjustable gener-
ators’ injected power at time step t; � is the bus set to
the adjustable generators (not for the slack bus); (3) Pm,tarC
denotes the target tie-line power of the KTS m.
2) Action: For the system state st , the adjustments (bt ,

ct , dt , and et in Fig. 1) on the adjustable generators are
represented by a real number at within [amin, amax]. The
action at is executed according to a mapping strategy which
is detailed in section III.
3) State Transition: The state transition is shown as

st+1 = f (st , at) , (1)

where the state transition is determined by at and the corre-
sponding mapping strategy together.
4) Reward: Due to the diversity of different tasks,

the design of reward mechanisms is so difficult that there has
not been a general principle for reward designing [29], [30].

In the TP adjustment problem, it is vital to make sure
that the power flow calculation is convergent, and the output
power of the slack bus generator is within its rated value.

The TP adjustment should be executed based on these precon-
ditions. Therefore, we define the reward function as below:

r (st , at)

=


rmax, cond.1& cond.2& cond.3
−
∣∣Pm,tarC − Pm,tC

∣∣ , cond.2& cond.3
rmin, others

(2)

where cond.1 represents the tie-line power of the KTS m
is achieved within

[
Pm,tarC − δ,Pm,tarC + δ

]
(δ is the error

range); cond.2 represents the output power of the slack
bus generator is within its available range; cond.3 denotes
the power flow calculation is convergent. Moreover, rmax
should be non-negative, and rmin should be smaller than
min

(
−
∣∣Pm,tarC − Pm,tC

∣∣). If cond.1, cond.2, and cond.3 are
satisfied simultaneously, it means not only the target TP
is achieved, but also the power flow state is reasonable.
The maximum non-negative reward rmax is given. If only
cond.2 and cond.3 are satisfied, it means the power flow state
is reasonable, but the target TP is not achieved. A negative
reward −

∣∣Pm,tarC − Pm,tC

∣∣ relating to the difference between
Pm,tC and Pm,tarC is given as a punishment. If the power flow
state is not reasonable (others), the minimum negative reward
rmin is given as the most severe punishment.
5) Actor Function: The action at is determined by the

adjustment strategy function µ shown as

at = µ (st) , (3)

where st represents the system state as introduced above.
µ (st) is called the actor function mapping st to a specific
action at .
6) Critic Function: At time step t , the effect of action at is

estimated by the sum of its expected future reward shown as

Qµ (st , at) = Eµ

[
∞∑
k=0

γ k · rt+k

∣∣∣∣∣ st , at
]
, (4)

where Qµ (st , at) is called the critic function; 0 ≤ γ ≤ 1
is the discount factor balancing the immediate and the future
reward. Particularly, when γ = 1, the future reward is con-
sidered as important as the immediate reward. When γ = 0,
only the immediate reward is considered [21].
The objective of theMDP formulation is to find the optimal

actor function at = µ∗ (st), based on which the adjustment
strategy can always earn the largest expected reward esti-
mated by the critic function.

III. MAPPING STRATEGY
In practice, operators adjust the high sensitive generators and
try to change the power flow state in a minimum action. The
general TP adjustments (bt , ct , dt , and et ) between adjacent
states are actions in different decision spaces. To formulate
the MDP for TP adjustments, a new mapping strategy is
proposed to transform the sequential actions bt , ct , dt , and
et into one action at with a fixed decision space. Since the
pre-learned human knowledge benefits the training efficiency
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a lot [31], [32], we apply a similar idea by integrating the
operators’ work experience in themapping strategy. Then, the
pre-learned mapping strategy is divided into two parts: data
preparation and dynamic mapping. Data preparation helps
find the sensitive and insensitive generators to lower the
searching difficulty (similar to bt and dt ). Dynamic mapping
helps execute the specific adjustments on generators (similar
to ct and et ).

A. DATA PREPARATION
1) SENSITIVITY INDEX
As shown in (5), six sensitivity-related indexes are proposed
to screen out generators:

1Pm,posC,i =max(Pm,max
C,i −P

m
C ,P

m,min
C,i − PmC ),m ∈ �C , i ∈ �

(5a)

1Pm,negC,i =max(PmC−P
m,max
C,i ,PmC − Pm,min

C,i ),m ∈ �C , i ∈ �

(5b)

1Pm,banC,i =

∣∣∣1Pm,posC,i

∣∣∣+ ∣∣∣1Pm,negC,i

∣∣∣ , m ∈ �C , i ∈ � (5c)

where m represents the sequence number of a KTS; �C
is the set of the KTSs; PmC denotes the initial TP; Pm,max

C,i

(Pm,min
C,i ) represents the TP of the KTS m by only setting the

generator i to its maximum (minimum) value (In this paper,
‘‘generator i’’ represents the generator at bus i). 1Pm,posC,i
(1Pm,negC,i ) is the remaining adjustable amount of the KTS m
in the positive (negative) direction resulting from generator i.
1Pm,banC,i represents the overall contribution of generator i.

