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ABSTRACT The linear power flow (LPF) models are particularly important in the context of optimization
algorithms for three-phase distribution systems with the high penetration of distributed renewable
generations. With several approximations on network modelling, voltage drop calculation, link power
calculation, voltage controlled bus and ZIP loads, this paper proposed a three-phase LPF model for three-
phase unbalanced distribution networks based on loop-analysis theory. The method can deal with voltage-
controlled (PV) & Load (PQ) buses and ZIP loads. The approximations of the star and delta connections
ZIP loads are also analyzed. Test results based on several standard IEEE test feeders and an improved
615bus test system proved the effectiveness and accuracy of the proposed algorithm. The proposed LPF
solution gives a simple, more robust, and potentially faster solution for modern distribution power system.

INDEX TERMS Linear power flow (LPF), unbalanced distribution network, three-phase ZIP load, link
branch power, linear approximation.

LIST OF SYMBOLS
EV means a diagonal matrix by putting the vector V on the
main diagonal of a square matrix.
α = exp(j2π/3) and 8 = diag([1, α2, α]).
R + jX are the coupled line parameters for a branch
R̂ + jX̂ are the modified coupled line parameters for a

branch, R̂+ jX̂ = 8−1(R+ jX)8.
U i = [Uia;Uib;Uic] and θ i = [θia; θib; θic] are the three-

phase voltage magnitude and phase angle vectors for bus i.
dU = [dUa; dUb; dUc] and dθ̂ = [θ̂a; θ̂b; θ̂c]is the three-

phase voltage drop and angle difference vectors along a
branch.
Po = [Poa;Pob;Poc] and Qo = [Qoa;Qob;Qoc] are the

three-phase active and reactive power (load) vectors.
dP = [dPa; dPb; dPc] and dQ = [dQa; dQb; dQc] are the

three-phase active and reactive power loss vectors along a
branch.
PL = [Pab;Pbc;Pca] and QL = [Qab;Qbc;Qca] are the

line load vector, the star load vector,
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P̂ = [P̂a; P̂b; P̂c] and Q̂ = [Q̂a; Q̂b; Q̂c] are the equivalent
phase-ground load vectors corresponding to the delta connec-
tion load.
P j6 = [Pj∑ a;Pj∑ b;Pj∑ c] and Qj6 = [Qj∑ a;Qj∑ b;

Qj∑ c] are the equivalent phase-ground IP type load vectors
corresponding to the hybrid star and delta connection ZIP
loads.

Tt is the 3N∗3N pathmatrix corresponding to tree branches
for DPS.

Bt is the 3m∗3N loopmatrix corresponding to tree branches
for DPS.
Un = [U1;U2; · · · ;UN] and θn = [θ1; θ; · · · ; θN] are

the bus voltage magnitude and angle vectors.
dU t = [dU1; dU2; · · · ; dUN] and dθ t = [dθ1; dθ2; · · · ;

dθN] are the branch drop and angle difference
vectors.
QI = [QIt;QIl] = [Qi1;Qi2; · · · ;Qi(N+m)] and PI =

[PIt;PIl] = [P i1;P i2; · · · ;P i(N+m)] are the branch reactive
and active power vectors.
P = [P1;P2; · · · ;PN] and Q = [Q1;Q2; · · · ;QN] are

the bus consumption active and reactive power vectors for P
type load.
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PP6 = [P1P6;P2P
∑
; · · · ;PNP

∑] and QP6 = [Q1P6;

Q2P
∑; · · · ;QNP

∑] are the bus consumption active and reac-
tive power vectors for ZIP type load.

I. INTRODUCTION
Robust power flow is very important for modern distribution
power system (DPS) management, especially with the high
penetration of distributed renewable generation into the tra-
ditional distribution networks. Because of the unbalance and
high R/X features of DPS, the conventional iterative power
flow methods are limited in speed and reliability for real-
time optimization and control [1]. In order to deal with the
nonlinear optimization problems of DPS, the non-iterative
and direct calculation of power flow, that is, the linear
power flow (LPF) solutions show many advantages and had
been studied by many researchers. Based on LPFs, the opti-
mization problems of DPS can be formulated and solved
more efficiently. The LPFs with the reasonable accuracy
and robustness have been applied to the ordered charging
of electric vehicle [2], [3], probabilistic load flow [4], [5],
Volt-VAR Optimization [6], and network reconfiguration [7]
etc..

Traditional DC power flow (DCPF) model has been widely
used as a LPF method. However, DCPF is limited with the
assumptions of the lossless branch power flows and the flat
bus voltage magnitudes [1]. But the voltage limits and reac-
tive load flows are vital constraints in the actual distribution
power systems and thus, cannot be omitted. Moreover, DCPF
cannot be directly applied in DPS due to the high R/X features
of DPS.

Three parts are important for LPF solutions in DPS. That
is, the model should be capable of applying to weakly meshed
three-phase unbalanced systems, can deal with the widely
used ZIP type load (consisting of a constant impedance, Z,
a constant current, I, and a constant power, P) and can deal
with the voltage-controlled (PV) buses.

Most LPFs are developed under rectangular coordinates.
In [8], a linear approximation of power flow has been pro-
posed in multiphase radial network with semidefinite relax-
ation formulation. In [9], as an extension of [8], it presented a
group of relatively simple LPF approximation equations for
radial three-phase network, but the voltage angles were omit-
ted. Moreover, the methods in [8], [9] cannot deal with ZIP
load and PV bus. In [10], a ZIP linearization model has been
developed from the complex field with the approximation
1/U̇ ≈ 2−U̇∗ (superscript ‘∗’ indicates complex conjugate).
And in [11], based on the curve-fitting technique, a voltage-
dependent loadmodel was derived by splitting the ZIP load as
a combination of an impedance source and a current source.
In [12], a three-phase linear power flow formulation has been
derived based on the fact that voltage angles and magnitudes
varywithin relatively narrow boundaries. ZIP loads have been
approximated based on a curve-fitting technique. In [13],
a loop-analysis theory based LPF solution has been proposed
for balanced and unbalanced systems. The ZIP loads have
been handled similarly as in [10]. However, all those methods

in [8]–[13] have been developed under rectangular coordi-
nates and cannot deal with the PV buses. The voltages in those
methods were decomposed into the real and imaginary parts
as U̇ = U 6 θ = Ure + jUim (the subscripts ‘re’ and ‘im’
denote real and imagine part of voltage), so the assumptions
that the bus voltage magnitude U ≈ 1.0p.u. and branch
voltage angle difference θij ≈ 0 cannot be directly used under
rectangular coordinates. Thus, those LPF methods cannot
cope with the PV buses easily and directly.

