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ABSTRACT Extensive research on tumor suppressor genes (TSGs) is helpful to understand the pathogenesis
of cancer and design effective treatments. However, using traditional experiments to identify TSGs is of high
costs and time-consuming. It is an alternative way to design effective computational methods for screening
out latent TSGs. Up to now, some computationalmethods have been proposed to predict newTSGs. However,
these methods did not contain a learning procedure to extract essential properties of validated TSGs, reducing
their efficiencies. In this study, a novel computational method was proposed to identify latent TSGs. To this
end, we downloaded the validated TSGs from the TSGene database (Version 1.0). These TSGs together
with other genes were represented by features that were extracted from protein-protein interaction networks
in STRING via a powerful network embedding method, Mashup. Then, thirty random forest models were
constructed and used to predict latent TSGs. 135 inferred TSGs were obtained, where 28 genes have been
included in the TSGene database (Version 2.0). Our method had better performance than some previous
methods according to the validated TSGs in the TSGene database (Version 2.0). For the rest 107 inferred
TSGs, some of them can be confirmed to be TSGs with solid literature support. Finally, our method can
overcome the defects that only genes with strong associations to validated TSGs can be identified because
we obtained several inferred TSGs that had weak associations to validated TSGs and can be novel TSGs
with high probabilities.

INDEX TERMS Tumor suppressor gene, network embedding method, mashup, machine learning, random
forest.

I. INTRODUCTION
Cancer is one of the leading causes of human death in the
world. Based on the information reported by World Health
Organization (WHO), more than 8.8 million people directly
die from cancer all over the world, which takes approximate
1/6 of all global deaths. The costs on cancer prevention, diag-
nosis, and treatment reach up to 1.16 trillion dollars [1]. Thus,
in the past years, lots of investigators devoted themselves to
study the main pathogeneses of cancers. Up to now, part of
them has been uncovered. However, we are still on a long way
to understand themechanism of cancers. According to current
knowledge, genetic background and environmental factors
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are two main causes for forming cancers [2]. For different
types of cancers, some related genes have been discovered.
However, there still exist hidden genes waiting for us to be
discovered.

The cancer-related genes can be simply divided into two
types: oncogenes and tumor suppressor genes (TSGs) [3].
In general, oncogenes can promote the tumor initiation, while
TSGs can protect cells from malignant alterations [4]. Based
on the two-hit hypothesis, which explains the genetic contri-
bution on tumor initiation [5], [6], it is more difficult for us
to discover TSGs than oncogenes. Identification of TSGs via
traditional experiments is of high costs and time-consuming.
With the development of computer science, a plenty of
advanced computational methods have been proposed, which
provide new ways to identify novel TSGs. In recent years,
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some studies investigated TSGs via designing computational
methods. In 2014, Yang et al. investigated TSGs based on
gene ontology (GO) terms and biological pathways [7]. Sev-
eral key GO terms and pathways were extracted via machine
learning algorithms, which were deemed to be important
factors for identifying TSGs. Later, Chen et al. proposed a
shortest path (SP)-based method to mine novel TSGs in a
protein-protein interaction (PPI) network based on current
confirmed TSGs [8]. 205 novel TSGs were proposed in
their study. Recently, Chen et al. further proposed two other
network-based methods for predicting novel TSGs [9]. These
two methods adopted Laplacian heat diffusion (LHD) and
random walk with restart (RWR) algorithms to search novel
TSGs in a PPI network, respectively. Obtained genes were
further screened by three tests. 140 genes and 41 genes were
discovered by these two methods, which were deemed to be
novel TSGs.

The previous methods proposed in [8] and [9] were all
network-based methods. However, they did not contain a
learning procedure to capture essential properties of validated
TSGs, reducing their efficiencies. Furthermore, methods
in [9] employed screening tests to improve the prediction
quality. However, they also excluded hidden TSGs with
weak associations to validated ones, that is, only genes
with strong associations to validated TSGs can be identified.
In this work, a novel computational method was proposed
to identify novel TSGs, which can partly overcome above-
mentioned shortcomings. Our method still employed PPI
networks reported in STRING [10]. A network embedding
algorithm, Mashup [11], was applied on these networks to
access the feature vector representations of genes. Then, sev-
eral random forest (RF) [12] models were built to learn the
differences between validated TSGs, retrieved from TSGene
database (Version 1.0) [13], and other genes, thereby pre-
dicting novel TSGs. 135 inferred TSGs were identified by
our method, in which several of them were included in the
updated TSGene database (Version 2.0). For some other
inferred TSGs, an extensive analysis was performed to prove
that they can be novel TSGs with high probabilities.

