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ABSTRACT Extracting object skeleton and its scale features in natural images is helpful for object detection
and recognition in computer vision. In order to advance the location accuracy of object skeleton pixels,
a new method via multi-task and variable coefficient loss function is proposed in this paper. Adopting the
hierarchical integrationmechanism tomutually refine captured features at different network layers; a specific
variable coefficient loss function is designed for multi-class imbalanced data handling problem, such as the
skeleton pixels in natural images are always far less than the non-skeleton pixels; the regression algorithm is
an added deep learning branch in the skeleton extraction network assisting the improvement of recognition
accuracy. Besides, not only the skeleton pixels and its classification can be obtained, but also its scales
are predicted without disturbing skeleton acquisition process. The experimental results verify that both the
skeleton accuracy and the generalization abilities are promoted benefiting from the regression task and the
new loss function in the new method, as satisfactory results are achieved on three public datasets, i.e., SK-
LARGE, SK-SMALL, and WH-SYMMAX, which are indicated by F-measures and precision/recall curves.
The results further demonstrate that the proposed method is superior to the best skeleton extraction method
available currently.

INDEX TERMS Skeleton extraction, Softmax function, regression algorithm, skeleton scale prediction,
deep learning.

I. INTRODUCTION
As a high-level feature, skeleton has the characteristic of
compactly representing the shape and structure of objects.
With the development of artificial intelligence and deep
learning techniques, identifying the object skeleton automat-
ically from natural images is becoming achievable [1]–[3].
At present, image semantic segmentation is deep researched,
meanwhile the machine learned features are more and more
fine benefitting the skeleton extraction in natural images.
Importantly, the skeleton extraction methods are successfully
applied to many fields [4]–[10], such as image retrieval,
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scene text detection, human action recognition, gesture
recognition, and medical examination.

The object skeleton is actually the symmetry axis treated
as one shape descriptor, which possesses geometric char-
acteristics (e.g., the size and angle metrics) and topology
structures (e.g., the connection among different components)
[14]. Object skeleton extraction from natural images means
collecting all image pixels at the central of object contours
without segmentation in advance. There are a mass of algo-
rithms published recent years concerning the skeleton extrac-
tion technique [11], [12], [15], [16], and they are roughly
sorted into three categories: (a) traditional image process-
ing methods, that detect the skeleton according to the rel-
ative position of contours and the symmetry axis; (b) early
machine learning based methods, which use hand-crafted
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FIGURE 1. Brief illustration of our proposed method and some other
skeleton extraction methods. (a) based on VGG16 network, FSDS method
[11] fuses side-output features at different stages to extract object
skeleton; (b) the Hi-Fi method [12] combines FSDS and RCF [13] methods
to refine the skeleton; (c) in our proposed approach, we take hierarchical
integration, regression algorithm, and new Softmax function to advance
skeleton accuracy.

and multi-scale features of every pixel with surrounding pix-
els to train the classifier for selecting skeleton pixels; and
(c) recently, the fully convolutional neural (FCN) network is
widely used for image feature recognition, also for skeleton
extraction.

Wemake a survey on the development of different skeleton
extraction methods. To be specific, many early image pro-
cessing methods [17]–[22] depend on the hypothesis that the
skeleton stands between two parallel edges. The intensity
gradient is used to calculate the edge pixels, and the skeletons
are locked through the parallel edges. While, the limitation
of this method is that the foreground and the background of
test images should be easily distinguished. Besides, for com-
plex scene of images, the computation complexity is huge
[23], [24]. Afterwards, with the raising of machine learning
techniques, researchers use hand-crafted features to train the
classifier and calculate the predicted regression of skeleton
pixels [25]–[28]. Limited by the pretreatment requirement,
these traditional machine learning methods can not work
with complex scenes, and they are also time consuming in
pixel-by-pixel class prediction [29], [30]. Nowadays, the con-
volutional neural network (CNN) is extensively used to clas-
sify and predict features with automatic learning methods
[31]–[33]. Long et al. [34] propose fully convolutional net-
work (FCN) to solve pixel classification end to end and
implement image semantic segmentation more efficiently.
The HED in [35] pioneers side-output on the inner convolu-
tional layers of FCN structure for multi-scale edge detection.
Inspired by HED, the FSDS [11] (as shown in Fig. 1 (a))
uses scale-associated side-outputs (SSOs) to solve the scale
unknown problem in skeleton detection. The side-output
residual network (SRN) [36] based on HED as well, which
employs deep to shallow residual connections to catch rich
semantic features, so as to strengthen the shallower layers
to distinguish real skeleton from local reflection structure.
Liu et al. [13] propose a precise edge detector to catch
rich convolutional features (RCF). In view of the merits of
FSDS and RCF methods, Zhao et al. [12] present the hier-
archical feature integration (Hi-Fi) mechanism (as shown in
Fig. 1 (b)). Based on VGG16 network, we design new regres-
sion prediction method and Softmax loss function for skele-
ton extraction referring to the hierarchical structure raised in
COB [37] and Hi-Fi, as shown in Fig. 1 (c).