In order to deal with PV buses, LPFs under the polar
coordinates are frequently emphasized. In [14], [15], with
cos θij ≈ 1, sin θij ≈ θij and by selectively setting Ui ≈ 1.0,
two similar LPF methods have been developed under polar
coordinates for balanced distribution system but PV buses
and ZIP loads were not discussed. In [16], based on the
logarithmic transform of voltage magnitudes and the approx-
imation analysis of the general branch flows, a LPF model
including PV and PQ buses and tap changers was proposed
for the balanced distribution power system. In [17], based
on LPF equations as in [14], an improved decoupled single-
phase linear power flow (DLPF) model has been proposed
with considering PV buses. In [18], a linear three-phase
power flow model has been proposed for an active distri-
bution network with the consideration of the ZIP type of
the loads and PV buses. In [19], it derived a general three-
phase LPF model under the polar coordinates. The method
can account for ZIP loads, transformers and DGs, but the
method is relatively complicated.

Considering the different network features and the differ-
ent application requirements, the LPF needs to be further
studied. On the basis of the past work, that is, a loop-analysis
theory based single-phase linear power flow methods in [20],
and considering the approximate balance of three-phase DPS,
this paper proposed a three-phase LPF model for three-phase
unbalanced distribution network considering PV & PQ buses
and ZIP load. The proposed model is distinguished from
above methods by its formation with loop-analysis theory
based power flows calculation under polar coordinates. The
proposed LPF has enough accuracy in voltage magnitude and
has higher computational efficiency because the calculation
matrix dimension is half of the dimension of other calculation
matrixes in [11]–[13], [18], [19].

The rest of this paper is organized as follows. Section 2
introduces the linearization and approximation of network
model and ZIP load. Section 3 proposes the approximate
calculations of link powers and PV buses and then presents
the three-phase unbalanced LPF solution. Section 4 is the
numerical tests based on some IEEE test systems. Section 5
concludes the work.

II. LINEARIZATION OF NETWORK MODELLING AND
ZIP LOAD
In this section, considering that the angles of the three-phase
voltages at the same bus are nearly symmetrical, several
linear approximations have been developed for a three-phase
unbalanced system. The approximate calculations include
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the three-phase voltage drop and angle difference along one
branch, the three-phase ZIP load to three-phase IP load con-
version and the output reactive power of the shunt B.
Considering that the distribution lines are not very long,

a typical three-phase distribution line can be modeled as a
π elements as shown in Figure 1 (in the electrical parameters,
the shunt conductance parameters are ignored). Unlike the
balanced system which is discussed in [20]–[22], the three-
phase line parameters in a three-phase unbalanced system
are coupled and unbalanced as well as the unbalanced loads.
Thus, the power flow method needs to be redeveloped.

FIGURE 1. The equivalent π circuit of three-phase distribution branches.

A. APPROXIMATION OF VOLTAGE DROP AND ANGLE
DIFFERENCE
In Fig.1, letU i = [Uia;Uib;Uic] and θ = [θia; θib; θic],Uo =

[Uoa;Uob;Uoc] and θo = [θoa; θob; θoc] be the three-phase
voltage magnitudes (in per unit) and phase angles (in radian)
for bus i and bus o respectively; let Po = [Poa;Pob;Poc] and
Qo = [Qoa;Qob;Qoc] be the three-phase active and reactive
powers flowing along the branch as shown in figure 1; and
the coupled line parameters can be expressed as,

R+ jX =

Raa,Rab,Rac
Rba,Rbb,Rbc
Rca,Rcb,Rcc

+ j

Xaa,Xab,Xac
Xba,Xbb,Xbc
Xca,Xcb,Xcc

 (1)

B =

Baa,Bab,Bac
Bba,Bbb,Bbc
Bca,Bcb,Bcc

 (2)

And it has (herein, the shuntB can be treated as the constant
susceptance load and will be discussed below), U̇ia
U̇ib
U̇ic

 =
 U̇oa
U̇ob
U̇oc

+ (R+ jX)

 (Poa + jQoa/U̇oa)∗

(Pob + jQob/U̇ob)∗

(Poc + jQoc/U̇oc)∗

 (3)

Note that all electrical parameter are in per unit in this
paper.
Let A-phase be the reference phase, for simplification, let

α = exp(j2π/3), θoa = 0 and U̇oa = Uoa 6 0, so dθa = θia −
θoa = θia and U̇ia = Uia 6 dθa. Considering that the three-
phase voltage angles at the same bus are almost symmetrical,
that is, it has U̇ob ≈ α

2Uob and U̇oc ≈ αUoc. Define dθb ≈
θib−θob and dθc ≈ θic−θoc, then U̇ib ≈ α

2Uib 6 dθb and U̇ic ≈

αUic 6 dθc. For the distribution line is not long, θa, θb and θc
are very small and close to zero. Thus, define EPo = diag(Po)
and EQo = diag(Qo), 8 = diag([1, α2, α]), then (3) can be

rewritten as, U̇ia
U̇ib
U̇ic

 ≈ 8
Uia 6 dθa
Uib 6 dθb
Uic 6 dθc

 ≈ 8
Uoa
Uob
Uoc


+ (R+ jX)8

 (Poa − jQoa)/Uoa
(Pob − jQob)/Uob
(Poc − jQoc)/Uoc


= 8

Uoa
Uob
Uoc

+(R+jX)8(EPo-j EQo)

1/Uoa
1/Uob
1/Uoc

 (4)

By multiplying 8−1 on both sides of (4), the following
equations can be deduced as,Uia 6 dθa
Uib 6 dθb
Uic 6 dθc

−
Uoa
Uob
Uoc

=8−1(R+ jX)8(EPo-j EQo)

