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ABSTRACT Attitude control of combined service-target system in the post-capture phase has received great
attention. A new attitude dynamics of the combined spacecraft with reaction wheels has been established
in the author’s former work, however, the measurement uncertainty in attitude and angular velocity and
uncertainty in the reconfiguration matrix of reaction wheels have not been considered, which may cause
huge impact on the system performance. In this paper, a novel combination of disturbance-observer-based
dynamic surface control under measurement uncertainty and robust control allocation due to uncertain mass
center is investigated for attitude stabilization of the combined spacecraft. Firstly, considering measurement
uncertainty, inertia uncertainty, actuator fault and actuator saturation, a new attitude dynamics of combined
spacecraft is established. Then, a virtual controller is designed and all the states in the closed-loop
system converge to a small neighborhood of zero, where the lumped disturbance is compensated by two
stable nonlinear disturbance observers and adverse effect of actuator saturation is addressed by a stable
compensator. Finally, in consideration of uncertain location of mass center in the reconfiguration matrix,
a LMI-based robust control allocation is employed to deal with the problem of distributing the three axis
torques over the reaction wheels. Numerical simulations are presented to illustrate the effectiveness of the
proposed method.

INDEX TERMS Attitude control, dynamic surface, fault-tolerant control, measurement uncertainty, robust
control allocation, combined spacecraft.

I. INTRODUCTION
In recent years, on-orbit failures have exceeded launch fail-
ures and cumulatively account for losses of billions of dol-
lars [1]. In order to remove or extend operational lifetime of
these failed spacecrafts, a service spacecraft installed with a
robotic arm to capture them is an effective way.

Once the target is captured, the dynamics of the combined
spacecraft will vary greatly due to the increase in mass and
variation in the centre-of-mass [2]. In addition, the config-
uration matrix of reaction wheels suffering a large change
will also influence the new attitude dynamics. A new atti-
tude dynamic model of the combined spacecraft, considering
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the new configuration matrix of reaction wheels, has been
determined in the new body frame of the combined sys-
tem in [3]. However, since the attitude and angular velocity
cannot be accurately derived by the measurement devices
due to uncertain mass center of combined spacecraft and
limitation in physical sensors, the measurement uncertainty
is also needed to be considered in the new attitude dynamics
of combined spacecraft [4]–[7]. Besides, actuator faults and
actuator saturation are both critical issues that need to be
tackled in attitude control design of combined spacecraft
for performance degradation and physical limitation. In this
paper, a novel attitude dynamics of combined spacecraft with
rebuilt configuration matrix of reaction wheels considering
measurement uncertainty, inertia uncertainty, actuator fault
and actuator saturation is established.
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During the attitude dynamics rebuilding process, it will be
noticed that the reconfiguration matrix of reaction wheels
depends on the center-to-center distance vector from the
body frame center of service spacecraft to the body frame of
combined spacecraft. Since there is an estimation error in the
body frame center of the combined spacecraft, the center-to-
center distance vector will also suffer some estimation error.
Therefore, a robust control allocation is required that maps
an ‘ideal’ virtual control to each reaction wheel effectively
even in the presence of this potentially significant uncer-
tainty. In [8], Durham first investigated the control allocation
problem, where body-axis moments were allocated to several
airplane flight controls. Then several approaches of control
allocation have been deeply investigated in the last decade,
including direct allocation [9], linear or nonlinear program-
ming based on optimization algorithms [10], and dynamic
control allocation [11], [12]. In reality, due to finite man-
ufacturing tolerances or warping of the spacecraft structure
during launch [13], the configuration matrix always exists
some uncertainty, robust control allocation problems were
then widely studied. In [14] and [15], a robust control allo-
cation (RobCA) strategy, formulated as a min-max nonlinear
optimization problem, was proposed to redistribute a virtual
control signal to the remaining actuators when actuator fault
occurred. Different from the above nonlinear programming
problem, in this paper, the robust control allocation problem
is formulated as a LMI-based linear programming problem,
which immensely reduces the complexity of computation
comparing to the existing methods.

As the input to the RobCA, the ‘virtual’ control torque
for high-standard attitude control of combined spacecraft
is also one challenging operation need to be settled. For
the uncertainty in the mass center of the combined space-
craft, there exists some uncertainty in the inertia matrix.
A robust nonlinear controller for the tethered space robot-
target combination was proposed based on the backstepping
control method in [16], [17]. Actuator saturation is a critical
issue that needs to be tackled in attitude control design of
combined spacecraft for the limitation of the physical char-
acteristics [18], [19]. The most prominent method among
all the solutions for actuator saturation is the anti-windup
design [20], [21]. The occurrence of actuator faults may
lead to performance degradation or instability of the closed-
loop system, which should also be considered in the attitude
stabilization control of combined spacecraft. In [22] and [23],
adaptive non-linear fault estimation observer was designed
to obtain the estimated value of unknown actuator faults. In
[24], the problem of adaptive fault estimation and accom-
modation for a class of stochastic nonlinear systems with
unknown time-varying faults was studied. Besides inertia
uncertainty, actuator saturation and actuator fault, the accu-
rate attitude and angular velocitymay not be precisely derived
by the measurement devices for roughly disturbed environ-
mental condition. Thus the measurement uncertainty is also
involved in the attitude controller design of combined space-
craft. In paper [25] and [26], the attitude control problem

with measurement error was investigated, and a noise reduc-
tion extended disturbance observer and a finite-time integral
sliding mode disturbance observer were used to estimate
the integrated uncertainties, respectively. In this paper, two
disturbance-observers-based dynamic surface control method
is used to develop the virtual attitude control. Comparing to
existingmethod, there is only one adjusting parameter in each
observer, where the complexity of computation is reduced.
And also the ‘explosion of complexity’ of the backstepping
method is restrained by the dynamic method [27].

In this paper, we provide a robust fault-tolerant control
strategy for rebuilt attitude control system of combined
spacecraft with reaction wheels in the presence of iner-
tia uncertainty, actuator saturation, and even measurement
uncertainty. This proposed control law is a combination
of disturbance-observer-based dynamic surface control and
robust LMI-based control allocation. The main contributions
of this paper are stated as follows:

1. The new attitude dynamics of the combined spacecraft
system with reconfiguration matrix of reaction wheels con-
sidering inertia uncertainty, actuator saturation, actuator fault
and measurement uncertainty is established.

2. A virtual controller based on two nonlinear simple dis-
turbance observers and dynamic surface control is developed
which ensures all the states in the closed-loop system con-
verge to a small neighborhood of zero.

3. A novel LMI-based RobCA scheme is proposed con-
sidering the actuator saturation and the uncertainties in the
reconfiguration matrix induced by post-capture of the target.