Based on the research, we conclude the tasks of object
skeleton extraction into three procedures: (1) judging and
selecting skeleton pixels in the image; (2) quantizing the
skeleton pixels output at every stage into scale-associated
categories; (3) predicting specific scale of each skeleton pixel.
The hierarchical feature integration method mainly solves the
first two problems, which is adopted and advanced in our
method to achieve better performance on these three prob-
lems. The most important contributions of the new proposed
method as follows:

• The regression task added to the hierarchical convolu-
tional network facilities the accuracy of skeleton pixel
classification and prediction;

• A new variable coefficient loss function is put forward
to deal with the multi-class imbalanced data handling
problem;

• The performance of different hierarchical level networks
for skeleton extraction is discussed comprehensively in
the paper.

Further, we conduct sufficient experiments on SK-SMALL
[11], SK-LARGE [14], and WH-SYMMAX [15] datasets to
verify the skeleton accuracy and the generalization abilities of
the proposed method with better precision/recall (PR) curves
and F-measures. The rest arrangement of this paper is listed:
section II provides a review of related methods. Section III
includes some methodologies that are essential to skeleton
feature extraction. The fourth section gives experiment results
of the proposed method and other related methods on three
datasets. The fifth part briefly summarizes the contribution
of this paper and the possible further works.

II. RELATED WORKS
Since the CNN was pioneered in machine learning in 2012,
it has boomed in image semantic recognition field,
and successfully applied to many different applications
[38]–[40]. The most famous peculiarity of CNN is that it has
the ability to automatically learn multi-level features through
multi-layer structure: the shallower convolutional layers have
smaller receptive fields capturing local features; deep layers
use larger receptive fields to learn senior semantic features.
The deep abstract features neglect size, position, and orienta-
tion properties of objects that facilitate image recognition.
However, the contour information is too small to be lost,
which ruins the precise of image segmentation. In order to
eliminate the deficiency of CNNs, the FCN proposed in [34]
converts all fully connected layers of CNN into convolutional
layers. The salient distinction of pixel-level classification
achieves exact segmentation.

In recent years, some excellent skeleton extractionmethods
have been put forward. The FSDS method in [11] bases on
FCN and HED to propose SSOs added network structure.
More precisely, every SSO outputs several scale-associated
skeleton maps under the supervision of ground-truths; the
skeleton map of the same scale generated by different
SSOs will be weighted average with a scale related weight,
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here the operation of weighted average utilizes an 1 × 1
convolutional layer to accomplish the task, this method can
be seen from Fig. 2(c), because we believe that different
scale maps have different weights. Finally, the object skele-
tons are extracted by fusing among multi-scale side-outputs.
Afterwards, the LMSDS method [14] which is the progres-
sion of FSDS uses SSOs for skeleton localization and predic-
tion. The added SSO branch as a regression task applied to
skeleton prediction improves the skeleton detection accuracy
compared with FSDS.

In addition, the Hi-Fi method [12] presents hierarchical
feature integration and bidirectionalmutual refinement strate-
gies for skeleton detection, that enhances the ability of cap-
turing enrich features of objects. The most vital point is that,
it has verified that hierarchical feature fusion in convolu-
tional network structure is better than non hierarchical feature
fusion. A quantity of experiments of Hi-Fi manifest that it has
better performance than FSDS in terms of skeleton extraction
accuracy.

Above all, we have identified the advantages of different
algorithms: (1) SSO plays an important role in skeleton
extraction tasks based on deep learning; (2) multi-task
(i.e., skeleton detection and skeleton scale prediction)
can improve skeleton detection accuracy generally; and
(3) the hierarchical feature integration network optimizes
other skeleton extraction network structures. Therefore,
we adopt these advantages in different algorithms to improve
our method.

III. METHODOLOGY
In order to improve the accuracy of object skeleton extraction
more than the current methods in natural images, we propose
a new network architecture based on the state-of-the-art
network. Considering the distribution of skeleton pixels in
images is relatively less, resulting in learning sensitivity
reduction of feature, we design a new variable coefficient loss
function to handle this problem. Besides, we systematically
summarize the classification of skeleton pixels and genera-
tion solutions of skeleton maps using deep learning, together
with the skeleton scale prediction using regression algorithm.