II. MATERIALS AND METHODS
A. MATERIALS
The purpose of the study was to find out latent
TSGs according to validated TSGs. Thus, we retrieved
validated TSGs from TSGene database (Version 1.0,
https://bioinfo.uth.edu/TSGene1.0/) [13]. 716 human TSGs
were obtained. These genes were also investigated in previous
studies [7]–[9]. Because we employed the PPI networks
reported in STRING, in which proteins are represented
by Ensembl IDs. Thus, we extracted the proteins of these
716 genes and mapped them onto their Ensembl IDs. After
removing Ensembl IDs that did not occur in the PPI net-
works, 631 Ensembl IDs, representing proteins of TSGs, were
accessed. For convenience, we denoted the set comprising
these 631 Emsembl IDs as S1.

In addition, to validate the performance of our method
for inferring novel TSGs, we further employed the
human TSGs reported in TSGene database (Version 2.0,
https://bioinfo.uth.edu/TSGene) [14]. 1,217 TSGs were
obtained. After similar process described in the above
paragraph, 1,011 Ensembl IDs were extracted and they
constituted the set S2. Compared with the Ensemble IDs
in S1, there were 449 Ensembl IDs in S2 − S1, that
is, 449 TSGs were added into the TSGene database
(Version 2.0).

B. PROTEIN-PROTEIN INTERACTION AND NETWORK
CONSTRUCTION
Similar to previous studies [8], [9], we also employed the PPI
networks reported in STRING (https://string-db.org/, Version
10.0) [10] to construct our method. However, all PPI net-
works were used in this work. In fact, the PPI information
in STRING reports the associations of proteins from several
aspects of proteins. Thus, for each protein aspect, a PPI
network can be constructed. In detail, from the downloaded
file ‘9606.protein.links.detailed.v10.txt.gz’, which contains
4,274,001 PPIs involving 19,247 human proteins, each PPI
contains two Ensembl IDs and eight scores, titled by ‘Neigh-
borhood’, ‘Fusion’, ‘Cooccurence’, ‘Coexpression’, ‘Exper-
iment’, ‘Database’, ‘Textmining’, ‘Combined_score’. All
scores are between 1 and 999. The first seven scores measure
the associations of proteins from seven different aspects of
proteins, while the last score ‘Combined_score’ integrates
above seven scores with a naive Bayesian fashion [15].
Because we did not know whether the integration scheme for
seven scores was optimal for building our method, the last
‘Combined_score’ was not adopted in our study. For other
seven scores, they were denoted by SN (p1, p2), SF (p1, p2),
SCO(p1, p2), SCE (p1, p2), SE (p1, p2), SD(p1, p2) and ST (p1,
p2), respectively.
Based on above-mentioned PPIs, we built seven PPI net-

works as follows. Since each network was generated in a
similar way, we only gave the description of the network
using ‘Neighborhood’ score. The network with ‘Neighbor-
hood’ score defined the 19,247 human proteins as nodes
and two nodes were adjacent if and only if the ‘Neigh-
borhood’ score between them was greater than zero. For
convenience, such network was denoted by NN . With same
procedures, other six networks were constructed, which were
denoted by NF , NCO, NCE , NE , ND, and NT , respectively. The
sizes of each network (i.e., number of edges) are shown in
Table 1.

In previous studies [8], [9], the methods were executed
on the PPI network with ‘Combined_score’. Although this
network can widely measure the associations of proteins,
it inevitably ignores some special aspects of proteins. Thus,
in this work, we directly used the individual seven PPI net-
works to design the method, which may contain more infor-
mation of protein, thereby providing more opportunities to
discover hidden TSGs.
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TABLE 1. Detailed information of seven networks.