This paper is organized as follows: section II estab-
lishes the attitude dynamic equation of combined spacecraft
with reaction wheels under inertia uncertainties, measure-
ment uncertainties, actuator fault and actuator saturation.
In section III, two nonlinear disturbance observers based
dynamic surface control scheme is developed to produce vir-
tual control torque, and a LMI-based robust control allocation
is developed to distribute the virtual control torque into each
reaction wheel. Finally, section IV presents numerical sim-
ulations for the combined spacecraft attitude system which
illustrate the effectiveness of the proposed approach.

II. PROBLEM DESCRIPTION
In this paper, in order to form the attitude stabilization control
system of the combined spacecraft, several corresponding
frames are defined. The orbit frameFo(Ocxoyozo) defines the
centroid of combined spacecraft as its origin, the Ocxo axis
is along the local horizontal direction in the orbital plane,
the Ocyo axis is along the orbital normal and the Oczo axis
is collinear with a line that extends from the center of the
earth to the centroid of combined spacecraft and completes a
right-handed triad. Similarly,Fc(Ocxcyczc),Fs(Osxsyszs) and
Ft (Otxtytzt ) denote the body frame of combined spacecraft,
the body frame of service spacecraft and the body frame of
target spacecraft, respectively.

We also assume that the combined spacecraft system con-
sists of a rigid service spacecraft, a rigid target spacecraft
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FIGURE 1. Model of space manipulators robot on service spacecraft.

and one rigid space manipulator. The launch vehicle interface
ring of target spacecraft is captured by the space manipulator,
shown in the Fig. 1. In the post-capture phase, the joints of
space manipulators would be locked.

For the simpleness of statement, similar to [28], the follow-
ing assumptions need to be satisfied:
Assumption 1: There is no attitude control capability in the

target spacecraft, whose attitude control is taken over by the
attitude control system of the service spacecraft.
Assumption 2: The service spacecraft is driven by reaction

wheels which are assumed to be continuously controllable.
Assumption 3: Once the joints of the space manipulators

are locked, the space manipulators are locked.
Based on Assumption 3, the combined spacecraft can be

seen as a rigid body in the post-capture phase. For the inertia
matrix of the combined spacecraft in Fc(Ocxcyczc), relevant
result has been conducted in [2]. After simple derivation,
we can obtain that the inertia matrix of combined spacecraft
expressed in Fc(Ocxcyczc) can be computed as

J = RsJsRT
s + ms[(r

T
s rs)I3 − rsr

T
s ]

+

n∑
i=1

(RiJ iRT
i + mi[(r

T
i ri)I3 − rir

T
i ])

+RtJ tRT
t + mt [(r

T
t rt )I3 − rtr

T
t ]

where I3 denotes a 3 × 3 identity matrix; ms,mt ,mi (i =
1, · · · , n) are respectively the mass of service spacecraft and
target spacecraft, and the i-th link of manipulator; rs, Rs, rt
and Rt are respectively the centroid position vector, attitude
rotation matrix of service spacecraft and target spacecraft;
Js, J t , J i (i = 1, · · · , n) are respectively the inertia tensor
of service spacecraft, target spacecraft and the i-th link of
manipulator; ri and Ri (i = 1, · · · , n) are respectively the
centroid position vector and attitude rotation matrix of the i-
th link of manipulator.

In this paper, the MRP vector σ = e tan(ϑ/4) with Euler’s
principal rotation axis e and angle ϑ is used to represent the
spacecraft’s attitude orientation, then the kinematics of the
combined spacecraft is expressed as

σ̇ = G(σ )ω (1)

FIGURE 2. Reaction wheels configuration before and after capturing
target spacecraft.

where σ = [σ1, σ2, σ3]T and G(σ ) is the kinematics matrix
expressed as

G(σ ) =
1
4

[
(1− σTσ )I3 + 2σ× + 2σσT

]
where for any vector z = [z1, z2, z3]T ∈ R3, z× is defined as

z× =

 0 −z3 z2
z3 0 −z1
−z2 z1 0


Now let us consider the attitude dynamic of the combined

spacecraft with reaction wheels in the body frame of com-
bined spacecraft. The configuration of reaction wheels is
described in Fig. 2 [3].

According to the result in [3], the angular momentum of the
whole reaction wheels respect to the mass center of combined
spacecraftOc expressed in the frameFc(Ocxcyczc) is denoted
as

Hw = Chw (2)

where C is the reaction wheels configuration matrix
expressed in the frame Fc(Ocxcyczc), defined as

C =
[
c1 c2 c3 c4

]
(3)

with ci is the position vector of the i-th reaction wheel
expressed in the frame Fc(Ocxcyczc) and can be written as

ci = Rsc(c̄i − rc) (4)

where Rsc is the rotation matrix from frame Fs(Osxsyszs) to
Fc(Ocxcyczc), c̄i is the position vector of the i-th reaction
wheel expressed in the frameFs(Osxsyszs) and rc is the vector
from Os to Oc expressed in Fs(Osxsyszs).

Due to measurement and computational errors when deter-
mine the location of the mass center of the combined chaser-
target, there must be uncertainty in the position vector rc ,
where

rc = rc0 +1rc (5)
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with rc0 = [rc01, rc02, rc03]T and measurement error 1rc =
[1rc1,1rc2,1rc3]T , then the configuration matrix C can be
denoted as

C = C0 +1C (6)

where

C0 = RscC̄ − Rscrc0eT1 , (7)

1C = Rsc1rceT1 (8)

and

eT1 =
[
1 1 1 1

]
Now according to the above analysis, the total angular

momentumH of combined spacecraft considering four reac-
tion wheels mounted on the service spacecraft can be denoted
by

H = Jω +Hw = Jω + (C0 +1C)Jw�w (9)

Then the dynamic system of the attitude control sys-
tem expressed in the body frame of combined spacecraft
Fc(Ocxcyczc) can be denoted as

JPω + (C0 +1C)Jw�̇w + ω ×H = T ext (10)

where T ext is the total external torque imposing on the com-
bined spacecraft. In this paper, the total external torque con-
tains the gravity gradient torque ug ∈ R3 and the disturbance
torque d ∈ R3, i.e., T ext = ug + d, then the dynamics and
kinematics of the combined spacecraft expressed in the frame
Fc(Ocxcyczc) can be rewritten as

σ̇ = G(σ )ω
Jω̇ = −ω × (Jω + (C0 +1C)Jw�w)
−CJw�̇w + ug + d

(11)

To simplify matters, we shall restrict ourselves to the case
of a circular Keplerian orbit. Then according to the analysis
in Chapter 16.1 in [29], the gravity gradient torque ug can be
computed by

ug = 3ω2
0R3(σ )× JR3(σ ) (12)

where ω0 is the orbit angular rate value and R3(σ ) can be
expressed as

R3(σ ) =
1

(1+ σTσ )

