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ABSTRACT This paper presents a multi-objective optimization model of a wind turbine blade based on
blade’s parameterized finite element model, where annual energy production and blademass are the objective
functions, and aerodynamic and structural parameters are the design variables. In this study, the maximum
axial thrust, strain, displacement, and first-order natural frequency of blade are selected as constraints.
A novel competitive-cooperative game method is proposed to obtain the optimal preference solution. In this
method, a new exploration method of player’s strategy space named ‘correlation analysis under fuzzy
k-means clustering’ is proposed, and the payoff functions are constructed according to competitive and
cooperative behaviors. Two optimization schemes with preference objectives are obtained and all goals
showed clear improvements over the initial solutions, and this method reveals the relationship between blade
shape and desired performance. More deeply, dynamic sensitivities of various design variables to objective
functions are obtained for different blade shapes.

INDEX TERMS Competitive-cooperative game, parameterized finite element model of wind turbine blade,
aerodynamic and structural design, dynamic sensitivity.

I. INTRODUCTION
In multi-objective optimization issues, each objective
restricts and influences each other. There exist two typi-
cal methods for obtaining the final optimization solution in
multi-objective optimization design of a wind turbine blade.
One method is to obtain a large number of non-inferior solu-
tions by using the related method, such as nondominated sort-
ing genetic algorithm II [1], gradient-based multi-objective
evolution algorithm [2], or particle swarm optimization [3]
and then a final solution can be chosen by the designer.
These methods are widely applied and non-inferior solutions
provide designers with a comprehensive understanding for
the design problem. However, these methods may be time-
consuming when a widely distributed non-inferior solution
set is required, especially for multi-objective optimization
problems with complex constraints. The other main approach
uses conventional multi-objective methods, such as hierar-
chical optimization methods or weighted objectives method
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to convert multi-objective problems into single-objective
problems [4], [5]. These methods can simplify the path to
a solution, whereas, an inappropriate evaluation function will
get a non-global optimal solution.

Game theory can be used to analyze and attain optimal
solutions between individuals with conflicting relationships.
From a methodology perspective, the approach effectively
reconciles conflicts and contradictions and is similar to multi-
objective optimization problems in the field of engineer-
ing [6], [7]. The basic idea involves building a game-theoretic
model in which all game players eventually generate an
equilibrium solution through mutual negotiation and com-
promise. Game theory belongs to the category of bionic and
heuristic algorithms that are derived from simulations of
biological phenomena. By analyzing [6]–[8], the following
relationships between game models and biological systems
can be established: (1) One game player corresponds to one
objective function; (2) Profits of game players correspond to
the living space of biological populations; (3) Multiple strat-
egy subspaces of game players correspond to different genes
of biological populations; (4) Behaviors of game players

155748 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-1296-1349


R. Meng, N.-G. Xie: Competitive-Cooperative Game Method for Multi-Objective Optimization Design

correspond to behaviors of biological populations; (5) Game
modes correspond to the relational models of biological pop-
ulations; (6) The game process is based on the survival of the
fittest or natural selection process; (7) The final convergent
solution of the game corresponds to the stable biological
population pattern. Based on the above seven relationships
between game theory and biological systems, the technical
route of a multi-objective game method can be established as
follows [8]: (a) m design objectives are defined as m players
and set of design variables X = {x1, x2,· · · ,xn} are divided
intom strategy spaces, {s1, s2,· · · ,sm}, owned by each player;
(b) A specific game pattern is then constructed by assigning
different behaviors to each player, and game pattern is an
important factor, to some degree, in determining precision
of the game solution and profits of each game player; (c) In
each game round, each player seeks its own best strategy in its
multiple feasible strategies to make the best payoff functions,
where payoff functions are a mapping of objective functions;
(d) The final game equilibrium solution can be obtained after
several game iterations.