A. NETWORK ARCHITECTURE
The fundamental structure adopts VGG16 network [41],
which has been successfully applied to object classifica-
tion and detection in computer vision [42–44]. The network
basically consists of 13 convolutional layers and three fully
connected layers. The whole conv-layers are divided into five
stages connecting to pooling layers (typically a 2×2 window
with stride 2), which are used to change the sizes of receptive
fields. In fact, with the increasing of the receptive field sizes,
useful skeleton information captured at each stage are becom-
ing increasingly rough. Table 1 lists the sizes of each receptive
field at different stages. Based on VGG16 structure, we uti-
lize some modified strategies to lift the skeleton extraction
accuracy: on each layer of the network, the scale-associated
side-output is added to the network to capture more edge

TABLE 1. The sizes of the receptive fields (RF) at different stages based
on VGG16 network [41] and the scale classification sets.

FIGURE 2. The brief network architecture of proposed skeleton extraction
method. (a) represents the network with four hierarchies. It includes five
stages of convolutional layers (marked as CONV(x)), and the side-outputs
(SOs) of feature maps connected to every convolutional layer are fused in
four-level hierarchies. (b) and (c) are particular structure of H1, and the
outputs of A to D of (b) are the inputs of (c). Besides, the E to H of (b) are
the inputs of H2.

and skeleton information; the hierarchical network structure
is good at learning richer context information and achieving
mutual refinement among different layers; the regression task
is used for scale prediction which plays an important role in
skeleton extraction.

Concretely speaking, the new network architecture has
four hierarchies as shown in Fig.2. In Fig. 2(a), the leftmost
column are five stages of convolutional layers: each of the

171274 VOLUME 7, 2019



Y. Xiao et al.: Improved Skeleton Extraction Method via Multi-Task and Variable Coefficient Loss Function in Natural Images

FIGURE 3. The illustration of the new network structure. For the sake of simplicity, only one level (H-1) is taken
as an example. On the left of the figure, the first column shows the network structure divided into five stages;
the second column represents the H-1 level obtained by the integration of two adjacent stages (i.e., two
adjacent stages), and the blue layer on the right represents the Euclidean loss layer; the third column is the
outputs of the classification task and the regression task at different stages. The right side of the figure shows
the final output of the integration at different stages.

first two stages (i.e., CONV1 and CONV2) contains two
convolutional layers; the last three stages (i.e., CONV3,
CONV4, and CONV5) contain three convolutional layers
in several. Specifically, because of the pooling layers exist
in the leftmost network, different scales feature maps will
be obtained at different stages. In order to compensate the
loss from shallow layers (early layers) to deep layers (later
layers), at different levels, the feature maps generated by
the convolutions of two adjacent phases are fused by eltwise
operation. After feature information fusion, the obtained fea-
ture maps have two branches: Firstly, the side output includes
skeleton classification and skeleton scale prediction, which
is different from the Hi-Fi network, that only one task is
included; Secondly, as the input of the next level, two adjacent
stages produce one side output, therefore four different scale
side outputs are generated at H1 level. At last, after the ‘slice’
and ‘concat’ operations of the feature maps, a final fused
output will be generated. The processing approaches of other
hierarchies, i.e., H2, H3, andH4 are similar. It should be noted
that due to the pooling layers, the feature maps at adjacent
deep convolution are smaller than the shallow layer (early
layer), so it is necessary to fuse the feature maps of different
scales by upsampling and cropping operations.

Generally, auxiliary task is helpful for skeleton extraction,
so the logistic regression model is established and added to
the new network architecture. Under the condition of linear
correlation, the quantitative relationship between two or more
independent variables and dependent variables is called mul-
tiple regression analysis. Linear regression can be used to fit
a prediction model with the real data set Y and the variable
data set X , and then for any new data of X , the corresponding
value in Y can be predicted using this fitted model, usually Y
is a real data instead of a category. For the scale prediction
task of skeleton pixels, the scale is a specific value, then

FIGURE 4. The structure of SO(x)-x with Euclidean loss and softmax loss
operations, the details of the design can be found on the right side of
Fig. 2(b).

FIGURE 5. The fusion among different side-outputs in 1st-level hierarchy
and 2nd-level hierarchy, respectively. The details of fusion operation can
be seen from Fig. 2(C).

the task of skeleton scale prediction can be transformed to
a regression problem. The specific strategy of this paper has
two aspects: the Euclidean loss function added to SO(x)-x
conducts a regression task, which is used to predict skeleton
pixels; the variable coefficient Softmax loss function added
to SO(x)-x is applied to classify pixels, as shown in Fig. 4.
Because every hierarchy has multiple side-outputs, differ-

ent SO(x)-xs at each hierarchy need to be fused. The fusion
method on the first and second hierarchies (i.e., H-1 and H-2)
are illustrated in Fig. 5. In order to capture the features prefer-
ably, we fuse the features of Fuse-1 and Fuse-2 outputted
by adjacent hierarchies of H1 and H2 respectedly, it can be
shown in Fig. 6.