 8σ1σ3 − 4σ2(1− σTσ )
8σ2σ3 + 4σ1(1− σTσ )

4(σ 2
3 − σ

2
2 − σ

2
1 )+ (1− σTσ )2


For better addressing the mismatched uncertainty on the

control torque, with the idea of control allocation, we define
the virtual control torque u as

u = CJw�̇w (13)

Here, we assume that rank(CJw) = 3, which means that only
full-actuated case is considered in this paper. Then, we can
obtain the attitude kinematics and dynamics of combined

spacecraft with reaction wheels under external disturbance as
follows:

σ̇ = G(σ )ω
Jω̇ = −ω×(Jω + (C0 +1C)Jw�w)
−u+ ug + d

(14)

A. MEASUREMENT UNCERTAINTY
Since the attitude and angular velocity are measured by many
sensors mounted on the service spacecraft and the sensors
are effected by complicated space environment, the measure-
ment quantities are generally uncertain and can be expressed
as [30] {

σ̂ = σ + υ1

ω̂ = ω + υ2
(15)

where υ1 and υ2 are the measurement uncertainties, which
are both assumed to be differential. Furthermore, taking the
time derivative of σ̂ and ω̂ results in{

˙̂σ = G(σ̂ )ω̂ + δ1
J ˙̂ω = −ω̂×(Jω̂ + C0Jw�)− u+ ug + δ20

(16)

where

G(σ̂ ) =
1
4
[(1− σ̂T

σ̂ )I3 + 2σ̂× + 2σ̂ σ̂T]

δ1 =
1
4
[(2σ̂T

υ1 − υ
T
1υ1)I3 − 2υ×1 − σ̂ υ

T
1 − υ1σ̂

T

+ 2υ1υT1 ]ω̂ − G(σ )υ2 + υ̇1
δ20 = −ω̂

×(−Jυ2 +1CJw�w)+ υ
×

2 (J(ω̂ − υ2)

+CJw�w)+ d + J υ̇2

Remark 1: The measurement uncertainty in ug is rea-
sonably ignored. Because the orbit angular rate ω0 =

7.292115× 10−5 is very small, the value of ug is also small,
then the uncertainty caused bymeasurement uncertainty is far
smaller comparing to the control torque produced by actuator.

B. INERTIA UNCERTAINTY
From the above analysis, it is hard to determine the mass
center of combined spacecraft. Thus, the inertia matric of
combined spacecraft cannot be precisely determined. To sig-
nify the error between true inertia matrix and estimated one
of combined spacecraft, we set

J = J0 +1J (17)

where J0 denotes the estimated value of the inertia tensor of
the combined spacecraft, 1J denotes the estimated error of
the inertia tensor of the combined spacecraft and is bounded.
For inertia matrix J is a positive matrix, i.e. J > 0, we have
1J 6= −J0. Furthermore

J−1 = (J0 +1J)−1 = J−10 +1J̃ (18)
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where1J̃ = −J−10 1J(I3+J−10 1J)−1J−10 . Taking (17) and
(18) into the system (16), we can get

˙̂σ = G(σ̂ )ω̂ + δ1
˙̂ω = −J−10 ω̂

×(J0ω̂ + C0Jw�)− J−10 u
+J−10 ug0 + δ21

(19)

where

ug0 = 3ω2
0R3(σ̂ )× J0R3(σ̂ )

δ21 = −1J̃ω̂
×(J0ω̂ + C0Jw�)− J−1ω̂

×
1Jω̂ −1J̃u

+1J̃ug + 3ω2
0J
−1
0 R3(σ )×1JR3(σ )+ J−1δ20

C. ACTUATOR FAULTS OR FAILURE
As shown in [23], the angular acceleration of reaction wheels
�̇w with actuator fault is established in the following uniform
model

�̇w = �̇wc + B(t,Tfault )[(E(t)− I4)�̇wc +
¯̇�wc] (20)

where �̇wc = [�̇wc1, �̇wc2, �̇wc3, �̇wc4] represents the actu-
ator command, ¯̇�wc = [ ¯̇�wc1,

¯̇�wc2,
¯̇�wc3,

¯̇�wc4]T is the
actuator bias; E = diag{e1, e2, e3, e4} denotes the actuator
effectiveness matrix. The matrix B(t,Tfault ) ∈ R4×4 with
T fault = [t1, t2, t3, t4]T represents the time profiles of actu-
ator faults, which is given by B(t,Tfault ) = diag{b1(t −
t1), b2(t − t2), b3(t − t3), b4(t − t4)}, where ti is the fault
occurrence time, and bi(t − ti) denotes the time profile of a
fault occurred on the i-th wheel, which is given by

bi(t − ti) =

{
0, if t < ti
1− e−ai(t−ti), if t ≥ ti

(21)

where ai > 0 represents the fault evolution rate. A small value
of ai indicates slowly occurrence faults, i.e. incipient faults.
Otherwise, the time profile bi denotes the abrupt faults.
Now define the control torque command uc as

uc = CJw�̇wc

and control torque bias ūc as

ūc = CJw ¯̇�wc

Then the control torque u with actuator fault can be written
as

u = uc + CJwB(t,Tfault )[(E(t)− I4)Duc + Dūc] (22)

where

D = ((CJw)TCJw)−1(CJw)T

Hence, the attitude kinematics and dynamics with a general
actuator fault model is given as follows

˙̂σ = G(σ̂ )ω̂ + δ1
˙̂ω = −J−10 ω̂

×(J0ω̂ + C0Jw�w)− J−10 uc
−uτ + J−10 ug0 + δ21

(23)

where

uτ = J−10 CJwB(t,Tfault )[(E(t)− I4)Duc + Dūc]

D. ACTUATOR SATURATION
In practical applications, the control torque in the presence of
saturation is a challenging problem. The signal uc generated
by the control torque cannot be implemented due to actuator
saturation constraints. The control torque uc with saturation
constraint can be described as

uci =


ucimax, if u0i > ucimax

u0i, if ucimin ≤ u0i ≤ ucimax

ucimin, if u0i < ucimin,

i = 1, 2, 3

which can also be rewritten as

uci = u0i +1uci, i = 1, 2, 3 (24)

with

1uci =


ucimax − u0i, if u0i > ucimax

0, if ucimin ≤ u0i ≤ ucimax

ucimin − u0, if u0i < ucimin

with i = 1, 2, 3 and u0 = [u01, u02, u03]T is the control
command to be designed in the presence of input saturation.
Then the system (14) can be written as