Multi-objective optimization methods based on game the-
ory are suitable for solving many complex engineering prob-
lems. Important characteristics of this approach include:
(1) The ability to transform complex high-dimensional
optimization problems into several relatively simple low-
dimensional optimization problems, thereby reducing the
difficulty of solving the problem; (2) Compared to tradi-
tional multi-objective optimization methods, those based on
game theory reveal the sensitivity of sub-objectives to design
variables by dividing them into strategy subspaces owned
by each player, which is helpful for engineers to optimize
the design. A number of researchers have applied a game-
theoretic approach to solving multi-objective design prob-
lems. For instance, Désidéri [9] implemented an aircraft
wing shape optimization using Nash, Stackelberg, and coop-
eration games. Also, a stochastic Markov game was built
to seek for correlated equilibrium between multi-objective
workflow [10]. Feng et al. [11] proposed a Bayesian game-
theoretic method for optimizing the allocation of limited
defensive resources. A game-based localized multi-objective
topology control schemewas presented to achieves a trade-off
among energy consumption, link delay and link lifetime [12].
In addition, Jiang and Liu built a multi-objective Stackel-
berg game model for water supply networks with incomplete
data [13]. Multi-objective optimization based on cooperative
game theory was also used by Jing et al. [14] to design
a neighborhood-level urban energy network. Nwulu and
Xia [15] applied game theory to multi-objective optimization
for dynamic economic emission dispatch. Besides, a dynamic
game theory-based two-layer scheduling method was devel-
oped to achieve multi-objective flexible job scheduling [16].
Xiao et al. [17] demonstrated a new approach based on
gene expression programming and Nash equilibrium for the
multi-objective optimization of thin-walled pressure vessels
and the hull form parameter design of a small-water-plane-
area twin hull. Xie et al. [18] proposed a method based on

evolutionary game theory for vehicle suspension design.
Through the related analysis, it can be seen that (a) player’s
behavior mode mainly includes competition type and coop-
eration type; and (b) the game optimization solution has well
calculation accuracy; (c) the cooperative behavior of some
players is beneficial to the acquisition of collective interests.

Herein, a novel competitive-cooperative game theoretic
method is proposed. As a proof of principle, an aerody-
namic and structural model of a horizontal axis wind tur-
bine (HAWT) blade is optimized. The rest of this paper is
organized as follows: In Section II, competitive-cooperative
game method is presented; Section III establishes a param-
eterized finite element model of the HAWT blade; In
Section IV, a multi-objective optimization model of the
HAWT blade is introduced; Section V presents the results of
a real-world HAWT blade along with a detailed discussion;
Finally, conclusions are presented in Section VI.

II. COMPETITIVE-COOPERATIVE GAME METHOD
The proposed method comprises two key techniques, i.e.,
establishment of strategy space exploration method and con-
struction of game pattern. They are explained as follows.

(1) Design variables X = {x1, x2, · · · , xn} are divided into
strategy spaces S = {S1, S2, · · · , Sm} owned by m players
based on the exploration method of the strategy space, where
S1 = {xi, · · · , xj}, · · · , Sm = {xk , · · · , xl} and S1 ∪ · · ·
∪Sm = X ; Sa∩Sb = 0 (a, b = 1, · · ·m; a 6= b). In this study,
compared to the static strategy space [18], its advantage lies
in that strategy spaces can be adaptively adjusted based on
results of the previous iteration.

(2) A competitive-cooperative game pattern is constructed
by assigning competitive behavior to one player, whereas
cooperative behavior is assigned to other players, which
can reflect the preference of the designer. Namely, if the
designer prefers one objective function, competitive behav-
ior is assigned to this objective function, whereas coop-
erative behavior is assigned to all the other objective
functions.

A. ESTABLISHMENT OF STRATEGY SPACE
EXPLORATION METHOD
Arguably, the first critical step in multi-objective game theo-
retic methods is decomposing design variables into strategy
spaces owned by each player. One important contribution of
this study is that a novel strategy space exploration method,
called ‘correlation analysis under fuzzy k-means clustering’,
is proposed based on fuzzy theory and data mining. This
method takes the fuzzy membership degree of design vari-
ables to the objective functions into account, so decompo-
sition results of strategy spaces is better than k clustering
method [19]. Its calculation steps are as follows:

(1) For a given set of design variables X = {x1, x2, · · · , xn}
and for any design variable xj, the effect of xj on fi objective
can be calculated as (1), as shown at the bottom of the next
page, where 1xj is the step size of xj.
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Normalization produces an impact index1(j,i), defined as

1(j, i) =
ζ (j, i)
n∑
l=1
ζ (l, i)

(j = 1, 2, · · ·, n; i = 1, 2, · · ·,m) (2)

A higher impact index indicates the design variable is more
sensitive to this objective function.