C. NETWORK EMBEDDING METHOD
Seven PPI networks were constructed as mentioned in
Section II.B, which is one difference from previous studies.
On the other hand, previous studies did not contain a pro-
cedure to learn the essential properties of validated TSGs,
reducing the efficiencies of their methods. Thus, in this work,
we tried to employ a learning procedure on validated TSGs.
Because majority machine learning algorithms require the
input sample to be a vector, a powerful network embed-
ding method, Mashup [11], was employed to extract fea-
tures of proteins from above-constructed seven PPI networks.
Mashup is a compact network embeddingmethod [11]. It first
extracts the basic features of each node from each network
and then fuses several feature vectors, which are derived
from different networks, for the same node into one compact
vector. The features obtained by Mashup can abstract the
protein associations in a system level, which may include
informative essential properties of proteins. To date, it has
been applied to tackle several biological problems [16]–[23].
A brief description for extracting features via Mashup was as
below.

Given a PPI network Nj (j ∈ {N ,F,CO,CE,E,D,T }),
Mashup uses the random walk with restart (RWR) algo-
rithm [9], [24], [25] to access the raw features of proteins.
In detail, for a node in the PPI network Nj, the RWR algo-
rithm is executed on such network with this node as the seed
node. After RWR algorithm stops, each node in the network
receives a probability. Obtained probabilities are aligned in
a vector to generate the feature vector of the given node.
For formulation, the feature vector of pi on Nj was denoted
by V i

j . Clearly, seven feature vectors can be accessed from
seven PPI networks. It is necessary to fuse them into one
vector. On the other hand, the raw feature vector always has a
high dimension. A dimensionality reduction procedure can be
done simultaneously. Suppose X i represents the final feature
vector of protein pi andW i

j denotes the context feature vector
of pi in the network Nj. The following procedures are to
determine the optimal components in X i and W i

j . Let Ṽ
i
j be

a vector for protein pi in network Nj. Its components can be
determined by X i and W i

j as follows:

Ṽ i
jk =

exp((X i)TW k
j )∑

k ′ exp((X i)TW
k ′
j )

k = 1, 2, . . . , n (1)

where n represents the total number of different proteins in all
PPI networks. Clearly, the vector Ṽ i

j should be approximate

to V i
j as much as possible, thereby determining the optimal

values in X i and W i
j . Thus, mashup solves the following

optimization problem

minimize
X i,W i

j

1
n

m∑
j=1

n∑
i=1

DKL(V i
j ||Ṽ

i
j ) (2)

where m is the total number of networks and DKL(•) is the
function of KL-divergence (relative entropy).

In this study, the Mashup program was retrieved from
http://cb.csail.mit.edu/cb/mashup/. Default parameters were
used and we set the dimension of output vector to be 500.

D. RANDOM FOREST
RF [12] is a classic machine learning algorithm, which con-
sists of several decision trees. Although decision tree is a rel-
atively weak classifier. However, RF has been deemed to be
an excellent and strong classifier [26]. In bioinformatics and
computational biology, it is always an important candidate for
building different models [17], [27]–[32]. When constructing
a decision tree in RF, two random selection procedures are
adopted. The first one is used to generate the dataset. In detail,
randomly select samples, with replacement, which are as
many as those in the original dataset, to construct a dataset.
Based on samples in the above-mentioned dataset, the second
one is used to randomly select features for extending the
tree. After the predefined number of decision trees have been
constructed, a RF classifier is built. For a query sample, each
decision tree yields a predicted result. The RF integrates these
results via majority voting.

In this study, a tool ‘RandomForest’ in Weka was
directly employed, which implements the RF. Default param-
eters were used. The main parameter, number of deci-
sion tree, was ten. The Weka can be downloaded at
https://www.cs.waikato.ac.nz/ml/weka/downloading.html.

E. THE PROPOSED METHOD
As mentioned in Section II.A, 631 proteins (Ensembl IDs) of
human TSGs were accessed from TSGene database (Version
1.0).We tried to learn the essential properties of these proteins
via RF models. To this end, these proteins were termed as
positive samples, while the rest unlabeled proteins in the PPI
networks were deemed as negative samples. However, there
were 18,616 negative samples, which were much more than
positive samples. The RF model directly constructed on all
samples would have poor performance. Thus, 18,616 pro-
teins were randomly and equally divided into thirty parts,
where 16 contained 621 proteins and 14 comprised 620 pro-
teins. Proteins in each part were combined with positive
samples to constitute a dataset. Thirty datasets, denoted as
DS1,DS2, . . . ,DS30, were generated. A RF model was built
on each dataset.