Sm,posC,i

=



∣∣∣∣∣ 1Pm,posC,i

Pmax
G,i − PG,i

∣∣∣∣∣ ,Pm,max
C,i ≥ Pm,min

C,i ,Pmax
G,i 6= PG,i∣∣∣∣∣ 1Pm,posC,i

Pmin
G,i − PG,i

∣∣∣∣∣ ,Pm,max
C,i < Pm,min

C,i ,Pmin
G,i 6= PG,i

0, others

(5d)

Sm,negC,i

=



∣∣∣∣∣ 1Pm,negC,i

Pmax
G,i − PG,i

∣∣∣∣∣ ,Pm,max
C,i ≥ Pm,min

C,i ,Pmax
G,i 6= PG,i∣∣∣∣∣ 1Pm,negC,i

Pmin
G,i − PG,i

∣∣∣∣∣ ,Pm,max
C,i < Pm,min

C,i ,Pmin
G,i 6= PG,i

0, others

(5e)

Sm,banC,i

= Sm,posC,i + S
m,neg
C,i (5f)

where PG,i is the initial power of generator i; Pmax
G,i (Pmin

G,i )
denotes the generator’s maximum (minimum) power; Sm,posC,i
(Sm,negC,i ) is a sensitivity index of generator i in the positive
(negative) direction; Sm,banC,i denotes the overall index.

2) GENERATOR RANKING
Based on (5), the adjustable generators rank in three
sequences for each KTS, as shown in (6):

9m
pos= {αk |1Pm,posC,αk > 1Pm,posC,αk+1

or (1Pm,posC,αk =1Pm,posC,αk+1
&

Sm,posC,αk ≥ Sm,posC,αk+1
), αk ∈ �, k = 1, 2, 3, . . . ,NG, }

(6a)

9m
neg = {βk |1Pm,negC,βk > 1Pm,negC,βk+1

or (1Pm,negC,βk =1Pm,negC,βk+1
&

Sm,negC,βk ≥ Sm,negC,βk+1
), βk ∈ �, k = 1, 2, 3, . . . ,NG, }

(6b)

9m
ban = {γk |1Pm,banC,γk < 1Pm,banC,γk+1

or (1Pm,banC,γk =1Pm,banC,γk+1
&

Sm,banC,γk ≤ Sm,banC,γk+1
), γk ∈ �, k = 1, 2, 3, . . . ,NG, }

(6c)

where NG denotes the number of the adjustable generators;
9m
pos, 9

m
neg, and 9

m
ban are sets of generators ranked depend-

ing on the proposed sensitivity indexes. Specifically, 9m
pos

(9m
neg) is for the adjustment in the positive (negative) direc-

tion, and 9m
ban for the power compensation. To improve the

astringency of power flow calculation, generators that lead to
non-convergence while calculating Pm,max

C,i or Pm,min
C,i should

be removed. In this paper, the subscripts αk , βk , and γk
only denote the sorted generators from 9m

pos, 9
m
neg, and 9

m
ban

respectively.

3) GENERATORS FOR POWER COMPENSATION
The subset ψm

ban is prepared for power compensation
(dt and et ). The possible maximum and minimum boundaries
of the power fluctuation resulting from the TP adjustments
(bt and ct ) are calculated according to (7).

nmpos = minN , s.t.
N∑
k=1

1Pm,posC,αk ≥ εc

·(Pm,max
C − PmC ), αk ∈ 9

m
pos (7a)

nmneg = minN , s.t.
N∑
k=1

1Pm,negC,βk ≥ εc

·(PmC − Pm,min
C ), βk ∈ 9m

neg (7b)

ZmG,i =

 1, Pm,max
C,i ≥ Pm,min

C,i

−1, Pm,max
C,i < Pm,min

C,i
(7c)

1Pm,max
G,sum = max

nmpos∑
k=1

(
Pmax
G,αk − PG,αk

)

·
1+ZmG,αk

2
,

nmneg∑
k=1

(
Pmax
G,βk − PG,βk

)
·
1− ZmG,βk

2


(7d)
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1Pm,min
G,sum = max

nmpos∑
k=1

(
PG,αk − Pmin

G,αk

)
·
1− ZmG,αk

2
,

nmneg∑
k=1

(
PG,βk − Pmin

G,βk

)
·
1+ZmG,βk

2

 (7e)

where Pm,max
C (Pm,min

C ) is the maximum (minimum) value of
the target TP of the KTS m ∈ �C ; nmpos (n

m
neg) denotes the

number of generators required in bt and ct ; εc is a reliable
coefficient to guarantee enough generators in ψm

ban (εc ≥ 1,
a higher εc means more candidate generators); ZmG,i is a
relationship index. 1Pm,max

G,sum and 1Pm,min
G,sum are the boundaries

of the injected power fluctuation resulting from bt and ct .
Then, ψm

ban is optimized by (8) to obtain the sets of gener-
ators that affect the tie-line power of the KTS m as little as
possible.