(2) Let the classified sample point set be 1 =

{11,12,1j, · · ·,1n}. Here, 1j = {1(j, 1),1(j, 2), · · ·,
1(j,m)} and 1j is the jth impact index set of this design
variable on m objective functions.

(3) Since the set of design variables is divided into m
subsets owned by each player, the number of clusters is
equal to m. Coordinates of the m cluster centers, marked as
1k
z = {1

k
z1, · · ·,1

k
zm}(k = 1, · · ·,m) , are far away from each

other in order to ensure the satisfaction of clustering, where
1k
zi ∈ [0, 1](i = 1, 2, · · ·,m; k = 1, 2, · · ·,m).
(4) The Euclidean distance between the kth cluster center

and the jth classified sample point is defined as d(k , j). The
degree of membership between the jth sample point and the
kth cluster center s(k , j) can be obtained as

s(k, j) =
1

m∑
i=1

(
d(k,j)
d(i,j)

) 2
q−1

(k = 1, · · ·,m; j = 1, · · ·, n) (3)

where q is the fuzzy weighting coefficient.
(5) The new clustering center is calculated by

1k
z =

n∑
j=1

s(k, j)q1j

n∑
j=1

s(k, j)q
(k = 1, · · ·,m; j = 1, · · ·, n) (4)

(6) The value function J is calculated as

J=
m∑
k=1

n∑
j=1

s(k, j)qd(k, j)2 (k = 1, · · ·,m; j = 1, · · ·, n) (5)

If the change from the previous value function is less
than a certain threshold δ, the algorithm returns to Step (7).
Otherwise, go back to Step (4).

(7) Coordinates of the m cluster centers are organized into
an m× m matrix, i.e.,

9 =


11
z1 11

z2 · · · 11
zm

12
z1 12

z2 · · · 12
zm

· · · · · · · · · · · ·

1m
z1 1m

z2 · · · 1m
zm


Design variable subsets in each cluster can be obtained based
on the principle of maximum degree of membership. Here,
let the subset of design variables in the kth cluster be γk .

(8) Find the largest value of 9 matrix, marked as 1k
zi,

which effectively means the kth cluster has the strongest
correlation with the ith design objective. Therefore, the design
variable subset in γk forms the strategy space Si owned by the
ith design objective.
(9) Delete the kth row and ith column of9 matrix where the

largest element1k
zi is located, and form a new (m−1)×(m−1)

matrix to replace9. Subsequently, loop back to Step (8). The
loop termination condition is reachedwhen all strategy spaces
are confirmed.

In addition, a supplementary explanation to this method
is made as follows: if a design variable only affects one
objective function, marked as fi, and has no effect on all other
functions, it can be decomposed directly into strategy space
of fi in advance. Then, the remaining design variables can
be decomposed into the strategy space using the proposed
method, which can improve the efficiency of dividing the
strategy space.

B. CONSTRUCTION OF COMPETITIVE-COOPERATIVE
GAME PATTERN
Due to the reason that competitive and cooperative behav-
ior is the most basic behavior mode in biological systems,
they are applied to construct the payoff functions. Compet-
itive behavior is motivated by self-interest and its payoff
function is

ui =
fi
f̄i

(i = 1, 2, · · ·,m) (6)

where f̄i is the initial value of objective function i. In Eq. (6),
payoff function of competitive behavior only depends on the
object function value of self-interest, and does not take the
values of other object functions into account. In contrast,
cooperative behavior is collectivistic and its payoff function
is

ui =
fi
5f̄i
+

m∑
j=1(j6=i)

4fj
5(m− 1)f̄j

(i = 1, 2, · · ·,m) (7)

In Eq. (7), payoff function of cooperative behavior not only
depends on the object function value of self-interest, but
also takes the values of other object functions into account.
Herein, the ratio of selfish factor to altruistic factor is 0.25.
In this study, a competitive-cooperative game pattern is con-
structed, where one player is endowed competitive behavior
and its payoff function is constructed based on Eq. (6) and
other objectives are endowed with cooperative behavior, and
their payoff functions are constructed based on Eq. (7). This
competitive-cooperative game pattern can not only guarantee
collective benefit to all players, but also gives priority to one
player who exhibits competitive behavior.