Above-constructed RF models can learn some essential
differences between TSGs and other genes. Thus, they can
be further used to identify hidden TSGs from unlabeled
18,616 genes in the PPI network. For each of these genes,
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FIGURE 1. Flow chart to illustrate the procedures of the proposed method. The Mashup was applied on seven PPI
networks to encode 19247 genes, where 631 were validated tumor suppressor genes (TSGs). Rest unlabeled 18616 genes
were divided into thirty parts and TSGs were poured into each part to constitute a dataset. A random forest model was
built on each dataset and used to produce a probability of each gene not included in this model to be a novel TSG.
An average probability was calculated for each unlabeled gene and those with such values larger than 0.7 were selected
as inferred TSGs.

it was fed into 29 RF models (the RF model containing
it as a negative sample was not used). 29 predicted results
can be accessed. To improve the accuracy, we extracted the
probability of each gene to be a TSG (positive sample) rather
than the predicted class, that is, 29 probabilities of each gene
can be obtained. The average value of these probabilities was
calculated and picked up as the final measurement to indicate
its likelihood to be novel TSGs. Evidently, a gene with a
high average probability was more likely to be a novel TSG.
To select reliable TSGs, we can set a high threshold for the
average probability to screen out most possible genes. These
genes were called inferred TSGs in the following text.

The procedures described above are illustrated in Figure 1.

F. PERFORMANCE MEASUREMENTS
In this study, we first constructed thirty RF models. In these
models, proteins of TSGs were deemed as positive sam-
ples and others were termed as negative samples. Thus,
these models were binary classification models. Tenfold
cross-validation [33], [34] was adopted to test their per-
formance. For the predicted results in binary classification,
we generally count four values: true positive (TP), false

negative (FN), false positive (FP) and true negative (TN).
Accordingly, two measurements: Prediction accuracy (ACC)
and Matthews correlation coefficient (MCC) [17], [27],
[35]–[39] can be computed. Their definitions are as follows:
ACC=

TP+ TN
TP+ FN + FP+ TN

MCC=
TP×TN−FP×FN

√
(TN+FN )×(TN+FP)×(TP+FN )×(TP+FP)

(3)

Besides, we also integrated 30 RF models to infer novel
TSGs. Based on the TSGs reported in TSGene database
(Version 2.0) and not included in TSGene database (Version
1.0), that is, members in S2 − S1, we can evaluate the per-
formance of our method with Precision (P), Recall (R) and
F1-measure [17], [27], [40], which can be calculated by

R =
TP

TP+ FN

P =
TP

TP+ FP

F1− measure =
2× P× R
P+ R

(4)
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TABLE 2. Performance of three methods by comparing the inferred genes with new included genes in TSGene database.

FIGURE 2. Box plot to show the performance of thirty RF models.

III. RESULTS
A. PERFORMANCE OF THIRTY RF MODELS
The unlabeled genes in the PPI networks were deemed as
negative samples when constructing RF models, inducing
that negative samples were much more than positive samples.
A strategy described in Section II.E was proposed, resulting
in 30 datasets, on each of which an RF model was built. Ten-
fold cross-validation was adopted to evaluate these models.
The predicted results were counted as ACC and MCC, which
were shown in Figure 2. It can be observed that majority
ACCs were between 0.6 and 0.7, while most MCCs varied
between 0.2 and 0.35. The performance of these models was
not very high because some unlabeled genes may be hidden
TSGs. Anyway, they can still capture more or less essential
properties of TSGs, thereby helping infer novel TSGs.

B. INFERRED TUMOR SUPPRESSOR GENES YIELDED BY
OUR METHOD
Asmentioned above, 30 RFmodels were built. For each unla-
beled gene in the PPI network, it was feed into 29 RF models
as a testing sample because it took part in the construction of
one RF model. These 29 models yielded 29 probabilities to
indicate its likelihood to be novel TSGs. Clearly, the average
probability can fully represent such likelihood. The aver-
age probabilities of 18,616 unlabeled genes are provided
in Table S1. By setting the threshold of average probability
to be 0.7, 135 inferred TSGs were picked up.