As exhibition of the figures, there exists quite a few clas-
sification and regression tasks in the network architecture.
In the specific calculation of pixel skeleton classification
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FIGURE 6. The fusion between multiple hierarchies.

and scale prediction, only the final feature fusion results are
adopted. For instance, as for H-1 and H-2, the Fuse-1-2 is
used for the final classification and regression prediction,
while the Fuse-1 and Fuse-2 are only used as the interim
parameters in training phase.

In the network structure, according to the change of recep-
tive fields from small to large, for stage (k), the number of
categories with scale of side output is k-1. On account of
the sizes of receptive fields at different stages are various,
the network can learn multi-scale information from low-
level to object-level. For example, the convolutional layers
of stage two can capture the skeleton pixels with scales equal
to or less than 14, and the scale size of 196 are captured at
stage five. Fig. 3 shows the intermediate results of all stages.
In addition, based on the VGG16 structure, the hierarchical
network structure can establish up to four levels, i.e., H-1,
H-2, H-3, and H-4.

B. VARIABLE COEFFICIENT LOSS FUNCTION
The Softmax layer is connected to the last convolutional
layer at each stage to deal with multi-class classification task
in skeleton extraction. In fact, the Softmax is always used
in multi-class classification problems, mapping outputs of
multiple neurons into values at (0, 1) interval; the sum of all
output values equals to 1; and the selected prediction corre-
sponds to the largest value of Softmax. Then the parameters
of feature model are trained by minimizing the Softmax loss
function.

The Softmax loss function is defined as follows: Firstly,
in equation (1), J (θ ) is marked as the loss function, m is the
number of samples in training dataset, k is the amount of cat-
egories. Specifically, a is the balance factor we defined, that’s
a new class-balancing weight of the loss function. The label
y can take any k different values. As in (2), 1{·} represents a
indicator function, so that 1{a true statement} evaluates to 1,
and 1{a false statement} evaluates to 0. So as for the training
set (x(1), y(1)), · · · , (x(m), y(m)), there is y(i) ∈ 1, 2, · · · , k .
P represents the probability of classifying x into category j.
Furthermore, the model parameter θ is trained to minimize
the loss function J (θ ).

J (θ ) = −
1
m

 m∑
i=1

k∑
j=1

ajyjlogPj

 (1)

yi = 1{y(i) == j} (2)

Pj =
eθ

T
j x

(i)∑k
i=1 e

θT1 x
i

(3)

When training with deep learning method, the numbers of
positive and negative samples always lack of balance. In order

to overcome this problem, many scholars have adopted differ-
ent schemes, such as the program in HED: since the numbers
of edge pixels and non-edge pixels in images are extraordi-
nary imbalanced, that means the non-edge pixels are much
more than the edge pixels, the following balance coefficients
are adopted when calculating the loss:

For the positive samples: apos = 1− Yneg
|Y | ;

For the negative samples: aneg = 1− Ypos
|Y | .

Pseudo Code 1 New Softmax Loss Funtion
Input: Original image
Output: Loss value
1: Calculate the number of skeleton pixels in each category

(i = 1, 2, · · · , k);
2: % e.g., the amount of skeleton pixels with category 1.
3: Calculate the loss of each category: category_lossi;
4: % e.g., the loss of skeleton scale with category 1.
5: for i = 1 to k do
6: Compute |Y1|, |Y2|, · · · , |Yk | and |Y |;
7: Compute ai with equation (4);
8: % e.g., a1 = 1− |Y1|

|Y | .
9: end for
10: for i = 1 to k do
11: Loss+ = ai × category_lossi;
12: end for

In skeleton extraction algorithm, the number of skeleton
pixels is pretty less than the number of non-skeleton pixels,
then the programs of [46], [47] use the same balance coef-
ficient a of HED is used to handle this problem, while it is
only effective for binary classification. However, the skeleton
pixel belongs to multi-class problem, so it is necessary to
propose a new appropriate balance coefficient for multi-class
problem. Therefore, we define ai, (i ∈ 1, 2, · · · , k) to adjust
the weights of different skeleton pixel scales. The coefficient
ai is described in (4).