1/Uoa
1/Uob
1/Uoc


(5)

Define,

R̂+ jX̂

= 8−1(R+ jX)8

=
1
2

 2Raa
√
3Xab-Rab −

√
3Xac-Rac

−
√
3Xba-Rba 2Rbb

√
3Xbc-Rbc√

3Xca-Rca −
√
3Xcb-Rcb 2Rcc


+

j
2

 2Xaa −
√
3Rab-Xab

√
3Rac-Xac√

3Rba-Xba 2Xbb −
√
3Rbc-Xbc

−
√
3Rca-Xca

√
3Rcb-Xcb 2Xcc


(6)

Generally speaking, the bus voltage magnitude in real
DPS under a normal condition is generally around 1.0 p.u.
(0.95∼1.05 p.u. in common). Thus, for any 1U = 1 −
U (|1U | < 1), it has [20],

f (1U ) = 1/U ≈ 1+1U = 2− U (7)

Introducing (7) into (5), the approximate values of the
three-phase voltage drop and the three-phase angle difference
can be derived as,

dU =

Uia − Uoa
Uib − Uob
Uic − Uoc

 =
 dUa
dUb
dUc


≈ (R̂EPo + X̂ EQo))

 2− Uoa
2− Uob
2− Uoc

 (8)

dθ =

 dθa
dθb
dθc

 ≈
 δUa/Uoa
δUb/Uob
δUc/Uob

 (9)

where,

δU =

 δUa
δUb
δUc

 ≈ (X̂EPo − R̂ EQo)

 2− Uoa
2− Uob
2− Uoc

 (10)
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B. REACTIVE POWER APPROXIMATION OF SHUNT
SUSCEPTANCE AND POWER LOSS APPROXIMATION
OF BRANCH SERIAL IMPEDANCE
Define Uα = 1-1Uα and Uβ = 1 − 1Uβ (α and β
refer to phase indexes, a, b, c, at the same or different bus,
α 6= β). As discussed above, the voltage amplitude at each
bus for each phase is close to 1 p.u., so |1Uα| and

∣∣1Uβ ∣∣
are close to zero and

∣∣1Uα ×1Uβ ∣∣ is much closer to zero.
Thus, the following approximate calculation equation can be
obtained by neglecting the second-order term, 1Uα ×1Uβ .

UαUβ = (1−1Uα)(1−1Uβ )

= 1−1Uα −1Uβ +1Uα ×1Uβ
≈ 1−1Uα −1Uβ = Uα + Uβ1 (11)

The shunt susceptance, B in (2), can be considered as the
constant susceptance load. The injected reactive power of B
at any bus can be approximately calculated by,

QoB = −j

 U̇oa
U̇ob
U̇oc

 . ∗
B

 U̇∗oaU̇∗ob
U̇∗oc


≈
−j
2

 2BaaU2
oa − BabUoaUob − BacUoaUoc

−BbaUoaUob + 2BbbU2
ob − BbcUobUoc

−BcaUoaUoc − BcbUobUoc + 2BccU2
oc

 (12)

Based on (11), (12) can be further developed as following,

QoB ≈ −j[B̂Uo + diag(B̂e3)Uo − B̂e3] (13)

where, B̂ = 1
2

 2Baa -Bab -Bac
-Bba 2Bbb -Bbc
-Bca -Bcb 2Bcc

 and e3 =

 1
1
1

.
Similarly, let Uoa ≈ Uob ≈ Uob ≈ 1, the power losses of

three-phase serial impedance R + jX can be approximately
calculated by (here, EPo = diag(Po) and EQo = diag(Qo)),

dSZ = (dU + jδU). ∗ (Po + jQo)

= [(R̂+ jX̂)(EPo-j EQo)]. ∗ (Po + jQo)

≈ (EPo + j EQo)(R̂+ jX̂)(Po-jQo) (14)

Expanding (14), the power losses can be approximately
formulated as,

dP = [dPa; dPb; dPc]
≈ EPoR̂Po + EQoR̂Qo +

EPoX̂Qo −
EQoX̂Po

dQ = [dQa; dQb; dQc]
≈ EPoX̂Po + EQoX̂Qo − EPoR̂Qo +

EQoR̂Po

(15)

C. ZIP LOAD TO IP LOAD APPROXIMATION DEVELOPMENT
For P type star connection load, it does not need any conver-
sion, so it can define directly,{

PPϕ = Po

QPϕ = Qo
(16)

For the proposedmethod can only handle the phase-ground
loads (star connection load), so for P type delta connection
load, it should be converted to star connection load first.

The approximate conversion of delta load, PL = [Pab;Pbc;
Pca] and QL = [Qab;Qbc;Qca], to star load, P̂ = [P̂a;

P̂b; P̂c] and Q̂ = [Q̂a; Q̂b; Q̂c], can be expressed as (the
details see equations A.1∼4 in Appendix),

P̂ =
N
2
PL +

M

2
√
3
QL

Q̂ =
N
2
QL −

M

2
√
3
PL

(17)

whereM =

 1 0 −1
−1 1 0
0 −1 1

 and N =

 1 0 1
1 1 0
0 1 1

.
Then for P type delta connection load, the conversion can

be handled with (17). Then the equivalent phase-ground load
can be defined as, {

P̂Pϕ = P̂
Q̂Pϕ = Q̂

(18)

For I type star connection load, define PI = [PIa;PIb;PIc]
and QI = [QIa;QIb;QIc], EPI = diag(PI) and EQI = diag(QI),
then it can be written as,{

PI = PIϕUo = EPIUo

QI = QIϕUo = EQIUo
(19)

For I type delta connection load, PL and QL, let
EPL = diag(PL) and EQL = diag(QL), then the equiv-
alent I type star connection load P̂I = [P̂Ia; P̂Ib; P̂Ic]
and Q̂I = [Q̂Ioa; Q̂Iob; Q̂Ioc] can be expressed as
(superscript ‘‘T’’ means matrix transpose and the details see
equations A.5∼6 in Appendix),