Object function:

min
ncom∑
i=1

1Pm,banC,γxi
+

nup∑
i=1

1Pm,banC,γyi
+

ndown∑
i=1

1Pm,banC,γzi
(8a)

Subjected to :

ncom∑
i=1

(
Pmax
G,γxi
− PG,γxi

)

+

nup∑
i=1

(
Pmax
G,γyi
− PG,γyi

)
≥1Pm,min

G,sum (8b)

ncom∑
i=1

(
PG,γxi−P

min
G,γxi

)
+

ndown∑
i=1

(
PG,γzi − Pmin

G,γzi

)
≥ 1Pm,max

G,sum (8c)

Pmax
G,γxi
≥ Pthr ,Pmax

G,γyi
− PG,γyi ≥ P

thr ,PG,γzi

− Pmin
G,γzi
≥ Pthr (8d)

1 ≤ xi < xi+1 ≤ ncom, ncom ∈ Z

ncom ≤ yi < yi+1 ≤ nup, nup ∈ Z

ncom≤zi < zi+1≤ndown, ndown ∈ Z

ψm
ban=

{
γxi
}
∪
{
γyi
}
∪
{
γzi
}
,

γxi , γyi , γzi ∈ 9
m
ban

(8e)

and (5a) (5b) (5c) (8f)

where Pthr is a threshold value for the remaining adjustment
amount; ncom, nup, ndown, γxi , γyi and γzi are the unknown
variables to be solved; ψm

ban is a subset of 9m
ban, and the

elements of ψm
ban can be denoted as

ψm
ban =

{
γki

∣∣ ki < ki+1, i ∈ Z+, ki ∈ {xi} ∪ {yi} ∪ {zi},

γki ∈ 9
m
ban
}

(9)

To decrease the calculation complexity, ψm
ban can also

be optimized by using the heuristic method that selects

generators γki according to (8d) from i = 1 until (8b) and
(8c) are met.

B. DYNAMIC MAPPING
The dynamic mapping (DM) process consists of the active
mapping (AM) and the passive mapping (PM). The active
mapping includes the actions of bt and ct . The passive map-
ping contains the actions of dt and et .

1) ACTIVE MAPPING
The subsets (ψm

pos and ψm
neg) of sensitive generators are

dynamically formulated based on Pm,tarC from 9m
pos and 9

m
neg

to improve the training efficiency according to (10).

ψm
pos

= {α1, . . . , αk , . . . , αnm,tarpos
|αk ∈ 9

m
pos, n

m,tar
pos = minN ,

s.t.
N∑
k=1

1Pm,posC,αk ≥εc ·
∣∣Pm,tarC −PmC

∣∣,Pm,tarC ≥PmC , k ∈Z
+
}

(10a)

ψm
neg

= {β1, . . . , βk , . . . , βnm,tarneg
|βk ∈ 9

m
neg, n

m,tar
neg = minN ,

s.t.
N∑
k=1

1Pm,negC,βk ≥εc ·
∣∣Pm,tarC −PmC

∣∣ ,Pm,tarC <PmC , k ∈ Z
+
}

(10b)

where εc is the same with (7a) and (7b).
It is worth mentioning that ψm

pos and ψ
m
neg are composed

of the generators with higher sensitivity to the KTS m,
and ψm

ban consists of the generators with lower sensitivity.
In practice, ψm

pos and ψ
m
neg usually contain a small number

of generators and will not include the same generators with
ψm
ban. If ψ

m
pos or ψ

m
neg contains common elements with ψm

ban,
it means the target TP range of the KTS m is too broad and is
not available for the power system.

As shown in (11), the action space is dynamically divided
by ai depending on Pm,tarC . a1 is always set to amin.

ai+1 =



amin
+

i∑
j=1
1Pm,posC,αj

nm,tarpos∑
j=1

1Pm,posC,αj

(
amax
− amin

)
,Pm,tarC

≥ PmC , i = 1, 2, . . . , nm,tarpos

amin
+

i∑
j=1
1Pm,negC,αj

nm,tarneg∑
j=1

1Pm,negC,αj

(
amax
− amin

)
,Pm,tarC

< PmC , i = 1, 2, . . . , nm,tarneg

(11)
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If Pm,tarC ≥ PmC , the active mapping result is calculated
according to (12a), or else (12b).

PtG,αi

=



PG,αi +
at − ai

ai+1 − ai
(
Pmax
G,αi − PG,αi

)
,Pmax

C,αi ≥ Pmin
C,αi ,

at ∈
[
ai, ai+1

)
PG,αi +

at − ai

ai+1 − ai

(
Pmin
G,αi − PG,αi

)
,Pmax

C,αi < Pmin
C,αi ,

at ∈
[
ai, ai+1

)
(12a)

PtG,βi

=



PG,βi +
at − ai

ai+1 − ai

(
Pmin
G,βi − PG,βi

)
,Pmax

C,βi ≥ Pmin
C,βi ,

at ∈
[
ai, ai+1

)
PG,βi +

at − ai

ai+1 − ai

(
Pmax
G,βi − PG,βi

)
,Pmax

C,βi < Pmin
C,βi ,

at ∈
[
ai, ai+1

)
(12b)

where αi ∈ ψm
pos (βi ∈ ψ

m
neg) represents the selected gener-

ator; PtG,αi (P
t
G,βi ) denotes the output power of generator αi

(βi) under action at .

2) PASSIVE MAPPING
The passive mapping compensates for the power fluctua-
tion and helps alleviate the problem of non-convergence and
unreasonable operation state. At time step t+1, if the output
power of generator i is larger than time step t , the passive
mapping is executed according to (13a), or else (13b).