Among 135 inferred genes, 28 genes were reported in
TSGene database (Version 2.0), that is, they were in the
set S2 − S1. If S2 − S1 was set as the benchmark testing
dataset, we can calculate P, R and F1-measure as mentioned
in Section II.F, which are listed in Table 2. They were 0.207,
0.062 and 0.096, respectively. Although they look low, they

were higher than those yielded by previous methods, which
would be analyzed in Section III.C.

C. COMPARISON WITH PREVIOUS METHODS
There were some previous studies focusing on identify-
ing TSGs with computational methods. In [8], a SP-based
method was proposed for inferring new TSGs. However,
their method used an old version of PPI network (Version
9.0) in STRING, which was quite different from the PPI
networks (Version 10.0) used in this study. Thus, it is not fair
to compare their results with ours. Here, we employed the
results in [9] to make comparisons, which adopted the same
version of PPI networks. There were two methods, namely
LHD-based and RWR-based methods, respectively, in such
study. 140 inferred genes were yielded by the RWR-based
method, while LHD-based method produced 41 inferred
genes.

Among the 140 inferred genes yielded by the RWR-based
method, 20 genes have been included in TSGene database
(Version 2.0). For the 41 genes produced by the LHD-based
method, only two genes were in TSGene database (Version
2.0). Likewise, we calculated the P, R and F1-measure for
these two methods, which are also listed in Table 2. They
were 0.143, 0.045 and 0.068 for RWR-based method, respec-
tively, while they were 0.049, 0.004 and 0.008, respectively,
for LHD-based method. These measurements were all lower
than those of our method, indicating the utility of our method.
In detail, the F1-measure of our method was about 0.03 and
0.09 higher than those of other two methods.

In addition, a Venn diagram was plotted in Figure 3(A)
to illustrate the numbers of common genes and different
genes in three inferred TSG sets. It can be observed that
among 135 inferred TSGs yielded by our method, two genes
were also predicted by other two methods, three genes were
only predicted by LHD-based method, 24 genes were only
identified by RWR-based method, and 106 genes were not
recognized by other two methods. Interestingly, the inferred
genes of our method were much similar to those of RWR-
based method. It is reasonable because we used the fea-
tures of proteins that were refined from the raw features
derived by the RWR algorithm. The detailed predicted results
of 135 inferred TSGs are listed in Table S2.

The LHD-based and RWR-based methods contained three
screening tests. The association test excluded the candi-
date genes without highest confidence associations (‘com-
bined_score’ no less than 900) to validated TSGs. In another
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FIGURE 3. Venn Diagrams to show inferred TSGs yielded by three methods using validated TSGs reported in TSGene database (Version 1.0). (A) Venn
Diagram to show all inferred TSGs yielded by three methods; (B) Venn Diagram to show inferred TSGs yielded by three methods, which were not
included in TSGene database (Version 2.0).

word, only candidate genes with highest confidence asso-
ciations to validated TSGs can be selected by these two
previous methods. However, this is not the case. To indicate
this fact, we picked up genes in S2 − S1 and extract all
PPIs between them and TSGs in S1. According to cutoff
values reported in STRING, we counted the numbers of PPIs
with ‘Combined_score’ in [0, 399], [400, 699], [700, 899]
and [900, 999] for each gene in S2 − S1, which are listed
in Table S3. Most genes in S2 − S1 had few PPIs with
highest confidence scores. The number of PPIs with highest
confidence scores (‘combined_score’ no less than 900) for
each gene in S2−S1 is counted in Figure 4. It can be seen that
there were 199 genes without PPIs with highest confidence
scores, meaning that these genes were impossible predicted
by LHD-based or RWR-based methods. For the 135 inferred
TSGs yielded by our method, 26 genes had no PPIs with
highest confidence associations to validated TSGs, in which
one was included in TSGene database (Version 2.0). It is
indicated that our method can deeply mine novel TSGs based
on validated TSGs because it can infer candidates with weak
associations to validated ones.