˙̂σ = G(σ̂ )ω̂ + δ1,
˙̂ω = −J−10 ω̂

×(J0ω̂ + C0Jw�w)
−J−10 (u0 +1uc)+ J−10 ug0 + δ2

(25)

where 1uc = [1uci,1uc2,1u3]T and δ2 = −uτ + δ21.
For system model (25), the following assumptions are

employed in the subsequent development.
Assumption 4: The external disturbance d and its time

derivative ḋ are bounded.
Assumption 5: The measurement uncertainties υi(t) and

their time derivatives υ̇i(t) are also bounded such that
‖υi(t)‖ ≤ l0i, ‖υ̇i(t)‖ ≤ l1i with unknown positive scalars
l0i, l1i and l2i(i = 1, 2).
Assumption 6: Under the mild assumptions, ‖1uc‖ is

always bounded by a scalar [31].
Remark 2: This assumption is reasonable according to the

analysis in [31]. From the view of a practical control system,
the difference 1u between the command control input u0
and the actual control input uc cannot be large. The reason
is that the system controllability should be satisfied when
control input saturation occurs. And if the input difference
1u is too big, it means that the actuator cannot provide high
enough control moment or control force to make the attitude
control system stable in industry. From the controllability of
a practical system, it is thus reasonable that 1u is always
bounded by a constant. And the bound can be large to satisfy
this assumption.
Assumption 7: For δ1 and δ2 are viewed as slowly vary-

ing signals with respect to the fast dynamics of disturbance
observers under large observer gains, δ̇1 and δ̇2 are assumed
as small bounded signals.

The attitude control problem of this study can be described
by Fig. 3. Based on the model (25) and Assumption 1-7,
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FIGURE 3. Flow chart of the developed control scheme for combined
spacecraft.

the attitude stabilization control objective is stated formally
as follows: for combined spacecraft attitude system with
reaction wheels (25) in the presence of measurement uncer-
tainties, inertia uncertainties, actuator fault and actuator sat-
uration, to design a robust actuator such that the controlled
spacecraft achieves that σ (t) and ω(t) converge to a small
neighborhood of zero as t →∞.

III. CONTROL LAW DESIGN
In this section, two steps are split for the controller design
using the principle of robust control allocation: (1) A control
law which produces the total control effort is designed, and
(2) a robust control allocation method that maps the total
control demand into individual reaction wheel torques is
proposed.

A. DISTURBANCE-OBSERVER-BASED DYNAMIC SURFACE
VIRTUAL CONTROL LAW
For the attitude control system of combined spacecraft with
reaction wheels (25), a disturbance-observer-based dynamic
surface control law is designed to achieve the control
objectives.

Define the error surface as{
S1 = σ̂ − x1d
S2 = ω̂ − x2d

(26)

where x1d = 0 and x2d is the virtual control input. The design
procedure is presented in two steps as follows.
Step 1: We start with the first equation in (25) by consider-

ing ω̂ as a control input. The derivative of S1 is

Ṡ1 = G(S1)ω̂ + δ1, (27)

It is natural to determine the virtual control law x̄2 into the
following form

x̄2 = −G(S1)−1(k1S1 + δ̂1) (28)

where k1 is a positive constant, δ̂1 = s+ γS1 with a positive
constant γ and s is the output of the following nonlinear
disturbance observer [32]

ṡ = −γ s− γ [G(S1)ω̂ + γS1] (29)

Now using the idea of dynamic surface control, we pass x̄2
through a first-order filter with time constant τ2 to obtain a

filtered virtual control x2d :

τ2ẋ2d + x2d = x̄2, x2d (0) = x̄2(0) (30)

and the boundary-layer error y2 and estimate error δ̃1 are
defined as

y2 = x2d − x̄2 (31)

δ̃1 = δ1 − δ̂1 (32)

Considering the following augmented Lyapunov function
candidate:

V1 =
1
2
ST1S1 +

1
2
δ̃
T
1 δ̃1 (33)

the derivative of V1 along the system trajectories is given by

V̇1 = ST1 Ṡ1 + δ̃
T
1
˙̃
δ1 (34)

= ST1 (G(S1)ω̂ + δ1)+ δ̃
T
1 (δ̇1 −

˙̂
δ1)

= ST1 (G(S1)x̄2 + G(S1)(S2 + y2)+ δ1)

+ δ̃
T
1 (δ̇1 − ṡ− γ Ṡ1)

= −ST1 (k1S1 + δ̂1)+ S
T
1G(S1)(S2 + y2)+ S

T
1 δ1

+ δ̃
T
1 (δ̇1 + γ s+γ (G(S1)ω̂+γS1)− γ (G(S1)ω̂ + δ1))

= −k1ST1S1 + S
T
1 δ̃1 + S

T
1 (G(S1)(S2 + y2))

+ δ̃
T
1 δ̇1 − γ δ̃

T
1 δ̃1

Step 2: Proceeding to the second equation in (25),
we design the control law u0 in this step. The derivative of
S2 is

Ṡ2 = ˙̂ω − ẋ2d (35)

= −J−10 ω̂
×(J0ω̂ + C0Jw�w)− J−10 u0

− J−10 1uc + J−10 ug0 + δ2 − ẋ2d

Design the control input command for system model (25) as

u0 = J0[GT(S1)S1 − k3J−10 ζ (36)

− J−10 ω̂
×(J0ω̂ + C0Jw�w)

+ J−10 ug0 + k2S2 + δ̂2 + y2/τ2]

where ζ is the output of the following antiwindup saturation
compensator:

ζ̇ = −k4ζ +1uc (37)

where k4 is a positive constant, δ̂2 = η + λS2 with a pos-
itive constant and η is the output of the following nonlinear
disturbance observer:

η̇ = −λη − λ[−J−10 ω̂
×(J0ω̂ + C0Jw�w)

− J−10 uc + J−10 ug0 + y2/τ2 + λS2] (38)

Let us define the estimate error δ̃2 as

δ̃2 = δ2 − δ̂2 (39)

and consider the following Lyapunov function candidate:

V2 =
1
2
(ST2S2 + ζ

Tζ + δ̃
T
2 δ̃2) (40)

156196 VOLUME 7, 2019



X.-W. Huang, G.-R. Duan: Robust Control Allocation in Attitude Fault-Tolerant Control

then the derivative ofV2 along the system trajectories satisfies

V̇2 = ST2 Ṡ2 + ζ
Tζ̇ + δ̃

T
2
˙̃
δ2 (41)

= ST2 (−G
T(S1)S1 − k2S2 + k3J−10 ζ − J−10 1uc + δ̃2)

− k4ζTζ + ζT1uc + δ̃
T
2 δ̇2 − λδ̃

T
2 δ̃2

The closed-loop attitude dynamics control system of com-
bined spacecraft with actuator saturation can be expressed as

Ṡ1 = ˙̂σ
Ṡ2 = ˙̂ω + y2/τ2
ẏ2 = −y2/τ2 − ˙̄x2
ζ̇ = −k4ζ +1uc

(42)

with nonlinear disturbance observers (29) and (38). Then
based on the dynamic surface control theory, the following
theorem is proposed.
Theorem 1: Consider the combined spacecraft attitude

model with reaction wheels (25) under Assumptions 1-7.
If the parameters of controller (36) with nonlinear disturbance
observer (29) and (38) satisfy 32k1 ≥ 9τ2, 2k1γ ≥ 3,
λk2 ≥ 2 and 2k2k4 ≥ 3k23k

2
5 where k5 =

∥∥∥J−10

∥∥∥, and
ki > 0(i = 1, 2, 3, 4), then the attitude σ and the angular
velocity ω converge to a smaller neighborhood of zero by
choosing suitable controller parameters.