ai =
|Y | −

∑k
j=1,j6=i |Yj|

|Y |
= 1−

|Yi|
|Y |

, (i ∈ 1, 2, · · · , k)

(4)

where |Y1|, |Y2|, · · · , |Yk | represent the amount of pixels
with different scales, the category of which corresponding
to the number in {0, 1, · · · , k − 1}, and |Y | in (5) repre-
sents the amount of all skeleton pixels with different scales
in the image, that’s also regarded as skeleton map.

|Y | = |Y1| + |Y2| + · · · + |Yk | (5)

For the minimization of J (θ ), the iterative gradient descent
method is applied to handle the task. After derivation, we get
the gradient formula (6).

h

θj

J (θ ) = −
1
m

m∑
i=1

[
ajx(i)(yi − pj)

]
(6)

The particular calculation processes of the new loss
function are presented in Pseudo Code 1.
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FIGURE 7. Calculating the ground truth of classification and regression
tasks.

C. GROUND TRUTH GENERATION DURING TRAINING
In our network structure, there are two types of tasks, one is
skeleton classification, and the other is the regression skele-
ton scale of different network model stages. According to
these tasks, in the training stage, the image and label data
as the input, and the label data contains the initial skeleton
scale. In the training phase, we need to generate three types
of truth values (as shown in Fig. 7) according to the initial
skeleton scale, which are skeleton category, regression scale
and whether it is skeleton pixel or not. The specific algorithm
is implemented as Pseudo Code 2.

Pseudo Code 2 Classification and Regression
Input: Initial scale: init_scale;

The size of current receptive field: rf ;
Output: The true value of skeleton scale classification:

category;
The true value of skeleton scale regression: scale;

1: reg_scale = 2× init_scale
rf ;

2: IsSkeleton = True;
3: if 1 ≤ init_scale < 10 then
4: category = 1;
5: else
6: if 10 ≤ init_scale < 26 then
7: category = 2;
8: else
9: if 26 ≤ init_scale < 60 then

10: category = 3;
11: else
12: if 60 ≤ init_scale < 150 then
13: category = 2;
14: else
15: if init_scale < 1 or init_scale ≥ 150

then
16: category = 0;
17: IsSkeleton = False
18: end if
19: end if
20: end if
21: end if
22: end if
23: return category, reg_scale, IsSkeleton

FIGURE 8. Skeleton scale illustration (skeleton is the collection of the
largest inscribed circle center of the object contour). (a) is the original
image; (b) is the object contour of the original image; (c) is the skeleton
of the object; (d) combines the object skeleton and the contour; in (e),
the red circle of the figure indicates that the largest inscribed circle of the
skeleton pixel at object contour, and the green line represents the
skeleton scale.

TABLE 2. The scale-associated skeleton pixels classification with
piecewise quantization.

In the regression task, IsSkeleton and feature map
generated by convolution layer as the inputs, conduct the
multi-operator of the eltwise layer, and get the result of the
multi-operator serveing as the calculation basis for the regres-
sion loss, as shown in Fig. 2 (b) in the upper right corner.

D. SKELETON FEATURE MAP
The skeleton scale assists skeleton pixels localization is an
important feature in skeleton extraction, so we make a clear
classification of it in the paper. In addition, in order to
make the method more effectively, we transform skeleton
extraction into pixel classification task following piecewise
quantization.

1) SKELETON PIXEL SCALE AND ITS CLASSIFICATION
The skeleton scale or thickness is the radius of the largest
inscribed circle of the object contour centered on the skeleton
point. In other words, it is the distance between the skeleton
pixel and the closet object contour point. As shown in Fig. 8,
the radii are colored in green. Obviously, the range of skeleton
scale sizes is [0,max(imagewidth

2
, image height

2
].

The piecewise quantization inventory of skeleton scales is
listed in Table 2. The scales are classified into five categories
(marked as Y ) Y ∈ {0, 1, 2, · · · , k}. Y = 0 represents
that’s not a skeleton pixel; the categories of other values in
{1, 2, · · · , k} have the corresponding scales in Table 2. For
example, Y = 2 represents the scale of pixels lie in [10, 26).
TheVGG16 network has five stages, and the receptive field

is 5, 14, 40, 92, and 196 from the first stage to the fifth stage
as shown in Table 1. At the first stage, the size of receptive
field is too small to detect any skeleton scales, so skeleton
pixels are captured from the second to the fifth stage. The
output pixel scales are slightly smaller than the receptive field
size in general. At different stages, the categories of the pixel
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scales are different, which can be seen in Table 1. Specifically,
at Stage(k), k ∈ {2, 3, 4, 5}, the categories of the side-output
pixels lie in {0, · · · , k − 1}. For example, the size of the
receptive field at Stage(3) is 40, and the category of the side-
output pixels lie in {0, 1, 2}, while the specific scale values
are located at [0, 10), [10, 26), and {≥ 150 ‖< 1}.