IV. DISCUSSION
41 inferred genes was obtained by the LHD-based method
and RWR-based method yielded 140 inferred genes [9].
In this study, we designed a novel method with a learning pro-
cedure for identifying novel TSGs. 135 inferred TSGs were
obtained. Among these genes, 28 genes have been included
in TSGene database (Version 2.0), indicating they were actual
TSGs. Of the remaining 107 genes, 86 genes were exclusively
predicted by our method (Figure 3(B)), that is, they were

FIGURE 4. Distribution of TSGs in TSGene database (Version 2.0) but not
in TSGene database (Version 1.0) based on their PPIs with highest
confidence associations to TSGs in TSGene database (Version 1.0).

not identified by LHD-based or RWR-based methods. These
inferred TSGs can be a useful complement to the inferred
TSGs reported in previous studies. Here, we selected some of
them to make analyses, which are listed in Table 3. Related
experimental studies confirmed that they can act as tumor
suppressors, validating the reliability of our results. Accord-
ing to the published studies support, we divided these inferred
TSGs into two groups: (I) Inferred TSGs with solid literature
support; and (II) Inferred TSGs only with a considerable
degree of functional relevance, which require more intensive
studies. The detailed analyses for each gene are presented
below.

A. INFERRED TSGS WITH SOLID LITERATURE SUPPORT
RERG encodes a Ras superfamily small GTP binding and
hydrolyzing protein (GTPase). RERG has been predicted to
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TABLE 3. Detailed analysis of important inferred TSGs yielded by our method.

be closely connected with the inhibition of breast cancer
cell proliferation and tumor formation [41], and its expres-
sion has correlated inversely with patient survival and the
development of distant metastases [42]. Significantly hyper-
methylated RERG was also observed in colorectal adenocar-
cinoma [43], [44], breast cancer [45], and nasopharyngeal
carcinoma [46]. Recent publications have shown that RERG
participates in tumor suppression by regulating extracellular
signal-regulated kinase (ERK) and nuclear factor (NF)-κB
signaling pathway in breast cancer [45], nasopharyngeal car-
cinoma [46] and prostatic carcinoma [47]. So far, the function
of RERGL is unknown, however, protein alignment suggests
that the protein encoded by RERGL shares the majority of
conserved regions and GTP-binding regions with the protein
encoded by RERG. Depletion of RERGL was observed in
colorectal cancer patients [48]; and the expression of RERGL
was significantly correlated with the overall survival time
with colorectal cancer patients [49]. The possibility of tumor
related characteristics of RERGL was also highlighted by
two reports, which found five mutations in the colorectal
cancer tumor from five colorectal cancer cases [50], [51].
Therefore, it is reasonable to forecast that RERG and RERGL
may function as TSGs.
BMP5 encodes a member of the bone morphogenetic

protein family, which is part of the transforming growth
factor-beta (TGF-β) superfamily. Although BMPs have been
originally identified by their ability to induce bone and
cartilage development [52], it has been shown to affect
tumorigenesis in a variety of tumors [53]. For exam-
ple, BMP5 is down-regulated in various human cancers,

including melanoma [54], adrenocortical carcinoma [55],
breast cancer [56], and pancreatic cancer [57]. Two recent
studies uncovered the distinctive role of BMP5 in sporadic
colorectal cancer (CRC). One is a genomic and transcrip-
tomic profiling based study, which identified the common
alterations in BMP5 and its effect on cell growth and migra-
tion, implying its potential tumor suppressor function in
human CRC [58]. The other study in CRC determined BMP5
is the direct target of miR-32, an oncogene, and loss of
tumor suppressor BMP5may partially due to the miR-32 dys-
regulation. Therefore, BMP5 may definitely be a potential
TSG [59].
RASD1 is a member of Ras superfamily of small GTPases

coding gene and is induced by dexamethasone. RASD1 is
localized to human chromosome 17p11.2, a region associated
with a high incidence of heterozygous deletions and deletions
in cancer [60], [61]. SinceRASD1 has ∼35% similarity to
each major RAS subfamilies [62], the available evidence
suggests that unlike other RAS family members, RASD1
may play different roles in various cancer cells. Overexpres-
sion of RASD1 results in inhibition of the growth of breast
cancer, renal cell carcinoma and lung adenocarcinoma cell
lines [63], [64]. A recent study showed that overexpressing
RASD1 had no significant influence on the proliferation of
glioma cells, but inhibited glioma cell migration and inva-
sion [65]. The study also found that high levels of RASD1
predict good survival in patients with astrocytoma [65].
Therefore, RASD1 may be a potential tumor suppressor.