P̂I = P̂IϕUo ≈
1
12

(
3NEPLNT

−
√
3N EQLM

T

+MEPLMT
+
√
3M EQLN

T
)
Uo

Q̂I = Q̂IϕUo ≈
1
12

(
3N EQLN

T
+
√
3NEPLMT

+M EQLM
T
−
√
3MEPLNT

)
Uo

(20)

ForZ type star connection load, based on (11), it can derive
and define the following equations,


PZϕ = PZiϕUo − PZpϕ = EPo(Uo. ∗ Uo)

≈ EPo(2Uo − e3) = 2EPoUo − Po

QZϕ = QZiϕUo − QZpϕ =
EQo(Uo. ∗ Uo)

≈ EQo(2Uo − e3) = 2 EQoUo − Qo

(21)

Aiming at Z type delta connection load, PL and QL the
equivalent Z type star connection load, P̂Z = [P̂Za; P̂Zb; P̂Zc]
and Q̂Zϕ = [Q̂Za; Q̂Zb; Q̂Zc], can be expressed as (the details
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see equations A.7∼9 in Appendix),

P̂Z = P̂ZiϕUo − P̂Zpϕ ≈
1
2

[(
NEPL +

1
√
3
M EQL

)
NTUo

−

(
NPL +

1
√
3
MQL

)]
Q̂Z = Q̂ZiϕUo − Q̂Zpϕ ≈

1
2

[(
Ndiag(QL)−

1
√
3
MEPL

)
×NTUo −

(
NQL −

1
√
3
MPL

)]
(22)

It can be seen from (21) and (22), based on the approximate
calculations, the Z type loads are treated as the combination
of I and P type loads.

For any bus j, let P j6 = [Pj∑ a;Pj∑ b;Pj∑ c] and Qj6 =
[Qj∑ a;Qj∑ b;Qj∑ c] be the total equivalent IP star connec-
tion load, that is, the star and delta connection ZIP loads can
be combined together with following approximate calculation
equations.

P j6 = EP jI∑Uo + P jP∑
= (PIϕ + P̂Iϕ + PZiϕ + P̂Ziϕ)Uo

+

(
PPϕ + P̂Pϕ − PZpϕ − P̂Ziϕ

)
Qj6 = EQjI∑Uo + QjP∑
= (QIϕ + Q̂Iϕ + QZiϕ + Q̂Ziϕ)Uo

+

(
QPϕ + Q̂Pϕ − QZpϕ − Q̂Ziϕ

)
(23)

It can be seen from (23) that the hybrid connection ZIP
loads are approximated as the star connection IP loads.

III. THE THREE-PHASE UNBALANCED LINEAR SOLUTION
In this section, based on our past works, that is, the single-
phase improved loop-analysis theory based power flowmeth-
ods in [20]–[22], the three-phase unbalanced power flow
method is introduced. Then based on the approximate calcu-
lations discussed in section II, the proposed LPF method has
been developed and proposed.

A. THE PROPOSED POWER FLOW METHOD
For a three-phase weakly-meshed distribution network with
3(N+1) buses and 3m link branches (section lines, to form
3m independent loops), the total branches are 3(N+m).
Define QI = [QIt;QIl] = [Qi1;Qi2; · · · ;Qi(N+m)]
(Qik = [Qika;Qikb;Qikc]) and PI = [PIt;PIl] =
[P i1;P i2; · · · ;P i(N+m)] (P ik = [Pika;Pikb;Pikc]) be
the branch reactive and active power vectors, P =

[P1;P2; · · · ;PN] (Pk = [Pka;Pkb;Pkc]) and Q =

[Q1;Q2; · · · ;QN] (Qk = [Qka;Qkb;Qkc]) be the bus con-
sumption active and reactive power vectors. The bus con-
sumption powers include the loads (herein only consider the
P type loads first), the reactive powers of shunt susceptance
and the serial branch power loss in the π -models [21], [22].
Then the following equations can be derived for three-phase

distribution system similarly as in [21],{
PIt = TT

t P + BT
t PIl

QIt = TT
t Q+ BT

t QIl
(24)

where, Tt is path matrix of 3N∗3N and Bt is loop matrix of
3m∗3N corresponding to the tree branches. The details about
Tt and Bt for three-phase DPS can be found in [23].
Define dU t = [dU1; dU2; · · · ; dUN] (dUk = [dUka;

dUkb; dUkc]), Uini = [U0;U0; · · · ;U0] (3N∗1, U0 = [U0a;

U0b;U0c] is the three-phase source voltage magnitude vec-
tor). And then let Un = [U1;U2; · · · ;UN] (Uk = [Uka;
Ukb;Ukc]) be the voltage vector (3N∗1). So the voltage mag-
nitude differences between power supply and any other bus
at bus k equal to the summation of the tree branch voltage
drop along the path of bus k along the same phase, that
is [21], [22],

Un = Uini − TtdU t (25)

Define the angles of power supply (source bus), θ ini =
[θ0; θ0; · · · ; θ0] (3N∗1, θ0 = [θ0a; θ0b; θ0c] is the three-
phase reference angle vector). And let θn = [θ1; θ2; · · · ; θN]
(θk = [θka; θkb; θkc]) be the bus voltage angle vec-
tor (3N∗1). Define dθ t = [dθ1; dθ2; · · · ; dθN] (dθk =
[dθka; dθkb; dθkc]). Then, similarly, there is [21], [22],

θn = θ ini − Ttdθ t (26)

Based on (8), in matrix and vector form, it has,

dU t ≈ diag(R̂tPIt + X̂tQIt)(2− Un) (27)

And then the linear power flow calculation formula can be
obtained by introducing (27) into (25). Now, it needs to get
PIt and QIt with (24), but the key is to calculate PIl and QIl
in (24)

The branch power losses in the bus consumption active and
reactive powers can be approximately calculated by doing a
backward sweep calculation with only considering the radial
network by breaking up the links. That is, PI1 = TT

t P and
QI1 = TT

t Q. Here the contributions of the bus injection
powers P and Q (all loads are treated as P type load and no
branch power losses are included) are only considered. Then
the branch power losses can be approximately calculated
with (15) by setting all bus voltage magnitudes be 1.0 p.u..