ζ (j, i) =

2∑
l=1

∣∣fi(x1, · · ·, xj−1, xj + (l − 1)1xj, xj+1, · · ·xn)− fi(x1, · · ·, xj−1, xj + (l − 2)1xj, xj+1, · · ·xn)
∣∣

21xj
(1)
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FIGURE 1. Flowchart of the competitive-cooperative game method.

C. SOLUTION STEPS OF COMPETITIVE-COOPERATIVE
GAME METHOD
Flowchart of the competitive-cooperative game method is
shown in Fig.1.

FIGURE 2. Eight single-unit reference airfoils.

III. ESTABLISHMENT OF PARAMETERIZED FINITE
ELEMENT MODEL OF A HAWT BLADE
The establishment of a parametric finite element model of
the HAWT blade is a prerequisite for the multi-objective
aerodynamic and structural optimization of the blade, and it
includes five steps as follows.

(1) Set unit reference airfoils and their locations. Analyzing
a 1.5-MWwind turbine blade [20], eight single-unit reference
airfoils were selected, as shown in Fig.2, where r is the radius
at the airfoil section.

(2) Construct all other unit airfoils based on the above
eight single-unit reference airfoils shown in Fig. 2. From
r = 0–1 m, it was unit circular section. Other unit airfoils
were located every 0.5 m along the blade and were derived
by spline interpolation based on two adjacent unit reference
airfoils, as shown in Eq. (8).

(xD, yD) = (xi,
Di − D

Di − Di+1
yi+1 +

D− Di+1
Di − Di+1

yi),

(i = 1, 2, · · ·, 7) (8)

where D is the relative thickness of the airfoil; Di is the
relative thickness of the unit reference airfoils; (xD, yD) refers
to the coordinate value of an airfoil with relative thickness
D; and (xi, yi) is the coordinate value of a unit reference
airfoil.

(3) Obtain the actual aerodynamic airfoils by making three
transformations to unit airfoils, including scaling, translation,
and rotation, as shown in Fig. 3. Specific values of three
transformations were determined by the actual chord length,
aerodynamic center, and twist angle of the airfoil. Herein,
the aerodynamic center was fixed in advance, as shown
in Fig. 4. Chord length and twist angle of the seven refer-
ence airfoil sections from r = 7– 36.5 m were taken as the
parameterized design variables. Chord lengths are marked as
xi(i = 1, · · · , 7) and twist angles are marked as xi(i = 8,
· · · ,14). The chord length and twist angle of other air-
foils were calculated by cubic spline interpolation based on
xi(i = 1, · · · , 7) and xi (i = 8, · · · ,14). Finally,
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FIGURE 3. Three transformations of the unit airfoil.

FIGURE 4. Aerodynamic center distribution of blade.

FIGURE 5. Three-dimensional aerodynamic airfoils, including xi
(i = 1, · · · , 14).

the actual three-dimensional aerodynamic airfoils, including
xi(i = 1, · · · , 14), are shown in Fig. 5, where Z has the same
meaning as r.

(4) Set structural cross-section and laminate design. Hol-
low thin-walled composite structures [20] were used in this
study and its cross-section is presented in Fig. 6 [22]. The
spar cap is made up of 0◦ unidirectional glass fiber reinforced
plastic (GFRP). The core material contains Polyvinyl chlo-
ride (PVC) and balsa wood. The trailing and leading edge

FIGURE 6. Structural cross-section of a blade, including xi (i = 26, 27).

FIGURE 7. Laying setting of the spar cap, including xi (i = 15, · · · , 25).

are made up of three-directional GFRP (0◦, ±45◦) as well
as core material. Shear webs are made up of bidirectional
GFRP (±45◦) and PVC. Because the structural performance
of the blade is considerably affected by the central areas of
the spar cap. Therefore, areas of the spar cap from r = 4.4–
25.3 m were selected for optimization. Herein, 26 control
points, marked as Pj (j = 1, · · · , 26), were used to effectively
simplify the laminate design in this region. Specific layering
settings are presented in Fig. 7, where xi(i = 15, · · · , 21)
is a positive integer referring to the number of layers and
xi(i = 22, · · · , 25) is the location of the layer. Taking control
point 1 as an example, the specific settings were as follows:
the location of layers was r= 4.4 m and the number of layers
was equal to x15. In addition, the location of the shear web and
width of the spar cap can affect the structural performance
of the blade significantly, thus the location of the shear web
was marked as x26 (Fig. 6) and the width of the spar cap was
marked as x27(Fig. 6).