Slit is a family of secreted extracellular matrix proteins,
which regulate neuronal orientation and branching during
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nervous system development. In mammals, three SLIT genes,
SLIT1, 2 and 3, have been characterized to date. The role
of SLIT1 as a tumor suppressor gene has been discussed in
our previous study [9]. SLIT2 is frequently inactivated in
various cancers [104]–[108] and its tumor suppressive role
has been well-studied. It has been reported that hypermethy-
lation and subsequent down-regulation of SLIT3 are found in
a variety of cancers including thyroid cancer [66], pancreatic
ductal adenocarcinoma [67], gastric cancer [68], colorectal
cancer [69], nasopharyngeal cancer [70], cervical cancer [71],
ovarian cancer [72], lung carcinoma [73] and hepatocellular
carcinoma [74]. In addition, SLIT3 has been shown to inhibit
tumor growth in mouse models [75] and impair cancer cell
invasion and migration [66], [73], [76], suggesting that SLIT3
acts as a tumor suppressor in a variety of cancers by repress-
ing the tumor growth and progression.
TP53AIP1 encodes p53AIP1 protein, a mitochondrial

membrane protein and the downstream target of p53 tumor
suppressor that plays an important role in the tumor sup-
pressor p53 dependent apoptotic signaling [78]. TP53AIP1
is activated by UV exposure, causing its protein to accu-
mulate in mitochondria and is significantly increased during
UV-induced apoptosis [77], [78]. Some studies have shown
that TP53AIP1 plays a role in the progression of different
cancer types. For example, TP53AIP1 has been shown to be a
prognostic factor in primary non-small cell lung cancer [79].
TP53AIP1 was detected to be significantly reduced in breast
cancer tissues. Moreover, the survival rate of breast cancer
patients with low TP53AIP1 levels is lower than those with
high TP53AIP1 levels [80]. Truncating TP53AIP1 mutations
have also been suggested to increase the risk of prostate can-
cer [81]. Overexpression of TP53AIP1 up-regulates p53 lev-
els in liver hepatocellular carcinoma cells, thereby inducing
apoptosis and cell cycle arrest [82]. Therefore, TP53AIP1
may definitely be a potential TSG.
BRMS1L, as another predicted TSG, shares 57% identical

amino acid sequence with BRMS1, raising the possibility that
they have similar functions. It is well known that BRMS1 is
a tumor suppressor that is involved in the ability of many
tumors [83]–[86]. However, functional studies of BRMS1L
have only recently been reported. It has been reported that
BRMS1L is a novel downstream target of the p53 family and
may be an inhibitor of cancer cell invasion and migration [87]
through regulation of Wnt signaling pathway [88], [89],
including breast cancer [88], adenoid cystic carcinoma [90],
lung cancer [91] and ovarian cancer [89], [92]. Recent pub-
lications also suggested that reduced BRMS1L expression is
associated with poor prognosis in breast cancer [88], ovarian
cancer [89], glioma [93]. Therefore, BRMS1L might act as a
putative cancer metastasis suppressor and a candidate for a
clinical prognostic marker.

B. INFERRED TSGS WITH A CONSIDERABLE DEGREE OF
FUNCTIONAL RELEVANCE
RPS6KA1 and RPS6KA3with high probabilities (no less than
0.800) yielded by our method encode ribosomal S6 protein