Pt+1G,i − PtG,i = PtG,γkn+1
− Pt+1G,γkn+1

+

n∑
j=1

(PtG,γkj
− Pmin

G,γkj
),

Pt+1G,i ≥ PtG,i,P
t+1
G,γkn+1

≤ PtG,γkn+1
, γkj ∈ ψ

m
ban (13a)

PtG,i − Pt+1G,i = Pt+1G,γkn+1
− PtG,γkn+1

+

n∑
j=1

(Pmax
G,γkj
− PtG,γkj

),

Pt+1G,i < PtG,i,P
t+1
G,γkn+1

≥ PtG,γkn+1
, γkj ∈ ψ

m
ban (13b)

where i denotes the active mapping generator; PtG,i is the
output power of generator i at time step t. In (13a), to balance
the increasing injected power, the first n generators in ψm

ban
are set to their minimum power and the (n+1)th generator
γn+1 is set to Pt+1G,γn+1

. Analogously, in (13b), to balance the
decreasing injected power, the first n generators in ψm

ban are
set to their maximum power and the (n+1)th generator γn+1
is set to Pt+1G,γn+1

. Except for the first n+1 generators, all the

others in ψm
ban remain unchanged.

Fig. 2 shows the whole process of the mapping strat-
egy. The data preparation is executed only once before the
TP adjustment. However, the dynamic mapping is repeti-
tively activated based on at and Pm,tarC , in which the passive
mapping depends on the result from the active mapping.

FIGURE 2. Logic block diagram of the mapping strategy.

The efficiency improvement of the mapping strategy is dis-
cussed in Case Study I.

IV. THE PROPOSED DRL FOR MDP
To solve the formulated MDP, a model-free method is pro-
posed based on an actor-critic structure [28]. The critic
function is iteratively updated based on (14), and the actor
function is updated under the critic function [28].

Qµ (st , at) = Eµ
[
r (st , at)+ γQµ (st+1, µ (st+1))

]
(14)

Since the action space is continuous, and the power flow
features are high-dimensional, The deep neural networks
(DNNs) are utilized to approximate the actor and critic
functions. The overall diagram is presented in Fig. 3. The
input information is the system state st and fed into the
actor network for the action at generation. Experience tuples
(st , at , rt , st+1) are stored in the experience replay buffer.
Based on these tuples, the actor, the critic, and the target
networks are updated in a sequence. Finally, the optimal
adjustment strategy is given by the trained actor network.

A. THE DEEP NEURAL NETWORK ARCHITECTURE
1)Actor network: The actor network µ ( st | θµ) is a multi-
layer fully-connected neural network which can extract the
discriminative features from the input system state vector st
and output action at . The input layer is fully connected to the
first hidden layer with V1 units,

v1 = g
(
W0 · sTt + b0

)
, (15a)

where W0 is the matrix of weights; T represents the transpo-
sition operation; b0 is the biases; g denotes the rectified linear
activation function [33],

g(x) = min (max (x, 0) , 6) (15b)

Similarly, the hidden layers are also fully-connected with
each other based on (15c),

vi+1 = g (Wi · vi + bi) , i = 1, 2, . . . , n− 1, (15c)

where Wi and bi are the weights and biases of the ith hidden
layer; n is the number of the hidden layers, and vi is the value
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FIGURE 3. The overall diagram of the proposed method for TP adjustment. The actor network generates adjustment actions. The critic network estimates
the quality of the current actor network. The target actor network and the target critic network improve training stability. DM represents the dynamic
mapping. AM denotes the active mapping. PM is the passive mapping. The 39-bus system is taken as an example. Gen. 3 and Gen. 4 are for the active
mapping. Gen. 1, Gen. 6, and Gen. 9 are for the passive mapping.

of the ith hidden units. The output of the actor network is
action at .

at = f (Wn · vn + bn) (15d)

where Wn is the weights, bn is the biases, and f is the hyper-
bolic tangent function. Therefore, action at can be bounded
within a finite range easily.
2)Critic network: The critic network denoted by

Qµ
(
st , at | θQ

)
is also a multi-layer fully-connected neural

network. Its input information is a combination of st and at ,
and the value of its first hidden unit is

v1 = g
(
W0 · (st , at)T + b0

)
. (16a)

The hidden layers of the critic network share the same
structure with the actor network.

As mentioned above, the critic network is to approximate
the expected reward of the current adjustment strategy, and its
output value cannot be bounded. So its output layer is fully
connected to the last hidden layer with no activation function,
as shown in (16b).

Qµ (st , at) = Wn · vn + bn (16b)

3)Target networks: Since the critic network being updated
is also used to estimate the expected reward, the updating
process is prone to divergence. Similar to the target network
in [16], we create the target actor and critic networks. They
are copies of the actor and critic networks and denoted by
µ′
(
st | θµ

′
)
and Q′

(
st , at | θQ

′
)
respectively.

Instead of directly copying the weights, the target networks
are updated by tracking the learned networks θ ′ ← τθ +

(1− τ) θ ′ with τ � 1. In this way, the target networks
change slowly, and the stability of updating is improved
significantly [17].

B. TRAINING OF THE DEEP NEURAL NETWORKS
Algorithm 1 shows how to train the proposed DNNs to adjust
the tie-line power of the KTSs automatically. The parameters
of the actor network, the critic network, the target actor
network, and the target critic network are denoted as θµ, θQ,
θµ
′

, and θQ
′

respectively. The inputs of Algorithm 1 contain
the information of the target KTSs and the target TP ranges
(Pm,max
C and Pm,min

C ). Its outputs are the parameters of the four
proposed DNNs.