(5) Construct the parameterized finite element model of a
HAWT blade. To create the finite element model of the blade,
SHELL91 and SHELL99 elements were adopted in ANSYS
(ANSYS Inc) [20], [22]. The SHELL91 and SHELL99 ele-
ment was used to simulate the sandwich structures and non-
sandwich structures, respectively. The parameterized finite
element model can be implemented in ANSYS Parameter-
ized Design Language (APDL) based on the parameters
xi(i = 1, 2, · · · , 27) defined in the previous four steps. In addi-
tion, the blade was treated as a cantilever beam. The param-
eterized finite element model of the HAWT blade is shown
in Fig. 8.
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FIGURE 8. Parameterized finite element model of a HAWT blade.

IV. MULTI-OBJECTIVE OPTIMIZATION DESIGN MODEL
OF A HAWT BLADE
A. DESIGN VARIABLES AND OBJECTIVE FUNCTIONS
The design variables were obtained in Section III as
xi(i = 1, 2, · · · , 27). There exist several different design
intents and objective function, such as annual energy pro-
duction (AEP) [21]–[24], rotor thrust or torque [25], power
output and vibration of drive train and tower [26], blade
mass [3], [27], [28], cost of energy [29]–[31], and cost of
composite materials [32]. Herein, according to Step (5) in
Section C of II, smaller value of payoff function represents
a better design scheme, therefore minus AEP instead of AEP
was used as the aerodynamic objective function, and blade
mass was applied as the structural objective functions [22].

(1) Aerodynamic objective function
The negative number of AEP is defined as follows.

f1(X ) = −AEP

= −

N−1∑
i=1

1
2
[P(vi+1)+ P(vi)]

×8(vi < U∞ < vi+1)× 8760

→ min (9)

where N is the number of discrete wind speeds. According
to the Weibull wind distribution, the probability of a wind
speed ranging from vi to vi+1 can be calculated by 8(vi <
U∞ < vi+1) = exp[-( viA )

k ]-exp[-( vi+1A )k ] where k and A
are the shape and scale parameter of the wind, respectively,
and P is the output power. Forces acting on a section of the
wind turbine blade [33] are shown in Fig. 9. The improved
blade element momentum (BEM) [34] can be used to solve
P, P = ω ×

∫ R
0 dM where R is radius of the wind wheel and

dM refers to tangential torque of airfoil section. The steps for
calculating dM are as follows:

1) Initialize a and a’. Here, set a = a′ = 0.
2) Compute ϕ = arctan (1−a)U∞

(1+a′)ωr .
3) Compute α = ϕ − (θ0 + θt ).
4) Compute Cn = Cl cosϕ + Cd sinϕ;Ct = Cl sinϕ −

Cd cosϕ, where Cl is the lift coefficient and Cd is the drag
coefficient.

5) Recalculate a′ = 1
8πrχ sinϕ cosϕ

cBCt
−1

, where χ is the Prandtl

correction factor [34] and B is the number of blades.

FIGURE 9. Forces acting on a section of the wind turbine blade.

6) Recalculate a, based on Eq. (10) [34]:

a =


1

8πrχ sin2 ϕ
cBCn

+ 1
, a ≤ ac

1
2
[2+ K (1− 2ac)

−
√
[K (1− 2ac)+ 2]2 + 4(Ka2c − 1)]

, a > ac

(10)

where ac is threshold value of axial induction factor, and
K = 8πrχ sin2 ϕ

cBCn
.

7) If the changes in a and a′ are greater than a cer-
tain allowable deviation, return to Step 2); Otherwise, go
to Step 8).

8) ComputeW =
√
U2
∞(1− a)2 + ω2r2(1+ a′)2.

9) Compute dM =
1
2BρaW

2c(Cl sinϕ − Cd cosϕ)rdr
where ρa is air density.

(2) Structural objective function
A lower blade mass is beneficial for improving the

blade structure while complying with the design constraints.
Herein, blade mass was employed as the structural objective
function.

f2(X ) =
∑
k

ρk × Vk → min (11)

where ρk and Vk refers to the density and volume of the kth
material.