kinase (RSK) 1 and RSK2, respectively, which are widely
expressed and respond to many growth factors, peptide hor-
mones, and neurotransmitters. RSKs appear to have impor-
tant roles in a variety of cellular processes, including gene
transcription, cell proliferation, cell growth, and differenti-
ation [109]. Intriguingly, our understanding of RSK func-
tion in carcinogenic process remains inconsistent and is also
complicated by the fact that different RSK isoforms may
manifest opposing functions. For example, in prostate cancer,
expression of RSK1 and 2 proteins, analyzed by Western
blot analysis, have been previously shown to increase when
the cancer is localized in the primary site [110] and in bone
metastases [111], which provide strong evidence that RSKs
is an important driver in prostate cancer progression in bone.
In vivo evidence of RSK function in head and neck squa-
mous cell carcinoma (HNSCC) showed that higher RSK2 lev-
els correlated with increased metastasis and knockdown of
RSK2 in human HNSCC cells also reduced the metasta-
sis of xenografts in mice, whereas RSK1 has no effect on
HNSCC metastasis [94]. However, it has been reported that
RSK2 plays an important role in the DNA damage path-
way that maintains genomic stability by mediating cell cycle
progression and DNA repair [95]. Another strong evidence
suggests that RSK2 deficiency can result in dramatically
decreased IFNγ secretion, leading to immunosuppression
and accelerated colon cancer metastasis and growth [96].
Based on recurrent mutations in RPS6KA3 (9.6%) observed
in human liver tumors, some scholars believe that since
RSK2 is a known inhibitor of the RAS/MAPK pathway,
RSK2 can act as a tumor suppressor and its inactivation can
lead to activation of the RAS pathway [97]. To fully unravel
the role of RPS6KA1 and RPS6KA3 in the regulation of
tumorigenesis, further experiments based on different tumor
types and RSK isoforms are still needed to elucidate the
underlying mechanisms.
PPP1R13B was predicted by our method as a potential

TSG. Although there is no direct evidence to confirm such
gene as an actual TSG, it is quite reasonable to speculate
that PPP1R13B may be a latent TSG based on its signifi-
cant relationship with tumorigenesis reported in recent pub-
lications. According to recent publications, PPP1R13B is a
major member of the apoptosis-stimulating proteins of the
p53 family (ASPPs) [98]. Previous studies have reported that
the PPP1R13B-p53 complex can promote p53-induced apop-
tosis and regulate apoptosis by specifically enhancing the
ability of p53 to bind to DNA and acting on the pro-apoptotic
gene promoter [99], [100]. Considering that p53-associated
genes, such as PPP1R13B, are strongly associated with the
initiation and progression of tumor, PPP1R13B is a potential
TSG.

The next identified gene, TRADD encodes tumor necrosis
factor receptor type 1-associated DEATH domain protein that
mediates both cell death and inflammatory signals. As for
its role in the development of tumors, although there are not
enough direct reports to confirm that this gene triggers the
occurrence or development of tumors, there are some related
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clues. For example, TRADD is located within chromosome
16q22.1, a region that frequently loses heterozygosity in var-
ious tumor types [101], [102]. A recent in vitro experiments
demonstrated that TRADD is a target protein required to
mediate receptor-interacting protein kinase 3 (RIP3) indepen-
dent apoptosis, because TRADD knockdown inhibits TNFα-
induced RIP3 knockdown of caspase activation and apoptosis
in L929 cells, and recovery of TRADD expression rescues
L929 cells from TNFα induction sensitivity [80]. In vivo
experiments indicate that TRADD deficiency in mice acceler-
ates tumor formation in a chemically induced carcinogenesis
model [103], implying its potential contribution as a tumor
suppressor.

As discussed above, several inferred genes can be novel
TSGs, indicating that our proposed method can really extract
hidden TSGs. Furthermore, four above-discussed genes:
RERG, RERGL, RASD1 and BRMS1L, had weak associations
with validated TSGs in S1. It is impossible for LHD-based and
RWR-based methods to predict them. However, they were
identified by ourmethod. For the rest inferred genes, we listed
them in Table S2. It is believed that some of them can be
actual TSGs.

V. CONCLUSION
In this study, we proposed a novel computational methodwith
a learning procedure to identify novel TSGs. This method
used the features derived from PPI networks via a powerful
network embedding algorithm. A number of RF models were
built, which can learn essential differences between TSGs and
other genes. The final obtained 135 inferred TSGs were pro-
duced by these RF models. Many of them can be confirmed
to be novel TSGs. Hopefully, the new findings in this study
can provide new insights for investigating TSGs.
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