In line 1 of Algorithm 1, the data for training is prepared
according to Section III-A. Then, in line 2 and 3, the four
proposed DNNs are initialized. In line 4, an empty experi-
ence replay buffer is initialized as H with its size being N .
When the replay buffer is full, the oldest samples will be
discarded [17]. Besides, P1 is set to 1 as the initial priority
for the first transition tuple [36]. In line 5, a correlated noise
is initialized with the Ornstein-Uhlenbeck process [34] for
the exploration policy [35]. After that, the parameters θµ,
θQ, θµ

′

, and θQ
′

are updated in turns until the proposed test
is passed, which is to verify whether the trained DNNs can
achieve all the given objectives within a preset accuracy (the
outer loop starting from line 6). Each episode begins at time
step 1 and ends at time step Tmax or somewhere between
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1 and Tmax when the reward rt equals rmax. At the beginning
of each episode, as shown in line 7, the initial system state
st is obtained (containing a random KTS sequence number
and a random Pm,tarC ). Then, in the inner loop starting from
line 8, the TP adjustment strategy is scheduled step by step.
At each time step, the action at = µ ( st | θµ) is selected based
on the ε-greedy search method [28], i.e., noise N (Ornstein-
Uhlenbeck process) is added to action at with probability
ε whose initial value is set to 1. Then, the probability ε is
updated by multiplying a coefficient σ (line 9). It is worth
mentioning that a′t = at + N should also be bounded
within [amin, amax], and the minimum value of ε is set to 0.1.
In line 10, action at is executed according to the dynamic
mapping, and then the reward rt and the new state st+1 is
obtained.

After that, the transition (st , at , rt , st+1) is stored in the
replay bufferH and labeled with the current maximal priority
pt (line 11)

pt = max (pi) , pi ∈ H, (17)

where pi > 0 represents the priority of transition i in H, and
its initial value P1 is set to 1 [36]. Then, a minibatch of K
transitions are sampled fromH based on probability (line 12).
Readers can refer to [36] for more details about the sampling
method and the calculation of ωj and δj.
After the four DNNs are updated (line 13 to 15) [17],

the current reward r(st , at ) is checked, and the current episode
will terminate when rt = rmax. Finally, the proposed test
for the discrete TP values of each KTS is executed every M
episodes (line 20). In this paper, we assume the testing TP
value increases linearly from Pm,min

C to Pm,max
C with a fixed

step size 1M. The parameters θµ, θQ, θµ
′

, and θQ
′

will be
outputted when the test is passed.

It is worth noting that using the experience replay buffer
can not only contribute to better data efficiency by sampling
the transitions multiple times but also improve the stability
of the training process by breaking the temporal correlation
between the transitions [16]. Moreover, the priority-sampling
process (line 12) can improve the efficiency of DNN updating
as well.

C. EXECUTING TIE-LINE POWER ADJUSTMENT
The TP adjustment process is presented in Algorithm 2. The
system state st contains the information of the power flow
state and the adjustment target. Its output is the final power
flow state.

D. PERFORMANCE IMPROVEMENT TECHNIQUES
1) STEPWISE TRAINING
As in Algorithm 1, all target TPs can be trained together as
all information included in the input. However, as the number
of the KTSs or the range of the TP is enormous in a large-
scale power system, the efficiency of training will decline
dramatically due to the limit fitting ability of a specific DNN.
Or even worse, the proposed DNNs are not able to learn the
whole adjustment strategy.

Algorithm 1 Training of the Deep Neural Networks

Input: Target KTS, target TP range Pm,max
C and Pm,min

C .
Output: DNNs’ parameters θµ, θQ, θµ

′

, θQ
′

1: Data preparation.
2: Randomly initialize the actor network θµ and the

critic network θQ.
3: Initialize the target actor and critic networks with

weights θµ
′

← θµ and θQ
′

← θQ.
4: Initialize the experience replay bufferH = ∅, p1 = 1.
5: Initialize an Ornstein-Uhlenbeck process.
6: while fail to pass the proposed test do
7: Obtain the initial system state.
8: fort = 1:Tmax do
9: Select action at based on ε-greedy search

and update ε.
10: Execute at based on the dynamic mapping,

observe reward r (st , at) and process to
the new state st+1.

11: Store transition (st , at , rt , st+1) in H with
maximal priority pt = max (pi) , pi ∈ H.

12: Sample a minibatch of K transitions from
H based on priorities and update the
priority-sampling parameters.

13: Update the critic network by minimizing the
accumulative loss L

(
θQ
)
=
∑K

j=1 δj
2
· ωj/K

14: Update the actor network using the sampled
policy gradient:

∇θµJ ≈
1
K

K∑
j=1

∇µ(sj)Q(sj, µ(sj)|θ
Q)

·∇θµµ(sj|θµ)

15: Update weights of the two target networks.

θQ
′

← τθQ + (1− τ )θQ
′

θµ
′

← τθµ + (1− τ )θµ
′

16: if r (st , at) = rmax
17: break
18: end if
19: end for
20: Execute the proposed test every M episodes.
21: end while
22: Return:θµ, θQ, θµ

′

, θQ
′

.

To avoid the abovementioned situation of DNN train-
ing or redesign of more complex DNNs, ‘‘stepwise training’’
is proposed as an improved technique for large-scale power
systems by dividing the whole training targets into several
parts. That is dividing the target TP range of each KTS into
smaller subintervals and then applyAlgorithm 1, respectively.