Proof: It can be observed that there exits a continuous
function µ such that∥∥ ˙̄x2∥∥ ≤ µ(S1,S2, y2, δ̃2) (43)

The Lyapunov function candidate of the whole attitude con-
trol system is taken as

V = V1 + V2 + V3 (44)

where V3 = 1
2y

T
2 y2. The derivative of V along the system

trajectories is given by

V̇ = V̇1 + V̇2 + V̇3
≤ −k1ST1S1 + S

T
1 δ̃1 + S

T
1G(S1)S2 + S

T
1G(S1)y2

+ δ̃
T
1 δ̇1 − γ δ̃

T
1 δ̃1 − S

T
2G

T(S1)S1 − k2ST2S2
+ k3ST2J

−1
0 ζ − ST2J

−1
0 1uc + ST2 δ̃2

− k4ζTζ+ζT1uc+δ̃
T
2 δ̇2 − λδ̃

T
2 δ̃2 + y

T
2 (−y2/τ2 − ˙̄x2)

≤ −k1 ‖S1‖2 − k2 ‖S2‖2 − γ
∥∥∥δ̃1∥∥∥2 − λ ∥∥∥δ̃2∥∥∥2

− k4 ‖ζ‖2 −
1
τ2

∥∥y2∥∥2 + ‖S1‖ ∥∥∥δ̃1∥∥∥+ ST1G(S1)y2
+

∥∥∥δ̃1∥∥∥ ∥∥δ̇1∥∥+ k3k5 ‖S2‖ ‖ζ‖ + k5 ‖S2‖ ‖1uc‖
+ ‖S2‖

∥∥∥δ̃2∥∥∥+ ‖ζ‖ ‖1uc‖ + ∥∥∥δ̃2∥∥∥ ∥∥δ̇2∥∥+ |µ| ∥∥y2∥∥
because 1/4 ≤ ‖G(S1)‖ =

∥∥(1+ σTσ )/4
∥∥ ≤ 1/2, then

V̇ ≤ −k1 ‖S1‖2−k2 ‖S2‖2 − γ
∥∥∥δ̃1∥∥∥2 − λ ∥∥∥δ̃2∥∥∥2 − k4 ‖ζ‖2

−
1
τ2

∥∥y2∥∥2+‖S1‖ ∥∥∥δ̃1∥∥∥+(1/2) ‖S1‖ ∥∥y2∥∥+∥∥∥δ̃1∥∥∥ ∥∥δ̇1∥∥

+ k3k5 ‖S2‖ ‖ζ‖ + k5 ‖S2‖ ‖1uc‖ + ‖S2‖
∥∥∥δ̃2∥∥∥

+ ‖ζ‖ ‖1uc‖ +
∥∥∥δ̃2∥∥∥ ∥∥δ̇2∥∥+ ∥∥y2∥∥ |µ|

=

10∑
i=1

2i

where

21 = −
k1
3
‖S1‖2 −

k2
4
‖S2‖2 −

γ

2

∥∥∥δ̃1∥∥∥2
−
λ

2

∥∥∥δ̃2∥∥∥2 − 2k4
3
‖ζ‖2 −

2
3τ2

∥∥y2∥∥2 ,
22 = −

k1
3
(‖S1‖ −

3
2k1

∥∥∥δ̃1∥∥∥)2 + 3
4k1

∥∥∥δ̃1∥∥∥2 ,
23 = −

k1
3
(‖S1‖ −

3
4k1

∥∥y2∥∥)2 + 3
16k1

∥∥y2∥∥2 ,
24 = −

k2
4
(‖S2‖ −

2k3k5
k2
‖ζ‖)2 +

k23k
2
5

k2
‖ζ‖2 ,

25 = −
k2
4
(‖S2‖ −

2k5
k2
‖1uc‖)2 +

k25
k2
‖1uc‖2 ,

26 = −
k2
4
(‖S2‖ −

2
k2

∥∥∥δ̃2∥∥∥)2 + 1
k2

∥∥∥δ̃2∥∥∥2 ,
27 = −

k4
3
(‖ζ‖ −

3
2k4
‖1uc‖)2 +

3
4k4
‖1uc‖2 ,

28 = −
1
3τ2

(
∥∥y2∥∥− 3τ2

2
|µ|)2 +

3τ2
4
|µ|2,

29 = −
γ

2
(
∥∥∥δ̃1∥∥∥− 1

γ

∥∥δ̇1∥∥)2 + 1
2γ

∥∥δ̇1∥∥2 ,
210 = −

λ

2
(
∥∥∥δ̃2∥∥∥− 1

λ

∥∥δ̇2∥∥)2 + 1
2λ

∥∥δ̇2∥∥2
then we can have

V̇ ≤ −
k1
3
‖S1‖2 −

k2
4
‖S2‖2 − (

2k4
3
−
k23k

2
5

k2
) ‖ζ‖2

− (
γ

2
−

3
4k1

)
∥∥∥δ̃1∥∥∥2 − (

λ

2
−

1
k2
)
∥∥∥δ̃2∥∥∥2

− (
2
3τ2
−

3
16k1

)
∥∥y2∥∥2 + (

k25
k2
+

3
4k4

) ‖1uc‖2

+
3τ2
4
|µ|2 +

1
2γ

∥∥δ̇1∥∥2 + 1
2λ

∥∥δ̇2∥∥2
≤ −ρV + ε (45)

where

ρ = 2min{
k1
3
,
k2
4
,
2k4
3
−
k23k

2
5

k2
,
γ

2
−

3
4k1

,
λ

2
−

1
k2
,

2
3τ2
−

3
16k1
} > 0,

ε = (
k25
k2
+

3
4k4

) ‖1uc‖2+
3τ2
4
|µ|2+

1
2γ

∥∥δ̇1∥∥2+ 1
2λ

∥∥δ̇2∥∥2
Then according to the comparison principle, we have
V (t) ≤ V (t0)e−ρt + 1