2) THE GENERATION OF THE SKELETON MAP
Assuming that Si, i ∈ {0, 1, · · · , k − 1} is the predicted
pixel whose scales are corresponding to category i, e.g., S2
represents the pixel set with scales belonging to category 2
(i.e., the pixel scales of S2 lie in [10, 26)). Therefore, it can
be found that the skeletonmap is S1

⋃
S2

⋃
S3

⋃
· · ·

⋃
Sk−1.

In an image, the total categories of pixels are marked as
∑

,
and S0 is the non-skeleton pixel set. Then the formula (7) can
be get. ∑

= S0
⋃

S1
⋃

S2
⋃

S3
⋃
· · ·

⋃
Sk (7)

Hence, I -S0 is the other form of skeleton in a binary image,
where I is the identity matrix in a trainer.

E. REGRESSION PREDICTION METHOD
OF SKELETON SCALE
Skeleton scale prediction is helpful for skeleton pixel posi-
tion. The logical regression method is used to predict the
skeleton scale. The definition and calculation of the involved
functions are described in this section.

1) THE NORMALIZATION AND REGRESSION
WITH LOSS FUNCTION
The skeleton scale is acquainted referring to section III-D.
In fact, the scale of skeleton pixel is a real number which
can be forecasted by regression algorithm, after that the
skeleton map is generated with normalization. At stage(i)
i ∈ {2, 3, 4, 5}, the size of receptive field is represented as
Field_Sizei. After normalization the ground-truth of skeleton
scale GT_Scale at Stage(i) is expressed in (8).

GT_Scale =


Scale

Field_Sizei
× rate, Scale ≤ Field_Sizei

0, Scale > Field_Sizei
(8)

The range of GT_Scale is [0, rate], and Scale is the truth
value of skeleton pixel scale in the image. When the magnifi-
cation of rate sets as ‘1’, the program achieves normalization,
while we set it as ‘2’ in experiment, which is the twice of
the normalization and it is used to refine scale evaluation.
Pred_Scale is the predicted scale in the image, and the stan-
dard Euclidean loss function of (9) is adopted to calculate the
regression loss.

Loss =
n∑
i=1

(Pred_Scale− GT_Scale)2 (9)

2) SKELETON PIXEL SCALE PREDICTION
Assuming that i represents the category of skeleton pixel, and
referring to Table 2 the size of receptive field is marked as
Field_Sizei. From the skeleton regression task, the scale of a
certain skeleton pixel is predicted with (10).

˜Pred_Scale = Pred_Scale×
Field_Sizei

rate
. (10)

where ˜Pred_Scale is the predicted scale value and rate is the
magnification.

Final_Scale =



˜Pred_Scale,
˜Pred_Scale ∈ Coarse_Scale

Coarse_Scalelow + Coarse_Scalehigh
2

,

˜Pred_Scale /∈ Coarse_Scale.
(11)

The skeleton pixel classification method is introduced
in section III-D, and the coarse range of pixel scales is
[Coarse_Scalelow,Coarse_Scalehigh). For instance, if a pixel
belongs to category 2, that means the scale of this pixel ranges
at [10, 26), where the Coarse_Scalelow value is 10 and the
Coarse_Scalehigh value is 26. Then we can calculate the final
skeleton scale Final_Scale according to (11).

IV. EXPERIMENTAL RESULTS
In order to verify the rationality of the new proposed method,
sufficient experiments are carried out comparing with other
related algorithms, such as FSDS [11] and Hi-Fi [12] meth-
ods. The procedures of skeleton extraction method based on
neural network includes training and testing phases, and dif-
ferent datasets are chosen to make sufficient analyses. To be
fair, the experimental results of all methods are produced
under the same condition (i.e., the same server and the same
type of GPU). In addition, the FSDS and Hi-Fi methods are
reproduced using the source code provided by the original
authors in experiment.

A. DATASETS AND IMPLEMENTATION DETAILS
The network architecture of the new method is important in
experiment which has been introduced in the methodology
section. Before training, the parameters of the network need
to be initialized, and the hyper parameters in the training
model are listed in Table 3. In the table, mini_batch repre-
sents the number of input images, and the default value of it
sets 1; Base_lr represents basic learning rate; weight_decay
represents weight attenuation; momentum is the momentum
in the training model; max_iter is the maximum number of
iterations; and step_size means that for every 20,000 times
iteration, the learning rate is multiplied by 0.1. Besides, data
augmentation is an important way to generate sufficient train-
ing samples and to improve the generalization ability of the
model, while the data augmentation method of our method is
the same as [14].
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TABLE 3. Initial parameters in the training phase.