The proposed DNNs for each subinterval share the same
structures, and their weights are different due to independent
training. Nonetheless, the size of each subinterval also affects
the training substantially. From any initial power flow state,
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Algorithm 2 Execute Tie-Line Power Adjustment
Input: Initial power flow state, target KTS sequence

number, and the target tie-line power Pm,tarC .
Output: The achieved power flow state.
1: Load the actor network’s parameters θµ

(trained by Algorithm 1).
2: for Time step t = 1:Tmax do
3: Obtain the system state st .
4: Feed state st into the actor network and calculate the

adjustment action at = µ(st |θµ ).
5: Execute the dynamic mapping based on at ..
6: if the target TP Pm,tarC is achieved
7: break
8: end if
9: end for
10: Return: the adjusted power flow state.

the subintervals should be exactly covered by adjusting a
certain number Rg of generators in ψm

pos or ψ
m
neg, where Rg

is a positive integer.

2) PRIORITIZED TARGET REPLAY
Inspired by the idea of [36], the ‘‘prioritized target replay’’ is
proposed to improve training efficiency.

As shown in Algorithm 1, the target KTS and the target TP
Pm,tarC are selected randomly. Since the target range of each
KTS is fixed, it will help improve the training efficiency by
replaying the tie-line power that fails to pass the proposed test
with an appropriate probability ε′.

The proposed technique defines the tie-line power failed
to be achieved as the prioritized target, which can be dynam-
ically obtained every M episodes from the proposed test.
Besides, to improve the actor network’s generalization ability,
random noise should be added to the prioritized target.

Pm,tar,pC = Pm,tar,tC + λ (18)

In (18), Pm,tar,tC is the prioritized target. λ denotes the noise
in mean distribution within [λmin, λmax]. P

m,tar,p
C represents

the noisy prioritized target to be replayed.

V. EXPERIMENTAL RESULTS
In this section, the proposed method is demonstrated on the
IEEE 39-bus system [37] and an actual power grid in a certain
area of China. The general simulation setups are presented in
Section V-A. Section V-B shows four case studies. Finally,
the performance of the ‘‘prioritized target replay’’ is analyzed
in Section V-C.

A. GENERAL EXPERIMENTAL SETUP
Two key transmission sections (KTSs) are first tested in
the 39-bus system. As shown in Fig. 5, the KTS 1 (con-
sisting of tie-lines (16,19), (16,21), and (16,24)) tie-line
power (TP) range is set to [200MW, 1400MW]. Similarly,
the KTS 2 (consisting of tie-line (3,4)) TP range is set to

[−200MW, 400MW]. All the generators’ rated power is set
to 1100MW. Besides, the KTS 1 and 2 initial TPs are 828MW
and 37MW, respectively.

The actual power grid contains 2725 buses, 5 DC lines,
722 generators, and 979 loads. As shown in Fig. 8, the KTS 1
(including five AC lines in area JL) TP range is set to [0MW,
2800MW] and the KTS 2 (including five AC lines in area
LN) TP range is set to [100MW, 2800MW]. The KTS 1 and 2
initial TPs are 1538MW and 1539MW, respectively.

The (target) actor network contains five layers (one input
layer, three hidden layers, and one output layer). The dimen-
sions of each layer are (12, 400, 600, 100, 1) for the 39-bus
system and (322, 400, 600, 100, 1) for the actual 2725-bus
system. Similarly, the (target) critic network also contains
five layers. The dimensions of each layer are (13, 400, 600,
100, 1) for the 39-bus system and (323, 400, 600, 100, 1)
for the actual 2725-bus system. The four DNNs are updated
based on the Adam algorithm [38].

The minibatch K is set to 32 in the 39-bus system and 64 in
the actual 2725-bus system. According to lots of experiments,
though εc may be different for different power systems,
the suitable εc for most situations usually remains between
1.1 and 1.3. In this paper, we set εc to 1.2 for both systems.
Other relevant hyperparameters for both power systems are
set as follows: σ = 0.99999, N = 5000, δ = 10MW,
γ = 0.9, τ = 0.00005, rmax = 100, rmin = −100, amax = 1,
amin = −1, Rg = 1, λmin = −5MW, λmax = 5MW,
1M = 10MW, and M = 100.
The numerical tests are performed on the computer with

one 1080Ti GPU and one i8700K CPU. The code is writ-
ten in Python with TensorFlow (an open source package).
Pandapower [27] is utilized for the power flow calculation.
After the training process, the proposed approach can be
deployed for adjusting the tie-line power of each KTS.

B. EXPERIMENTAL RESULTS
1) CASE STUDY I
In this case study, we evaluate the proposed method on the
39-bus system and discuss the effect of using the dynamic
mapping (DM). The adjustment strategy for the KTS 1 and 2
is trained together.

Firstly, the proposed DNNs are trained with DM applied
for 45,100 episodes. Every 100 episodes a test is performed
to check whether the actor network has been trained well
enough. The solid lines in Fig. 4 show the evolution of the
average cumulative reward (ACR) and the average adjust-
ment error (AAE). The action is selected based on the
ε-greedy search. In the training process, the probability ε
declines from 1.0 to 0.1 gradually. As presented in Fig. 4,
during the first 7,500 episodes, the ACR increases fast, and
the AAE decreases dramatically. Then, from episode 7,500 to
episode 20,000, the ACRfluctuates between 36.78 and 90.46.
After episode 20,000, the ACR converges around 88 with
small oscillations. Finally, in episode 45,100, the ACR con-
verges to 99.99, and the AAE declines to 4MW.
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FIGURE 4. The IEEE 39-bus system training processes without applying
improvement techniques.