B. THE APPROXIMATION CALCULATION OF LINK POWERS
Let R̂t (3N∗3N) and R̂l (3M∗3M) be the tree-branch and loop-
link resistance diagonal matrix respectively, X̂t (3N∗3N) and
X̂l (3M∗3M) be the tree-branch and link reactance diagonal
matrix respectively (the diagonal elements are the equiva-
lent branch parameter matrix, R̂ and X̂are calculated based
on (6)).

It considers that the contribution ratio of link powers to
PIt and QIt is relatively small because of the weakly meshed
characteristic of the distribution network, so all loads, either I
type load or Z type load, are treated as the P type load for the
approximation calculation of link powers. But for the delta
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connection load, the equivalent star connection results should
be calculated with (17) first.

1) THE HANDLING OF LOOP LINKS
Let dU l = [dU l1; dU l2; · · · ; dU lm] (dU lj = [dUlja; dUljb;
dUljc]) be link voltage drop vector and dθ l = [dθ l1; dθ l2; · · · ;
dθ lm] (dθ lj = [dθlja; dθljb; dθljc]) be angle difference vector
for the loop branches. Based onKirchhoff’s voltage law, there
are,

BtdU t + dU l = 0 (28)

Btdθ t + dθ l = 0 (29)

Considering that the voltage magnitude at each bus is close
to the rated value, 1.0 p.u.. Thus, the following approxima-
tions can be derived based on (8) & (9) by supposing all
voltage magnitudes be 1.0 p.u.. When the voltages are not
bad, it still has a relatively higher accuracy.

dU ≈ (R̂Po + X̂Qo) (30)

dθ ≈ (X̂Po − R̂Qo) (31)

Then based on (28) and (29) the following equations can
be obtained [22],

BtdU t = Bt[R̂t(TT
t P + BT

t PIl)+ X̂t(TT
t Q+ BT

t QIl)]
= −dU l = −(R̂lPIl + X̂lQIl)
Btdθ t = Bt[X̂t(TT

t P + BT
t PIl)− R̂t(TT

t Q+ BT
t QIl)]

= −dθ l = −(X̂lPIl − R̂lQIl)

(32)

Rearranging (32) in matrix form,[
R̂L X̂L

X̂L −R̂L

][
PIl
QIl

]
=

[
−R̂BT −X̂BT

−X̂BT R̂BT

][
P
Q

]
(33)

where, R̂BT = BtR̂tTT
t , X̂BT = BtX̂tTT

t , R̂L = R̂l +BtR̂tBT
t ,

X̂L = X̂l + BtX̂tBT
t .

2) THE HANDLING OF PV BUSES
The distributed generators (DGs) with unity or fixed power
factor can be treated as the negative loads in the proposed
method. But the PV buses can’t be dealt with directly.
However, the missing voltage angle set point also makes it
possible to transform a PV generator into an artificial loop by
one artificial lossless line [22]. Define (NPV is the number of
PV type DG),

dUPVϕ = UPVϕ − U0ϕ(k = 1, 2, · · · ,NPV;ϕ = a,b,c) (34)

Extracting all PV buses corresponding row vectors from
path matrices Tt makes up a new matrix TPV (3NPV∗3N).
Considering that the active powers from PV bus are known
and invariable, that is, PIPV = const. Similarly, for approxi-
mate calculation, let Uiϕ ≈ Uoϕ ≈ 1, then,

dUPV = −TPVdU t

= −TPV[R̂t(TT
t P + TT

PVPIPV)

+ X̂t(TT
t Q+ TT

PVQIPV)] (35)

Rearranging (35), it gives,

X̂PVQIPV=

[
−R̂PT −X̂PT

] [P
Q

]
− R̂PVPIPV − dUPV (36)

where, X̂PT = TPVX̂tTT
t , R̂PT = TPVR̂tTT

t , X̂PV =

TPVX̂tTT
PV, R̂PV = TPVR̂tTT

PV.
It needs to note that the output reactive power is limited

for each PV bus. If the calculated reactive power violates the
upper or lower limit, it will be directly set to upper or lower
limit. And then the PV bus will be treated as a negative
PQ bus.

3) COMBINATION
Let X̂BP = BtX̂tTT

PV and R̂BP = BtR̂tTT
PV, the loops and

PV buses can be combined together as, R̂L X̂L X̂BP

R̂T
BP X̂T

BP X̂PV

X̂L −R̂L −R̂BP


 PIl

QIl
QIPV



= −

 R̂BT X̂BT

R̂PT X̂PT

X̂BT −R̂BT

[PQ
]
−

 R̂BP

R̂PV

X̂BP

PIPV −

 0BP
dUPV
0BP


(37)

Based on (37), it can derive, PIl
QIl
QIPV


= −

 R̂L X̂L X̂BP

R̂T
BP X̂T

BP X̂PV

X̂L −R̂L −R̂BP


−1

 R̂BT X̂BT

R̂PT X̂PT

X̂BT −R̂BT

[PQ
]

−

 R̂BP

R̂PV

X̂BP

PIPV −

 0
dUPV
0


 (38)

C. THE REALIZATION OF THE PROPOSED LPF (LALPF)
Including the PV buses into (24), then rewriting (24),{

PIt = TT
t P + BT

t PIl + TT
PVPIPV

QIt = TT
t Q+ BT

t QIl + TT
PVQIPV

(39)

PIl andQIl ,QIPVcan be solved with (38) and then substitut-
ing the results into (39), PIt and QIt are obtained. Thus, when
just considering P type loads, based on (25) and (27), it has,

Un=Uini − TtdU t≈Uini−Ttdiag(R̂t EPIt+X̂t EQIt)(2−Un)

(40)

Rearrange (40) and write it with a simple matrix form,

HUn = b (41)

where,

H = E− Ttdiag(R̂t EPIt + X̂t EQIt) (42)

b = Uini − 2Tt(R̂tPIt + X̂tQIt) (43)
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Based on (41), the linear power solution for voltage magni-
tudes can be solved directly. And the angles can be calculated
with (9), (10) and (29).