In aspect of experimental datasets, three public datasets are
adopted, and they are SK-SMALL [11], SK-LARGE [14],
and WH-SYMMAX [15]. The SK-LARGE is a public avail-
able skeleton detection dataset, which contains 746 training
images, 745 test images, and their corresponding skeleton
ground-truth. The SK-SMALL dataset contains 506 images,
of which the first 300 are used for training and the last 206 are
used for testing, and it is also a subset of SK-LARGE. The
WH-SYMMAX dataset contains 328 horse images, and the
first 228 are used for training while the last 100 are used
for testing. Then, the GPU configuration is Tian XP in the
operation condition.

B. EVALUATION PROTOCOL
There are two normal evaluations to measure the skele-
ton extraction performance, that’s F-measure scores and
the PR curves. This paper uses both of them to indicate
the performance of different methods. The formulation of
F−measure are shown in (12).

F−measure =
2× Precision× Recall
Precision+ Recall

. (12)

where, the Precision and Recall are calculated with extracted
skeleton features and the ground-truth. The PR curves are
calculated in the following way: firstly, the extracted feature
map is transformed into a binary map with a threshold, and
then it is matched with the skeleton ground-truth allowing
only small position errors during thematching procedure, that
means rarely position offset is enabled between the extracted
skeleton and the ground-truth. Secondly, setting the extracted
skeleton pixel as a true-positive point when it matches at
least one point of the ground-truth. Then if the extracted
skeleton pixel can’t match any ground-truth pixel, that will
be signed as a false-positive point. At last, by using different
thresholds, a series of Precision and Recall values can be
got, and then the PR curve is generated by combining all
of them.

C. OBJECT SKELETON EXTRACTION
Hi-Fi is the state-of-the-art skeleton extraction method that
has been proposed at current, so it is an important target which
is chosen to compare with our method. For the implementa-
tion of Hi-Fi and FSDS methods, the source programs and
parameters provided by [11], [12] are used in training and
testing. The tested images are processed with the standard

TABLE 4. The F-measures of different skeleton extraction methods on
three datasets.

TABLE 5. The percentage of increase in the accuracy of skeleton
localization of our method compared to Hi-Fi at the first two hierarchies
(the negative sign indicates a decrease).

non-maximum suppression (NMS) algorithm [48] to refine
skeleton maps, which are evaluated at last. In addition, three
datasets are selected to perform comparison between different
methods, and the generalization ability of the new method is
verified by across dataset experiments.

1) COMPARISION WITH COMMON DATASET
Although Hi-Fi network has four hierarchies (i.e., H-1, H-2,
H-3, and H-4), limited by the memory of machine, in original
paper Hi-Fi method only implements the first two hierarchies
in experiments, that’s Hi-Fi-1 and Hi-Fi-2 methods. In this
paper we implement it on four hierarchies. Moreover, in order
to verify the effect of the variable coefficient loss function
of new proposed method, we conduct methods of Ours-1,
Ours-2, Ours-3, and Ours-4 on four hierarchies indepen-
dently. The Ours-1-Reg to Ours-4-Reg represent the meth-
ods with the new loss function and the regression task.
While all the new methods have hierarchical network struc-
ture. The F-measures of skeleton extraction results in the
experiments are shown in Table 4.

Analyzing the experiment results from Table 4, the Hi-Fi
method and ours method have higher F-measures than
FSDS in experiments on three datasets. Specifically, for the
methods with the 1st-level hierarchical feature integration,
ours-1-reg method works best on SK-LARGE, SK-SMALL,
and WH-SYMMAX datasets. In the case of second-level
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FIGURE 9. Skeleton extraction results with PR curves in three datasets. (a) Skeleton localization evaluation on SK-LARGE [14]
dataset, and the OURS-2-Reg achieves the best performance of all. (b) Skeleton localization evaluation on SK-SMALL [11] dataset,
and the OURS-3-Reg achieves the best performance of all. (c) Skeleton localization evaluation on WH-SYMMAX [15] dataset, and the
OURS-4-Reg achieves the best performance of all.