B. DESIGN CONSTRAINTS
Necessary constraints need to be imposed on the blade
design to ensure the blade function. Constraints can be
geometric, aerodynamic, or physical. Geometric constraints
mainly include ground clearance constraints [35] and dis-
placement and tip deflection constraints [36], [37]; Aerody-
namic constraints mostly refer to shell and airfoil thickness
demands [38]; Physical constraints mainly include linear
inequality bound constraint [3], [29], [31], stress or strain
constraints [3], [24], [27], fatigue failure constraint [32],
thrust constrain of blade root [39] and natural frequency
constraint [3], [27], [30].

In this study, the maximum axial thrust of blade root (Fmax)
was defined as the thrust constraint. The maximum strain
(εmax), maximum displacement of Y direction (dmax), and
first-order natural frequency (fst ) of the blade were defined
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TABLE 1. Performance parameters of the composite material.

TABLE 2. Upper and lower limits of design variables.

FIGURE 10. Wind speed probability distribution.

as the strength, stiffness, and stability constraints [22],
respectively. 

Fmax ≤ [F]
εmax ≤ [ε]
dmax ≤ [d]
|fst − 3frot | ≥ ∇

(12)

where [F] refers to the allowable axial thrust of blade root, [ε]
is the allowable strain, [d] is the allowable displacement of Y
direction, frot is the rotation frequency of the wind wheel, and
∇ is the tolerance of the first-order natural frequency. In addi-
tion, all design variables must satisfy upper and lower limits.

V. EXAMPLE BASED ON A REAL-WORLD HAWT BLADE
A. CALCULATION STATEMENT
Basic parameters of wind turbine design were: (1) Three
blades; (2) A rated wind speed of 12 m/s, cut-in of 4 m/s and
cut-out wind speeds of 25 m/s, respectively; (3) Air density
of 1.225 kg·m−3. Herein, a Weibull wind distribution was

adopted for the wind speed distribution model, as shown
in Fig. 10. Performance parameters of the composite material
are shown in Table 1 [22], where E refers to the modulus of
elasticity, ν is Poisson’s ratio, and G is the shear modulus.
The design variables, objective functions, and constraints

were defined in Section IV. According to the design require-
ments, [F] = 200kN, [ε] = 0.005, [d] = 5.5 m, frot =
0.317 Hz, and ∇ = 0.03 Hz and the upper and lower limits
of the design variables are listed in Table 2 [22].

B. COMPUTATION RESULTS AND ANALYSIS
If a designer would like to not only improve the collective
profit of aerodynamic and structural performance, but also
give priority to aerodynamic performance, u1 is constructed
according to Eq. (6) and u2 is constructed according to
Eq. (7). The final optimal solution with AEP preference
(XAEP) was obtained after 12 rounds based on the steps
presented in Section C of II. The iterative process, which
began with an initial design (XInitial), is shown in Table 3.
Herein, η = (x15, x16, · · · , x27). Because η only affects
f2, it can be assigned to S2 in advance according to the
supplementary explanation of the strategy space exploration
method presented in Section A of II.

Similarly, if the designer would like to improve collective
profit of aerodynamic and structural performance, and pri-
oritize structural performance, u2 is constructed according
to Eq. (6) and u1 is constructed according to Eq. (7). The
final optimal solution with blade mass preference (XMass)
was obtained after 10 rounds based on the solution steps
presented in Section C of II. Results of the iterative process
are presented in Table 4. In addition, a comparison of themain
performance parameters is listed in Table 5. The XInitial, XAEP
and XMass are as follows:
XInitial = [3.2864, 2.6101, 2.2135, 1.9459, 1.7733, 1.5376,

1.2374, 0.1287, 0.0837, 0.0486, 0.0171, -0.0059, -0.0253,
-0.0362, 37, 46, 57, 65, 52, 44, 39, 7.2534, 12.7718,

18.9249, 20.8367, 0.1333, 0.7135];

155754 VOLUME 7, 2019



R. Meng, N.-G. Xie: Competitive-Cooperative Game Method for Multi-Objective Optimization Design

TABLE 3. Iterative process for XAEP.

TABLE 4. Iterative process for XMass.

TABLE 5. Comparison of main performance parameters.