In (41), Tt is a lower triangular matrix. By taking a
3∗3 matrix (like R̂ and X̂ in (6)) as a basic element in
the coefficient matrix, it can be easy to prove that H is a
lower triangular matrix too. Thus, Un can be easily solved
with elimination method based on a simple iterative process.
Moreover, compared with most LPFs in [11]–[13], [18], [19]
under rectangular coordinates and polar coordinates, their
coefficient matrixes are 6N∗6N matrixes, but the proposed
model has a 3N∗3N coefficient matrix H.
Referring to (27), define PP6 = [P1P6;P2P

∑
; · · · ;

PNP
∑] (P jP6 = [PjP∑ a;PjP∑ b;PjP∑ c]) and QP6 =

[Q1P6;Q2P
∑; · · · ;QNP

∑] (QjP6 = [QjP∑ a;QjP∑ b;

QjP∑ c]), EPI
∑
= diag([P1I6;P2I6; . . . ;PNI6]) (P jI6 =

[PjI6a;PjI6b;PjI6c]) and EQI
∑ = diag([Q1I6;Q2I6; . . . ;

QNI6]) (QjI6 = [QjI6a;QjI6b;QjI6c]). Then when consid-
ering ZIP type loads, (39) can be rewritten as,

PIt = TT
t (EPI

∑Un + PP
∑)+ BT

t PIl + TT
PVPIPV

= TT
t
EPI
∑Un + (TT

t PP
∑
+ BT

t PIl + TT
PVPIPV)

QIt = TT
t ( EQI

∑Un + QP
∑)+ BT

t QIl + TT
PVQIPV

= TT
t
EQI
∑Un + (TT

t QP
∑ + BT

t QIl + TT
PVQIPV)

(44)

Based on (44), it has

R̂tPIt + X̂tQIt
= R̂t[TT

t
EPI∑Un + (TT

t PP
∑
+ BT

t PIl + TT
PVPIPV)]

+ X̂t[TT
t
EQI
∑Un + (TT

t QP
∑ + BT

t QIl + TT
PVQIPV)]

(45)

Rearrange (45) and write it with a simple matrix form

R̂tPIt + X̂tQIt = 0IUn + 0p (46)

where,

0I = R̂tTT
t
EPI
∑
+ X̂tTT

t
EQI
∑ (47)

0p = R̂t(TT
t PP

∑
+ BT

t PIl + TT
PVPIPV)

+ X̂t(TT
t QP

∑ + BT
t QIl + TT

PVQIPV) (48)

Then based on (27), it can derive,

dU t ≈ diag(R̂t EPIt + X̂t EQIt)(2eN − Un)
= -diag(0IUn)Un + [20I-diag(0p)]Un + 20p (49)

Based on (11), UαUβ ≈ Uα + Uβ − 1, it can derive,

diag(0IUn)Un ≈ diag(0IeN)Un + 0IUn − 0IeN (50)

where,eN is a 3N∗1 column vector with all ones.
Substituting (50) into (49) and rearranging it, then,

dU t=4IUn +4p ≈ [0I-diag(0p+0IeN)]Un + 20p+0IeN
(51)

where,

4I = 0I-diag(0p + 0IeN) (52)
4p = 20p + 0IeN (53)

And substituting (51) into (25), then the linear power equa-
tions with ZIP loads can be expressed as follows,

(EN + Tt4I)Un = Uini − Tt4p (54)

The angles can be also calculated with (9), (10) and (29).
The same as (41), the coefficient matrix (EN+Tt4I) in (54) is
also a 3N∗3N matrix. But different from (41), the coefficient
matrix (EN + Tt4I) is a sparse matrix but not a triangular
matrix, so it will spend a little more time to solve (54) than to
solve (41).

The flow chart of the proposed linear algorithm is shown
in Figure 2.

FIGURE 2. The flow chart of the proposed LPF method.

IV. NUMERICAL TESTS
In order to test the efficiency and accuracy of the proposed
LPF, several existing LPF methods were applied and com-
pared with the proposed method. The multi-phase and single-
phase hybrid unbalanced 13bus, 37bus, 123bus system [24]
and 615bus test systems are adopted. The 615bus system
consists of five 123bus test system but total load was halved,
and the connection topology of 615bus is shown in Figure 3.
All the four test feeders include unbalanced ZIP star and delta
connection loads with the unbalanced line parameters. The
123bus and 615bus systems have five and twenty-five backup
link branches (loops) respectively. All the algorithms are
programmed and realized in MATLAB 2015a (LAPTOP is
THINKPADwith Intel Core I3-3110 CPU and 4.00GBRam).
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FIGURE 3. The connection topology of the improved 615-bus.

The results from the iterative loop-analysis based full AC
power flow method (FACPF) in [23] and [25], are adopted
as benchmarks (convergence accuracy is e-6 p.u.). Compared
with the Newton-Raphson AC power flow methods and the
backward / forward sweep power flow (BFS), FACPF can get
the consistent results with the same precision but has much
higher calculation efficiency especially for weakly-meshed
networks [25].

The root-mean-squared (RMS) error of the voltage magni-
tude in (55), and the maximum absolute errors of the voltage
magnitude and angle in (56)-(58) are used to investigate the
performance of those LPFs.

1URMS =

√∑N

i=1
(Uiϕ − Ũiϕ)2/3N(ϕ = a, b, c) (55)

1Umax = max(|Uiϕ − Ũiϕ |, i = 1, ...,N,ϕ = a, b, c) (56)

1θmax = max(|θiϕ − θ̃iϕ |, i = 1, ...,N,ϕ = a, b, c) (57)

where,Uiϕ and θiϕ denote the approximate values solved with
the LPFs, Ũiϕ and θ̃iϕ are the exact values solvedwith iterative
loop-analysis method (FACPF).

The proposed LPF method is referred to LPLPF, other
methods in this section consist of LALPF [13] (H.W. Li et al.,
2019, a three-phase linear load flow solution based on loop-
analysis theory), AGLPF [10] (Garces A., 2015, a Linear
Three-Phase Load Flow for Power Distribution Systems),
POLPF [18] (Wang Y et al., 2017, linear three-phase power
flow for unbalanced active distribution networks with PV
nodes). As discussed in Introduction, the LALPF and AGLPF
are developed under rectangular coordinates and cannot deal
with PV buses. POLPF and proposed LPLPF are developed
under polar coordinates and can deal with PV buses. But the
Delta connection loads are not discussed in POLPF.