FIGURE 5. The KTS 1 and the KTS 2 in the IEEE 39-bus system. The green
arrows show the positive directions.

Then, the proposed DNNs are trained again with DM
removed, and the action space is divided equally for every
adjustable generator. The dot lines in Fig. 4 show that the
training without DM does not achieve better results. After
45,100 episodes, the ACR still remains below zero, and the
AAE is around 230MW. It will be more time consuming to
achieve a satisfying performance.

Comparing the presented plots, it demonstrates that the
proposed method succeeds in learning an adjustment strategy
to maximize the cumulative reward in the training process,
and the dynamic mapping (DM) is of great importance to the
training efficiency.

2) CASE STUDY II
In this case study, the proposed approach is evaluated on
the 39-bus system with the improvement techniques applied.
The probability ε′ of ‘‘prioritized target replay’’ is set to 0.5.
Different from Case Study I, the improved method automat-
ically divides the whole training process into four parts and
trains DNNs independently.

FIGURE 6. Training process on the IEEE 39-bus system with improvement
techniques. (a) and (b) are for the KTS 1; (c) and (d) are for the KTS 2.

a: TRAINING PROCESS
Fig. 6 shows the details of the processes for each training part.
In the first 500 episodes of each training part, the ACR is very
low and flat, and the AAE is very high. Then, after episode
500, the ACR increases, and the AAE decreases rapidly. The
training episodes of each part are 2700, 1100, 1400, and 1100
respectively, and the total episodes equal 6300, which is much
less than Case Study I (45,100). This result demonstrates that
the proposed method works in different subintervals, and the
improvement techniques can improve the training efficiency
significantly.

FIGURE 7. Verifications on the trained DNNs of the 39-bus system.
(a) is for the KTS 1 and (b) is for the KTS 2. The ‘‘Initial point’’ indicates
the initial tie-line power.

b: PERFORMANCE EVALUATION
The trained DNNs are verified on the whole target ranges
for the rightness. Fig. 7 shows the test results, where the
x-axis represents the target TP of each KTS; the y-axis on
the left denotes the achieved TP of each KTS; the y-axis on
the right is the percentage of the generator output power. The
red line denotes the TP achieved from the trained DNNs, and
the green line with circle marks represents Gen. 10, which is
the generator at the slack bus (bus 31).
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FIGURE 8. Simplified wiring diagram of the actual 2725-bus power grid. Both the KTS 1 and the KTS 2 consist of five tie-lines.
The green arrows show the positive directions.

FIGURE 9. Training processes on the actual 2725-bus system with improvement techniques. (a) to (e) are for the KTS 1, and (f) to (l) are for
the KTS 2.

In Fig. 7 (a), as the target TP increases to 1400MW, Gen. 3
is selected, and its output power increases from 508MW
(46.2% rated power) to 1088.16 MW (98.9% rated power).
As the target TP decreases to 200MW, Gen. 4 is selected,
and its output power decreases from 650MW (59.1% rated
power) to 26MW (2.4% rated power). Similarly, in Fig. 7 (b),
as the target TP increases to 400MW, Gen. 9 is selected, and
its output power increases from 250MW (22.7% rated power)
to 989.5MW (90.9% rated power). As the target TP decreases
to -200MW,Gen. 7 is selected, and its output power decreases
from 830MW (75.5% rated power) to 207.5MW (18.9% rated
power).

All the generators selected for each subinterval own the
largest remaining adjustment amount for each specific tar-
get. Besides, the output power of Gen. 10 remains stable
(around 62% rated power) in both Fig. 7 (a) and (b) due

to passive mapping. This result demonstrates that the pro-
posedmethod can continuously and flexibly adjust the tie-line
power.

3) CASE STUDY III
In this case study, the proposed method is evaluated on the
actual 2725-bus system with the improvement techniques
applied. The probability ε′ of ‘‘prioritized target replay’’ is
also set to 0.5. Different from Case Study II, the whole train-
ing process is automatically divided into 12 parts, as shown
in Fig. 9.

a: TRAINING PROCESS
Fig. 9 (a) to (e) are for the KTS 1, and (f) to (l) for the
KTS 2. Similarly, the ACR of each training part remains
very low and flat in around the first 500 episodes. Then, the
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FIGURE 10. Verifications on the trained DNNs of the actual 2725-bus system. (a) is for the KTS 1, and (b) is for the KTS 2. The ‘‘initial point’’
indicates the initial tie-line power.

ACR begins to increase and reach close to 100 quickly, and
the AAE decreases almost to 0 in the end. The number of
the total training episodes is 22,200, which is about half of
Case Study I, even with a larger TP searching range. This
result demonstrates that the proposed method suits the actual
power system.

b: PERFORMANCE EVALUATION
As shown in Fig. 10, the trained DNNs are tested on the
actual 2725-bus system, and the meaning of the coordinate
axes is the same as Fig. 7. The red line denotes the achieved
TP, and the green line represents the slack bus generator
(ZHG1). Table 1 shows supplementary information about the
generators selected by the active mapping.

TABLE 1. Information of the generators selected by active mapping.