XAEP = [3.2415, 2.6773, 2.3365, 2.1088, 1.8663, 1.6576,
1.3419, 0.1549, 0.1184, 0.0789, 0.0297, 0.0061, -0.0161,
-0.0276, 36, 45, 56, 60, 51, 43, 35, 7.4857, 10.3458, 18.9036,
20.7837, 0.2490, 0.5811];

XMass = [3.1028, 2.5763, 2.1787, 1.9139, 1.7414, 1.4965,
1.1984, 0.1440, 0.0998, 0.0682, 0.0241, 0.0046, -0.0191,
-0.0311, 28, 40, 50, 59, 49, 41, 30, 8.2231, 12.2900, 17.6724,
20.5673, 0.2473, 0.5104].

Compared to the initial design, the AEP of XAEP solu-
tion increased by 192173 kWh and blade mass of the XAEP
solution decreased by 804 kg (Table 5). On the other hand,
the AEP of the XMass solution increased by 33534 kWh and
the blade mass decreased by 1453 kg. In addition, the XAEP
solution was superior to XMass in terms of AEP, but at the
cost of a larger blade mass. The results suggest the design
scheme is capable of representing the objective preferences of
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FIGURE 11. Chord length distribution of initial design, AEP preference
(XAEP) and blade mass preference (XMass).

FIGURE 12. Twist angle distribution of initial design, AEP preference
(XAEP) and blade mass preference (XMass).

the designer and clearly demonstrate the effectiveness of the
proposed method. Moreover, the two optimized blade shapes
presented in this paper were more reasonable. Comparisons
of chord length distribution, twist angle distribution, airfoil
section coordinates, and number of layers of the spar cap are
shown in Figs 11–14.

Compared to the initial design, chord length of XAEP from
the root to transition area was shorter than that of the initial
design, as shown in Fig. 11, and the blade chord length was
longer in the most aerodynamic area, contributing to AEP
increase. Furthermore, Fig. 11 reveals that the blade chord
length of XMass is shorter than in the initial design, thereby
helping to reduce the blade mass. Twist angles of both the
XAEP and XMass solutions from blade root to tip are larger
than in the initial design, thus providing a better lift-to-drag
ratio and improving the aerodynamic performance of the
blade, as shown in Fig.12. In addition, the twist angle of
the XAEP solution is greater than that of the XMass solution,
resulting in a higher AEP at the expense of blade mass for
enabling the blade to withstand greater loads to meet the
design constraints. Differences in chord length and twist
angle are also reflected in the changes of airfoil section coor-
dinates, as illustrated in Fig. 13, which shows coordinates
of the nine different airfoil sections at Z = 12 m, 22 m,
and 36.5 m. From Fig. 14, the number of layers of both
the XAEP and XMass solutions were lower compared to the
initial design. These changes contribute to reducing blade

FIGURE 13. Airfoil section coordinates of initial design, AEP preference
(XAEP) and blade mass preference (XMass).

FIGURE 14. Spar cap layering of initial design, AEP preference (XAEP) and
blade mass preference (XMass).

mass. Moreover, the number of layers of the spar cap of
XMass was lower than that of XAEP, while the area containing
the largest layer number had less layers than XAEP. This
also leads to a lower blade mass compared to the XAEP
solution. Additionally, the location of the shear web (x26) was
moved farther away from the center line of the cap, changing
from 0.1333 m (XInitial) to 0.2490 m (XAEP) and 0.2473 m
(XMass). Finally, the spar cap width (x27) was reduced from
0.7135 m (XInitial) to 0.5811 m (XAEP) and 0.5104 m
(XMass) which also contributes to the reduction of blade mass.
These comparisons reveal the corresponding relationships
between blade shape and two target preferences.

Table 5 shows that the maximum axial thrust of blade root
(69.5kN for the XAEP solution and 63.6kN for the XMass
solution), maximum blade strain (0.004499 for the XAEP
solution and 0.004865 for the XMass solution), displacement
of Y direction (3.066 m for XAEP and 3.653 m for XMass),
and first-order natural frequency (0.81 Hz for XAEP and
0.76 Hz for XMass). The results satisfy all the constraints.
To further show strain distribution of the blade, displacement
in the Y direction and first vibration mode shape in detail,
the XAEP result are taken as an example and are shown in
Fig. 15. From Fig. 15, (1) Strain values are higher in the
spar cap compared to any other part of the blade, demonstrat-
ing that the spar cap is the main load-bearing component;
moreover, larger strains occur near the middle of the blade;
(2) Maximum displacement occurs at the blade tip and the
blade will not damage the wind turbine tower; (3) The first
natural vibration is the flap-wise mode and resonance can be
avoided.
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FIGURE 15. Blade’s strain distribution(a), displacement of Y direction
(b) and first vibration mode shape (c) of AEP preference (XAEP).