FIGURE 10. Illustration of ours-2-reg skeleton extraction method on
SK-LARGE [14] with five selected images. In every row, the first is the
original natural image, and the last is the object skeleton map with the
classification of all scales, the middle four images are different scales
marked with color green, blue, yellow, and red represent classification
one, two, three, four, and five.

of hierarchical feature integration, ours-2-reg method works
mostly the best on those three datasets. Therefore, the method
added with the new variable coefficient loss function and
regression outperforms other compared methods. Besides,
through the Tables 4 and 5, the new method with variable
coefficient loss function performs slightly better than Hi-Fi,

FIGURE 11. Illustration of ours-3-reg skeleton extraction method on
SK-SMALL [11] with five selected images. In every row, the first is the
original natural image, and the last is the object skeleton map with the
classification of all scales, the middle four images are different scales
marked with color green, blue, yellow, and red represent classification
one, two, three, four, and five.

TABLE 6. The F-measures of different skeleton extraction methods on
cross dataset generalization.

while the method with both new loss function and regression
task improves the extraction performance of Hi-Fi entirety.
Furthermore, the Hi-Fi does not test the feature integration
mechanism on the third-level and the fourth-level hier-
archies with memory limitation. While the experiments
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FIGURE 12. Illustration of ours-4 skeleton extraction method with
WH-SYMMAX [15] for five selected images. In every row, the first is the
original natural image, and the last is the object skeleton map with the
classification of all scales, the middle four images are different scales
marked with color green, blue, yellow, and red represent classification
one, two, three, four, and five.

TABLE 7. The percentage of increase in the accuracy of skeleton
localization of our method compared to Hi-Fi on cross dataset
generalization (the negative sign indicates a decrease).

indicating that the higher the level, the better effect
does not always occur, such as the experiments on

SK-LARGE dataset, the performance of Ours-2-Reg
is the best, while Ours-3, Ours-3-Reg, Ours-4, and
Ours-4-Reg methods are not as good as Ours-2-Reg.
The sign ‘-’ in Table 4 represents that there is no way to verify
the results due to the memory limitation of hardware.

Some experimental results of ours-2-reg method on
SK-LARGE dataset, ours-3-reg method on SK-SMALL
dataset, and ours-4 method on WH-SYMMAX dataset are
illustrated in Figs. 10, 11 and 12 respectively. The methods
selected are the best of all on different datasets, and the
figures illustrated in the first row are the original images,
the skeleton pixels with four kind of scales are drawing in
different colors, and the final skeleton maps of objects have
integrate scales. From the PR curves in Fig. 9, it can be
found that the performance of the new methods on three
datasets are better than Hi-Fi methods, although there is no
unique method to achieve the best results on all three datasets
simultaneously, the best performance can always be found in
the new methods. The specific result is that the ours-1-reg
method is better than the Hi-Fi-1 method, and the ours-2-reg
method is better than the Hi-Fi-2 method, that means the new
proposed method is better than Hi-Fi.

2) COMPARISION WITH CROSS DATASET
To further verify the generalization capabilities of the pro-
posed model, we perform cross-validation on two different
datasets (A/B indicates training on the dataset A and testing
on the dataset B). It can be analyzed from the Tables 6 and 7
that the generalization ability of the newmethod is better than
Hi-Fi.

D. FAILURE CASE EXPLORATION
The training dataset of SK-LARGE contains 745 images,
which is more than SK-SMALL and WH-SYMMAX

TABLE 8. The top ten of F-measures in SK-LARGE dataset.
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TABLE 9. The last ten of F-measures in SK-LARGE dataset.

datasets, so it is selected to discuss the failure cases. The
top ten and the last ten of F-measures are selected out to
analyze the extraction performance. When the background is
relatively simple or the number of the same kind of images
is large in the training set (such as ‘aircraft’, the proportion
of it in the training set is 35/746), the skeleton extraction
effect is better. Relatively, when the probability of such image
is low in the training set (such as the 10th knife-shaped
figure in Table 9), the skeleton extraction result is poor.
In addition, when the background is complicated or the image
is more ambiguous, the skeleton extraction effect is not good
(such as the first image and the second image in Table 9).
In summary, in order to get better skeleton extraction results,
it is necessary to have a large enough training dataset, and the
samples are accurately labeled.

V. CONCLUSION
This paper proposes an advanced skeleton extraction method
with multi-task and variable coefficient loss function han-
dling the multi-class imbalanced data problem. The signifi-
cant contributions demonstrate in four aspects: proposing a
new strategy for object skeleton extraction in natural images;
a new Softmax function is presented to deal with multi-
class problem; rearranging the skeleton pixel classification
manner; putting forward a new regression prediction method
for skeleton pixel. The experimental results show that the new
method proposed in this paper is superior to the best Hi-Fi
method in terms of skeleton extraction accuracy and gener-
alization ability, and our method can accurately calculate the
skeleton scales. In addition, we fully introduce the skeleton

extraction method in natural images using deep learning,
as well as the skeleton pixel and scale classification methods.
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