In Fig. 10 (a), as the target TP of the KTS 1 increases,
two generators SZ G1 and YBS G3 (denoted by blue lines)
are selected. From the initial tie-line power 1538MW to
2270MW, SZG1 is chosen first, and its output power declines
from its rated value 800MW to 8MW (1% rated power).
From 2270MW to 2800MW, YBS G3 is selected, and its
output power decreases from its rated value 600MW to

24MW (4% rated power). Then, the TP of the KTS 1 reaches
2784MW, and the adjustment error is only 16MW compared
to 2800MW.

Contrastively, as the target TP of the KTS 1 decreases,
three out-service generators SZ G2, JZ G1, and YSH G2 are
selected, as shown in purple lines. As the tie-line power
decreases from 1538MW to 0MW, the three generators are
set in service one by one, and their ultimate power is set to
792MW, 594MW, and 318MW (99%, 99%, and 53% rated
power), respectively. In the end, the final TP reaches 4.3MW,
and the adjustment error is only 4.3MW. During the test
process, the output power of ZH G1 (the slack bus generator)
fluctuates between 354MW and 412MW (59% and 70.2%
rated power) due to the passive mapping. The maximum
adjustment error compared to the target value is 16MW.

Similarly, Fig. 10 (b) shows the test results of the KTS 2.
In the increasing direction, SYS G6, SYS G5, and QTH
G3 are set in service in turns. Then, the TP reaches 2793MW,
and the adjustment error is only 7MW compared to 2800MW.
In the decreasing direction, the output power of HGG3, QTH
G4, YCG1, and QTHG1 are turned down successively. After
that, the achieved TP is 103MW, and the adjustment error
is only 3MW compared to 100MW. The output power of
ZH G1 fluctuates between 303MW and 527MW (50.5% and
87.8% rated power) accordingly.

This case study demonstrates that the proposed method
can adjust the tie-line power of a large-scale power sys-
tem flexibly. Furthermore, the largest adjustment error of
this test is within 16MW, which can meet the engineering
requirement.

4) CASE STUDY IV
In this section, the proposed approach is compared with the
interior point method (IPM) based on which the TP adjust-
ment is formulated as an optimal power flow (OPF) problem.
The standard OPF is inherited from MATPOWER 7.0 [39].
The TPs of the KTSs are set as the extra constraints based
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on DC and AC network model (denoted by IPM-DC and
IPM-AC), respectively.

The model-based method is tested on the KTS 1 of the
39-bus system and the KTS 1 of the actual 2725-bus system.
To simulate the actual situation, a specific group of generators
are selected beforehand for adjustment based on operators’
experience, i.e. six generators (Gen. 1, Gen. 3, Gen. 4, Gen. 6,
Gen. 9, and Gen. 10) for the 39-bus system, and 22 genera-
tors for the actual 2725-bus system. All the other generators
remain unadjusted.

TABLE 2. KTS 1 of the IEEE 39-bus system.

TABLE 3. KTS 2 of the actual 2725-bus system.

The comparison results are shown in Table 2 and 3,
respectively. Notice that the adjustment error of IPM-DC is
larger than the proposed method (DRL), especially in the
actual 2725-bus system. As shown in Table 3, when the
tie-line power is set to 0MW, 800MW, and 2700MW,
the model-based IPM-AC does not converge. Besides, the
model-based method depends on the operators’ experience to
pre-determine a group of candidate generators for adjustment.
In contrast, the proposed method (DRL) can achieve the
TP adjustment with better accuracy and less pre-determined
work.

FIGURE 11. Effects of the ‘‘prioritized target replay.’’ (a) is for the IEEE
39-bus system and (b) is for the actual 2725-bus system.

C. FURTHER EXPERIMENT
In this section, further experiments are presented about the
probability ε′ of ‘‘prioritized target replay.’’ Case Study II
and III are examined with different values of ε′, and each
ε′ is tested five times. Fig. 11 shows the average total

TABLE 4. Information of average training episodes.

training episodes: the black line for the KTS 1, the blue line
for the KTS 2, and the red line for the sum of the average total
training episodes (SATE) of each KTS. Besides, more results
are shown in Table 4. From Fig. 11 and Table 4, it is easy to
conclude that the probability ε′ of ‘‘prioritized target replay’’
can affect the training efficiency significantly, and the more
complex the training task is, the higher the efficiency will be
improved. According to the experimental results, it is better
to set ε′ no less than 0.3.

VI. CONCLUSION
In this paper, a mapping strategy is proposed from the oper-
ators’ perspective to formulate the tie-line power adjust-
ment problem as a Markov Decision Process (MDP) with
unknown transition probability. Then, a model-free method
based on deep reinforcement learning (DRL) is introduced
to determine the optimal adjustment strategy. The presented
method uses an actor-critic structure with the ‘‘stepwise
training’’ and the ‘‘prioritized target replay’’ to decompose
training scale and improve the training efficiency. Experi-
mental results demonstrate that the presented method is capa-
ble of learning and adjusting the KTS tie-line power with
only the target range information. Furthermore, the com-
parison to a traditional model-based approach demonstrates
the higher accuracy and better adaptability of the proposed
method.

In the future plan, the mapping strategy will be explored
further together with the reward function design, the reactive
power constraints, and more limitations of the adjustable
generators to refine the TP adjustment process.
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