C. DISCUSSION
The competitive-cooperative game method proposed in this
paper has three main features below.

(1) Unlike equal status between players in [7], [8],
[18], [22], the status of the two players in this study is
unequal, and there is master-slave status. A player with com-
petitive behavior cares only about personal profit, whereas a
player exhibiting cooperative behavior also takes the benefit
of other players into account while pursuing personal benefit.
Therefore, the player of competitive behavior occupies the
master’s status, and the final game solution favors players
who exhibit competitive behavior.

(2) The method brings out the corresponding relationships
between blade shapes and solutions of two target preferences,
and it is embodied by the fact that solution of XAEP and XMass
corresponds to the different chord length distribution, twist
angle distribution, spar cap layering parameters, and airfoil
section coordinates. These new findings cannot be drawn by
these methods [7], [8], [18], [22].

(3) Different from the traditional static strategy space
[7], [8], [18], game process of two players in this study is
accompanied by the adjustment of strategy space, as clearly
shown in Tables 3 and 4. A total of 21 different blade shapes
were demonstrated, where x11- x14 and x6 always belongs to
S1 and x1- x4, x8 and η always belong to S2, while x5, x7,
x9, and x10 belong to S1 or S2. The results demonstrate that
the twist angle between Z = 22.0 m and Z = 36.5 m and the
chord length located at Z= 32 m have a significant influence
on AEP for the 21 different blade shapes. On the other hand,
the layering parameters (x15 - x25), location of the shear web
(x26), spar cap width (x27), chord length from Z = 7 m to
Z = 22 m (x1 - x4), and twist angle near the transition area
(x8) have a significant influence on blade mass. In contrast,
x5, x7, x9, and x10 were adjusted for the various blade shapes.
The dynamic adjustment of strategy space ensures that in each
round of game, the strategy space of the players is composed
of the design variables that have the relatively large influence
on them. This ensures that a player’s strategy adjustment will
have a big impact on its profit, which is conducive to the
in-depth game negotiation. Therefore, this dynamic strategy
space is an improvement on the traditional static strategy
space [7], [8], [18]. More deeply, unlike methods [7], [8],
[18], [22], this method can assess the dynamic sensitivity of
the design variables to the objective functions for different
preference’s blade shapes. For example, in descending order
of sensitivity to AEP, S1 is composed of the design variables
x14, x13, x12, x11, x7, x6, and x10 for the final blade shape of
the preferred AEP. In other words, changes in x14 cause the
most significant changes to AEP, followed by x13, x12, x11,
x7, x6, and x10. However, the order changes to x14, x13, x12,
x11, x6, x7, and x5 for the final blade shape of the preferred
blade mass.

VI. CONCLUSION
A multi-objective optimization model of a HAWT blade was
established based on its parameterized finite element model.
26 control points were used to simulate the laminate design of
a spar cap. A novel competitive-cooperative game-theoretic
method was proposed to obtain the optimal solution reflect-
ing the designer’s preferred objective. The proposed method
comprises two new key techniques: (a) establishment of
strategy space exploration method named ‘correlation anal-
ysis under fuzzy k-means clustering’, which can effectively
divide design variables into strategy subspaces owned by
each player with high partition efficiency. (b) construction
of competitive-cooperative game pattern, which can not only
guarantee collective benefit to all players, but also gives
priority to players who exhibit competitive behavior. If the
designer gives priority to structural performance of blade,
then the structural objective is endowed with competitive
behavior, and aerodynamic objective is given cooperative
behavior, and vice versa. This method reduces the com-
plexity of the problem by transforming a high-dimensional
aerodynamic and structural optimization problem into two
low-dimensional problems. Additionally, this method reveals
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the corresponding relationships between blade shapes and
solutions of two target preferences, and bring out the dynamic
sensitivity of design variables to objective functions for the
different blade shapes.
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