A. NORMAL CONDITION
For the normal condition for four test systems, the relative
results are listed in Table 1. Figure 4 shows the profiles of
voltage magnitude for the radial 123bus test feeder with four
LPFs and FACPF. In Table 1, the test feeder names including
‘‘Rd’’ denote the radial networks and the test feeder names
including ‘‘Lp’’ denote the weakly meshed networks (the
same below).

TABLE 1. Calculation results with different LPF methods for all test
systems.

FIGURE 4. The profiles of voltage magnitude for radial 123bus test feeder.
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FIGURE 5. The branch kW flows for the radial IEEE 123bus test feeder.

It can be seen from Table 1 and Figure 4 (mark with the
red solid circles are the exact values from FACPF), aiming
at the accuracy, LALPF and AGLPF have almost the same
results and perform the best. The reason is that the two linear
methods adopt the same linearized approximations for ZIP
loads. In addition, the line parameters of line model have not
been approximated under rectangular coordinates for LALPF
and AGLPF. The proposed LPLPF provides the much closer
results with LALPF and AGLPF. The maximum magnitude
errors are less than 0.01p.u for the solutions from those three
LPFs (LALPF, AGLPF and the proposed LPLPF) even the
minimum voltage magnitude is very low (it is only 0.886 p.u.
for the radial 615bus system). But the errors with POLPF are
relatively larger than other three methods. It can be seen from
Figure 4, for the radial 123bus system, the voltage level of
C-phase is the worst and the voltage level of B-phase is the
best. It can be seen that there are obviously larger errors for
POLPF when the voltage magnitudes are bad in C-phase.

Given that the operational voltage limit is typically
between 0.95 and 1.05 p.u., the proposed LPLPF can be capa-
ble of offering an enough accuracy level even under a very
heavily loaded system with bad voltage level. The proposed
LPLPF has less precision than LALPF and AGLPF under
rectangular coordinates if there are no PV buses, but LALPF
andAGLPF can’t deal with PV buses in the currentmodels, so
the proposed LPLPF is recommended when considering the
high penetration of distributed renewable generation in DPS.

Moreover, with the proposed LPLPF, the three-phase
branch reactive and active power flows can be obtained easily
with (39), but other three LPFs do not derive the calculation
formulations for the three-phase DPS. The benchmarks are
also obtained with FACPF. Define the mean error and the
root-mean-squared (RMS) error of the branch powers be,

1PMEAN =
1
3N

∑N

i=1
(Piϕ − P̃iϕ)

/
P̃iϕ, (ϕ = a, b, c)

(58)

1PRMS =

√∑N

i=1
[(Piϕ−P̃iϕ)

/
P̃iϕ]2/3N, (ϕ=a, b, c)

(59)

where, Piϕ denotes the approximate value solved with the
proposed LPLPF method and ˜Piϕ is the exact value solved
with FACPF. The error results are listed in Table 2. It can be
seen, the accuracy of the LPLPF in terms of kWflow is higher
enough.

TABLE 2. The calculation errors of branch flows for the radial IEEE
123bus with proposed LPLPF.

Figure 5 presents the branch active power flow profiles of
the radial 123bus test feeder with FACPF and LPLPF (the
red solid circles are the benchmarks from FACPF and the
blue hollow circles are the results from the proposed LPLPF).
In Figure 5, the x-axis scale information means that the
branches have been numbered with the terminal bus number
of this branch by adding a single quote. It can be seen that
the proposed LPLPF has a much high accuracy for almost all
branches of the radial IEEE 123bus test system.

The calculation time has been presented in Table 3. The
calculation time includes the coefficient matrix formation
and power results solving for all LPFs. The results are the
average value of 100 runs (the same below). Because the
coefficientmatrix dimension of the proposed LPLPF is half of
the coefficient matrix dimension of other three LPFs, LPLPF
has the fewest calculation time. FACPF needs to much more
time for it needs iterative calculations. Moreover, because its
coefficient matrix is a full matrix not the sparse matrix in
other three LPFs, LALPF spent much more time than other
LPFs for the large system [13].
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TABLE 3. Computation time results with different LPF methods (s).

In addition, comparing Table 3 with Table 1 suggests that
the proposed LPLPF obviously achieves a high computa-
tional efficiency with a bit worse calculation accuracy than
LALPF and AGLPF. The LPLPF is therefore suitable for
applications that require a large number of the iterative power
flow calculations in DPS.

B. ILL CONDITION
To further validate the algorithm’s ability to deal with ill-
conditioned network, the radial 37bus test feeders under
heavy load ratios are tested. The results are listed in Table 4
and the calculation time is shown in Figure 6.

TABLE 4. Calculation errors for 37bus in heavy ZIP loads with proposed
LPLPF for all test systems.

FIGURE 6. The histogram of calculation time with different methods in
heavy ZIP load.

It can be seen from Table 4, when load ratio increases,
the errors of voltage magnitude and phase angle increase
obviously. But considering the bad voltage (even less than

0.7 p.u.), the accuracy is satisfactory for most practical
applications in DPS with the proposed LPLPF as well as
LALPF and AGLPF. The histograms of calculation time
in Figure 6 show that the calculation time remains consistent
during the heavy load conditions for all LPFs. This is one of
the advantages of LPFs. Moreover, the proposed method has
the fewest time than others for its 3N∗3N coefficient matrix
rather not the 6N∗6N coefficient matrixes in other three
LPFs. When load ratio increases, the iterative FACPF use
more iterative calculations to meet the convergence accuracy.
Thus, the higher the load ratio is, more time FACPF spends.
Moreover, as discussed above, LALPF spends more time
because of its full coefficient matrix.

V. CONCLUSION
The three-phase LPF solution is particularly important in the
context of optimization operation and management of the
modern DPS. So in this paper, several approximations have
been derived first, and then a LPF model for unbalanced
three-phase power distribution system has been developed
based on the loop-analysis theory.

Compared with most other LPFs under rectangular coordi-
nates or under polar coordinates, the proposed LPLPF has a
3N∗3N coefficient matrix unlike other LPFs with the 6N∗6N
coefficient matrixes. So LPLPF has less calculation time than
other LPFs.