ρ
‖ε‖. Now consider the set A =

{S1,S2, δ̃1, δ̃2, y2 : V ≤ p}. Because A is a compact set,
there exist maximum value of µ(S1,S2, y2, δ̃2) on A. Also,
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according to Assumptions 6-7, we have ‖1uc‖, δ̇1 and δ̇1
are bounded by scalars. Thus, ‖ε‖ ≤ ξ can be derived
with an unknown scalar ξ. Then we can obtain that V̇ ≤
−ρV + ξ which lead to limt→∞ V (t) ≤ ξ

ρ
. According to the

definition of V (t), the error surface ‖S1‖ and ‖S2‖, saturation
compensator ‖ζ‖ , the boundary-layer error

∥∥y2∥∥ and the

disturbance estimate error
∥∥∥δ̃1∥∥∥ and ∥∥∥δ̃2∥∥∥ converge to a small

neighborhood of zero when t →∞. Furthermore, since S1 =
σ̂ , S2 = ω̂−x2d = ω̂− x̄2−y2, x̄2 = −G(S1)

−1(k1S1+ δ̂1),
2 ≤

∥∥G(S1)−1∥∥ ≤ 4 and
∥∥∥δ̂1∥∥∥ ≤ ‖δ1‖+ ∥∥∥δ̃1∥∥∥ , then we have∥∥σ̂∥∥ = ‖S1‖ ≤ √2p∗∥∥ω̂∥∥ ≤ ‖S2‖ + ∥∥y2∥∥+ ‖x̄2‖

≤ ‖S2‖ +
∥∥y2∥∥+ 4(k1 ‖S1‖ + ‖δ1‖ +

∥∥∥δ̃1∥∥∥)
≤ (4k1 + 6)

√
2p∗ + ‖δ1‖

Because of

‖δ1‖ ≤ c1
∥∥ω̂∥∥+ c2

with c1 = (
√
2p∗ + 1

2 )l01 +
1
2 l

2
01 and c2 =

1
2 l02 + l11, then∥∥ω̂∥∥ ≤ 1

1− c1
[(4k1 + 6)

√
2p∗ + c2]

Furthermore, from (15) and Assumption 5, we have

‖σ‖ ≤
∥∥σ̂∥∥+ ‖υ1‖ ≤ √2p∗ + l01

‖ω‖ ≤
∥∥ω̂∥∥+ ‖υ2‖ ≤ 1

1− c1
[(4k1 + 6)

√
2p∗ + c2]+ l02

then because p∗ can be made small enough, the bounds of
σ (t) and ω(t) can also be small.
Remark 3: Since the convergence rate of the system states

is mainly determined by ρ, larger ρ results in faster conver-
gence rate. And ρ is related to controller, saturation compen-
sator, observer and filter parameters k1, k2, k3, k4, γ, λ and τ,
larger k1, k2, k4, γ, λ and smaller k3,τ lead to larger ρ and
faster convergence rate of attitude. Also, the ultimate bounds
of attitude and angular velocity are related to the bounds
of measurement uncertainties, which means that the attitude
control performance is mainly determined by both control
strategy and measurement precision.
Remark 4: Comparing with the backstepping method in

[6], dynamic surface method is proposed in this paper.
We note that the proposed control law does not involve the
differentiation of G(S1)−1 and thus has prevented the explo-
sion of terms. Also, the term J−10 1uc is not contained in the
new disturbance δ2, which means that the burden of observer
can be alleviated dramatically, the precision and accuracy of
the controller can be improved ulteriorly.

B. ROBUST CONTROL ALLOCATION
In this section, an approach to map the virtual control to
each reaction wheel is presented. The robust control alloca-
tion problem including saturation constraints is given. Due
to physical limitations on reaction wheels, it is crucial to
redistribute the control efforts among each reaction wheel

in the frame Fc(Ocxcyczc). In reality, the limitations on the
command angular acceleration of reaction wheels �̇wc is
assumed as

�̇wc ∈ U = {�̇wc|�̇wcmin ≤ �̇wc ≤ �̇wcmax} (46)

where �̇wcmin =
[
�̇wc1min, �̇wc2min, �̇wc3min, �̇wc4min

]T
and �̇wcmax =

[
�̇wc1max, �̇wc2max, �̇wc3max, �̇wc4max

]T.
In this paper, the virtual control torque uc ∈ R3 is designed

to specify total attitude control torque. Now look at equa-
tion (8), assume that

Rsc =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 , 1rc =

1rc11rc2
1rc3


then 1C can be written as

1C = 1rc1C1 +1rc2C2 +1rc3C3 (47)

with

C1 =

 r11 r11 r11 r11
r21 r21 r21 r21
r31 r31 r31 r31


C2 =

 r12 r12 r12 r12
r22 r22 r22 r22
r32 r32 r32 r32


C3 =

 r12 r12 r12 r12
r22 r22 r22 r22
r32 r32 r32 r32


It can be assumed that 1rc satisfies 1−i ≤ 1rci ≤ 1+i .

Define

1I =
{
1rc|1rci ∈

[
1−i ,1

+

i

]
, i = 1, 2, 3

}
(48)

then the robust control allocation (RobCA) problem is
defined as:

�̇wc = arg min
�̇wc∈2

∥∥�̇wc
∥∥2
M1

(49)

with

2 = arg min
�̇wc∈U

max
1rc∈1I

∥∥uc − (C0 +1C(1rc))Jw�̇wc
∥∥2
(50)

where
∥∥�̇wc

∥∥2
M1

stands for �̇
T
wcM1�̇wc and the weighting

matrixM1 = diag{m11,m12,m13,m14}. Furthermore, RobCA
can be rewritten as

�̇wc = arg min
�̇wc∈U

max
1rc∈1I

{
∥∥�̇wc

∥∥2
M1

+ h
∥∥uc − (C0 +1C(1rc))Jw�̇wc

∥∥2} (51)

where h is a given positive scalar. The following result can be
obtained.
Theorem 2: If 1rc ∈ 1I , the RobCA problem has an

optimal solution if the following is solved for any 1rc ∈ 1E

min
�̇wc

ϒ

s.t. ϒ1 + ϒ2 − ϒ < 0 (52)
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FIGURE 4. Time history of attitude.[
−I M1/2