Several standard power distribution systems with different
load models and under heavy load ratio levels were tested.
Results proved the effectiveness and accuracy of the proposed
algorithm. The proposed LPLPF can provide a better accu-
racy and a higher calculation efficiency.

The proposed LPLPF provides a simpler, more robust, and
potentially faster power flow solution for the three-phase
unbalanced distribution networks. It can be effective to be
applied in optimal load flow, economic power dispatch, con-
tingency analysis, and reliability and security assessment of
smart distribution system especially with the high penetration
of distributed renewable generation into the system.

APPENDIX
DELTA CONNECTION LOAD TO STAR CONNECTION
LOAD CONVERSION
For the proposed method can only handle the phase-ground
loads (star connection load), so the delta connection load has
to be specially dealt with. Considering that the three-phase
voltage angles at the same bus are nearly symmetrical, that
is, there are 

U̇ab = U̇a − U̇b ≈
√
3U̇aej

π
6

U̇bc = U̇b − U̇c ≈
√
3U̇bej

π
6

U̇ca = U̇c − U̇a ≈
√
3U̇cej

π
6

(A.1)

Define the line P type load (delta connection load) vector
asPL = [Pab;Pbc;Pca] and QL = [Qab;Qbc;Qca] at the
terminal bus. Then reconsidering (5), the following equations
can be derived for a delta connection load (herein, to simplify
the derivation, the injected reactive powers from shuntBwere
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ignored).Uia 6 θa
Uib 6 θb
Uic 6 θc

−
Uoa
Uob
Uoc


= 8−1(R+ jX)M

 ((Pab + jQab)/U̇ab)∗

((Pbc + jQbc)/U̇bc)∗

((Pca + jQca)/U̇ca)∗


≈ (R̂+ jX̂)8−1

ej
π
6
√
3
M8

 (Pab − jQab)/Uoa
(Pbc − jQbc)/Uob
(Pca-jQca)/Uoc


≈ (R̂+ jX̂)diag

ej π6√
3

 1 0 −α
−α 1 0
0 −α 1

Pab − jQab
Pbc − jQbc
Pca − jQca


×

 1/Uoa
1/Uob
1/Uoc

 (A.2)

By comparing (A.2) with (5), the equivalent star con-
nection load, P̂ = [P̂a; P̂b; P̂c] and Q̂ = [Q̂a; Q̂b; Q̂c],
corresponding to the delta connection load can be obtained
as following,

P̂ − jQ̂ ≈
ej
π
6
√
3

 1 0 −α

−α 1 0
0 −α 1

 (PL − jQL)

=
(
√
3N+ jM)(PL − jQL)

2
√
3

(A.3)

Then (17) in section 2.3 can be obtained. And for a double-
phase delta connection load, the relative equations can be
derived similarly. Taking AB-phase for example,

[
P̂a, P̂b

]T
=

1
2
[1,−1]T Pab +

1

2
√
3
[1, 1]TQab[

Q̂a, Q̂b

]T
=

1
2
[1,−1]T Qab −

1

2
√
3
[1, 1]T Pab

(A.4)

For I type delta connection load, redeveloping (A.3), it has,

P̂I − jQ̂I

=
ej
π
6
√
3

 1, 0,−α
−α, 0, 1
0,−α, 1

(EPL − j EQL

) 1
√
3

Uab
Ubc
Uca


≈

1
3

 1, 0,−α
−α, 0, 1
0,−α, 1

(EPL − j EQL

)
8−1MT8Uo

=
1
12

(√
3N+ jM

) (
EPL − j EQL

) (√
3NT
− jMT

)
Uo

(A.5)

Expanding (A.5) and rearranging them, then (20) can be
derived. Similarly, for double-phase I type delta connec-
tion load, the relative equations can be derived similarly.

Taking AB-phase for example,

P̂Iab

≈
1
12

(
3 [1, 1]T Pab [1, 1]−

√
3 [1, 1]T Qab [1,−1]

+ [1,−1]T Pab [1,−1]+
√
3 [1,−1]T Qab [1, 1]

)

×

[
Uoa

Uob

]
Q̂Iab

≈
1
12

(
3 [1, 1]TQab [1, 1]+

√
3 [1, 1]T Pab [1,−1]

+ [1,−1]T Qab [1,−1]−
√
3 [1,−1]T Pab [1, 1]

)

×

[
Uoa

Uob

]
(A.6)

Based on (11), it can deduce the following equations,UabUab
UbcUbc
UcaUca

 = diag

 U̇ab
U̇bc
U̇ca

 U̇ab
U̇bc
U̇ca

∗

≈

UoaUoa + UobUob + UoaUob
UobUob + UocUoc + UobUoc
UocUoc + UoaUoa + UoaUoc


≈ 3

Uoa + Uob − 1
Uob + Uoc − 1
Uoa + Uoc − 1

 = 3
(
NTUo − e3

)
(A.7)

Then for Z type delta connection load, redeveloping (A.3)
too, it has,

P̂Zϕ − jQ̂Zϕ

=
ej
π
6
√
3

 1, 0,−α
−α, 0, 1
0,−α, 1

(EPL − j EQL

) 1
3

UabUab
UbcUbc
UcaUca


≈

1
2

(
N+ j

M
√
3

)(
EPL − j EQL

) (
NTUo − e3

)
(A.8)

Expanding (A.8) and rearranging them, then (22) can be
derived. Similarly, for double-phase Z type delta connection
load, the relative equations can be derived similarly. Taking
AB-phase for example,

P̂Zab

≈
1
2

(
[1, 1]T Pab [1, 1]+

1
√
3
[1,−1]TQab [1, 1]

)
× [Uoa,Uob]T −

1
2

(
[1, 1]T Pab +

1
√
3
[1,−1]T Qab

)
Q̂Zab

≈
1
2

(
[1, 1]T Qab [1, 1]−

1
√
3
[1,−1]T Pab [1, 1]

)
× [Uoa,Uob]T −

1
2

(
[1, 1]T Qab −

1
√
3
[1,−1]T Pab

)
(A.9)
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