1 �̇wc
(M1/2

1 �̇wc)
T

−ϒ1I

]
< 0 (53)[

−I 912
9T

12 −ϒ2I

]
< 0 (54) b

T
192 0 0 0
0 bT292 0 0
0 0 bT392 0
0 0 0 bT492

 < 0 (55)

 b
T
193 0 0 0
0 bT293 0 0
0 0 bT393 0
0 0 0 bT493

 < 0 (56)

where

912 =
√
h(uc − (C0 +1C(1rc))Jw�̇wc),

92 = �̇wcmin − �̇wc,

93 = �̇wc − �̇wcmax

and ϒ > 0, ϒ1 > 0, ϒ2 > 0, bi(i = 1, 2, 3, 4) are unit
column vectors and satisfy [b1, b2, b3, b4] = I4, and 1E =

{1rc|1rci = 1−i or 1+i , i = 1, 2, 3}.
Proof: Denote

ϒ1 =
∥∥�̇wc

∥∥2
M1
,

ϒ2 = h
∥∥uc − (C0 +1C(1rc))Jw�̇wc

∥∥2
To ensure

max
1rc∈1I

{
∥∥�̇wc

∥∥2
M1
+h

∥∥uc − (C0 +1C(1rc))Jw�̇wc
∥∥2}<ϒ

it holds if

ϒ1 + ϒ2 < ϒ

and

�̇
T
wcM1�̇wc < ϒ1, (57)

9T
12912 < ϒ2 (58)

Using the Schur complement Lemma, (57) and (58) are
equal to [

−I M1/2
1 �̇wc

(M1/2
1 �̇wc)T −ϒ1I

]
< 0[

−I 912

9T
12 −ϒ2I

]
< 0

for1rc ∈ 1I , then according to Corollary 4.3.1 in [33], (54)
is obtained. To add the constraint to �̇wc, we have

�̇wcmin < �̇wc < �̇wcmax

⇐⇒


�̇wc1min
�̇wc2min
�̇wc3min
�̇wc4min

 <

�̇wc1
�̇wc2
�̇wc3
�̇wc4

 <

�̇wc1max
�̇wc2max
�̇wc3max
�̇wc4max

 (59)

then rewrite left side of (59) as:
�̇wc1min
�̇wc2min
�̇wc3min
�̇wc4min

 <

�̇wc1
�̇wc2
�̇wc3
�̇wc4



⇐⇒


921 0 0 0
0 922 0 0
0 0 923 0
0 0 0 924

 < 0

⇐⇒


bT192 0 0 0
0 bT292 0 0
0 0 bT392 0
0 0 0 bT492

 < 0

with 92i = �̇wcimin − �̇wci, i = 1, 2, 3, 4. Thus (55) can be
obtained, by the same way, we can also get (56).

IV. SIMULATION
In this experiment, the dynamic model of combined
spacecraft system consists of a service spacecraft, a target
spacecraft and one 3-DOF space manipulator. The involved
differential equations in preceding sections were integrated
using a fixed-step Runge–Kutta solver (0.1 s).

The inertia matrix of the combined spacecraft is set as
J = diag{12, 14, 22}kg · m2, the nominal inertia matrix is
J0 = diag{10, 15, 20}kg · m2 [6]. For each reaction wheel,
the inertia is 0.338 kg · m2, the maximum and minimum
value on the angular acceleration vector of reaction wheels
are �̇wcimax = 7 and �̇wcimin = −7 rad/s2, i = 1, 2, 3, 4.
According to the control mapping relationship between angu-
lar acceleration �̇wc and virtual control torque uc, the limi-
tations on the control input torque are set as ucimax = 1 and
ucimin = −1Nm (i = 1, 2, 3) (Note that ucimax and ucimax are
selected such that the angular acceleration of reaction wheels
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FIGURE 5. Time history of angular velocity.

FIGURE 6. Time history of control torque.

FIGURE 7. Time history of angular acceleration of reaction wheels.

�̇wc is obtained satisfying uc = CJw�̇wc and �̇wcimin ≤

�̇wci ≤ �̇wcimax, i = 1, 2, 3, 4). The reaction wheels’
configuration matrix of the service spacecraft expressed in
the frame Fs(Osxsyszs) is set as

C̄ =

 1 0 0 1/
√
3

0 1 0 1/
√
3

0 0 1 1/
√
3


The rotation matrix Rsc is set as

Rsc =

 0.63708 0.63708 −0.43388
−0.87855 0.61925 0.78026
0.76577 −0.45897 0.45048


and the nominal vector rc0 is defined as rc = [2, 2, 2]T

m. We assume that the measurement error 1rc satisfying

| 1rci |≤ 0.3 (i = 1, 2, 3), then according to equation (7)
and (8), the nominal configuration matrix C0 and uncertain
one1C expressed in the body frame of combined spacecraft
are

C0 =

−1.04348 − 1.04348 − 2.11444 − 1.19542
−1.92047 − 4.22670 − 2.61660 − 7.41144
−7.4879 − 1.97353 − 1.06408 − 1.07734


1C =

 0.16801 0.16801 0.16801 0.16801
0.10419 0.10419 0.10419 0.10419
0.15146 0.15146 0.15146 0.15146


Also, the actuator fault is considered as follows: the first
control torque undergoes e1 = 0.5 and ū2 = 0.2 Nm after 5 s;
the second control torque undergoes e2 = 0.5 after 10 s; the
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TABLE 1. Main control gains for simulations.

third control torque experiences e3 = 0 and ū3 = −0.2 Nm
from 5 s to 15 s. The fault evolution rate ai = 1, i = 1, 2, 3, 4.
The combined spacecraft is assumed to be tumbling,

the initial attitude MPR of combined spacecraft is set as
σ (0) = [0.323,−0.194, 0.388]T, the initial angular velocity
ω(0) = [−0.01, 0.02,−0.03]T, and the measurement errors
are also defined as [6]{

υ1 = δs1σ + δn1

υ2 = δs2ω + δn2
(60)

where δn1 = [δn11, δn12, δn13]T and δn2 = [δn21, δn22, δn23]T ,
and δsi, δnij (i = 1, 2, j = 1, 2, 3) are both Gaussian white
noise. Here, we set mean value and standard deviation of δsi
(i = 1, 2) as zeros and 0.005 respectively, mean value and
standard deviation of δnij (i = 1, 2, j = 1, 2, 3) as zeros and
0.002 respectively. The external disturbance model is in the
form of [34]

d =

 0.005 cos (0.02t)
−0.005 cos (0.025t)
0.006 sin (0.04t)

Nm

In the following subsections, in order to show the superior-
ity of the proposed control scheme, traditional PD controller
uc = −β1σ − β2ω [35] and the robust finite-time fault-
tolerant controller (RFTFT) in [36] are conducted. The gains
of those control algorithms were selected as shown in Table 1.
Note that the control gains selected in this paper were chosen
using trial and error until a satisfactory simulation result is
obtained.

A. EFFECTIVENESS AND SUPERIORITY OF THE WHOLE
CONTROL SCHEME
In this subsection, in order to show the effectiveness and
superiority of the proposed nonlinear disturbance-observer-
based dynamic surface controller with robust LMI-based
control allocation method, the PD controller and RFTFT
controller with psuedo-inverse control allocation method are
implemented for the purpose of comparison. The simulation
results are shown in Fig. 4-9. Fig. 4 presents the time history
of the attitude trajectories. Fig. 5 presents the time history
of the angular velocity trajectories. Fig. 6 presents the time
history of control torque. Fig. 7 presents the time history
of angular acceleration of reaction wheels. Fig. 8 presents
the time history of states of two disturbance observers in
proposed controller. Fig. 9 presents the time history of two
estimation errors in proposed controller.

FIGURE 8. Time response of states of two disturbance observers.

FIGURE 9. Time response of two estimation errors.

In Fig. 4, the magnitude of attitude with the proposed con-
troller is less than 2× 10−4 after 50 seconds, better than the
results with PD and RFTFT controller, where the magnitude
of attitude with RFTFT controller which will take more than
80 seconds to be less than 4 × 10−4, and the magnitude of
attitude with PD controller is 6×10−3 after the system is sta-
ble, much larger than the proposed controller. Also, in Fig. 5,
the magnitude of angular velocity with proposed controller
is less than 1 × 10−3 rad/s after 50 s, while angular velocity
of the PD and RFTFT controller take more time to conver-
gence to the neighborhood of zero. Besides, it can also be
observed that the system overshoot with proposed controller
is much less than PD and RFTFT controller. Fig. 8 and 9
show that the observer states are asymptotically stable and the
estimation errors of the lumped disturbance convergence to a
small neighborhood of zero. This means that inertia uncer-
tainties, external disturbance and measurement uncertainties
have been rejected well by proposed controller. As for the
control torque and the acceleration angular velocity, it can be
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FIGURE 10. Time history of attitude under tough condition.

FIGURE 11. Time history of angular velocity under tough condition.

FIGURE 12. Time history of control torque under tough condition.

seen that they are all constrained in the prescribed asymmetric
limitations in Fig. 6 and Fig. 7, and the chatting phenomena
has been obviously suppressed comparing to RFTFT con-
troller. And moreover, the average value of the control torque
and the angular acceleration velocity are listed in Table 2,
where less control torque and acceleration angular velocity
is needed to maintain the state in small neighborhood of
zero of the proposed controller comparing to PD and RFTFT
controller. In short, the proposed dynamic surface attitude sta-
bilization controller with robust LMI-based control allocation
method has better system performance and cost less control
torque and actuator force than PD and RFTFT controller with
psuedo-inverse control allocation method.

TABLE 2. Control torque and angular acceleration velocity with different
controller.

To show the robustness performance of the proposed con-
troller, rough conditions are considered in this simulation by
using controller (36). Especially, we set the nominal inertia
matrix is J0 = 0.6J = diag{7.2, 8.4, 13.2}(kg ·m2), the con-
trol input torque are ucimax = 0.5 and ucimin = −0.5Nm, and
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FIGURE 13. Time history of angular acceleration of reaction wheels under tough condition.

TABLE 3. Control torque and angular acceleration velocity with different
controller under tough condition.

FIGURE 14. Time response of states of two disturbance observers under
tough condition.

the external disturbance model is 10d and the measurement
errors are the same form as (60). Then the simulation results
are shown in Fig. 10-15. Fig. 10 presents the time history
of the attitude trajectories under tough condition. Fig. 11
presents the time history of the angular velocity trajectories
under tough condition. Fig. 12 presents the time history of
control torque under tough condition. Fig. 13 presents the
time history of angular acceleration of reaction wheels under
tough condition. Fig. 14 presents the time history of states of
two disturbance observers in proposed controller under tough
condition. Fig. 15 presents the time history of two estimation
errors in proposed controller under tough condition.

In view of the results in Fig. 10 and Fig. 11, we can see that
the attitude and angular velocity with the proposed controller
converge to small neighborhoods of zero in 75 seconds, while
PD controller and RFTFT controller take 120 seconds, much

FIGURE 15. Time response of two estimation errors under tough
condition.

longer than the proposed controller. And the magnitude of
the attitude with proposed controller is less than 5 × 10−4

when system is stable, while PD controller is about 0.015
and RFTFT controller near 6 × 10−4 both larger than the
proposed one. From Fig. 12 and 13, all the control torque and
angular acceleration velocity are constrained in the limitation,
and the chatting phenomenon is also effectively suppressed
comparing to RFTFTmethod. Furthermore, the average value
of the control torque and the angular acceleration velocity in
this case are listed in Table 3. It can be seen that although
more control torque and actuator force are needed in the tough
condition, but the proposed method still costs less comparing
to the other two control scheme. Fig. 14 and 15 show that
observer states can convergence to a neighborhood of zero in
finite time, and the estimation errors are bounded even under
tough condition. In short, we can conclude that the closed-
loop system is still stable with acceptable and better response
performance in spite of rough conditions comparing to the
other control scheme.

B. SUPERIORITY OF THE ROBUST LMI-BASED CONTROL
ALLOCATION METHOD
In this subsection, the superiority of the robust LMI-based
control allocation method is demonstrated. Considering that
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FIGURE 16. Time history of attitude with proposed controller under different control allocation method.

FIGURE 17. Time history of angular velocity with proposed controller under different control allocation method.

FIGURE 18. Time history of control torque with proposed controller under different control allocation method.

the control system is suffering a more serious condition,
where the measurement error 1rc satisfying | 1rci |≤ 0.65
m (i = 1, 2, 3) and the other condition are same to the
above tough condition. The simulation results are shown in

Fig. 16-19. Fig. 16 presents the time history of the attitude
trajectories in different control allocation methods. Fig. 17
presents the time history of the angular velocity trajectories
in different control allocation methods. Fig. 18 presents the
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FIGURE 19. Time history of angular acceleration of reaction wheels with proposed controller under different control allocation method.

time history of control torque in different control allocation
methods. Fig 19 presents the time history of angular acceler-
ation of reaction wheels.

In view of the results in Fig. 16-17, the attitude and angu-
lar velocity by proposed controller with robust LMI-based
control allocation method is still stable, though more time is
needed to convergence to the neighborhood of zero. However,
the closed-loop states by proposed controller with psuedo-
inverse control allocation method is diverging, i.e. the stabil-
ity of the closed-loop system can not be ensured. Certainly,
though more control torque and angular acceleration velocity
are need from Fig. 18 and Fig. 19, they are still constrained in
the limitation by the proposed control scheme. Thus, the pro-
posed robust LMI-based control allocation method can guar-
antee the system stability even under serious condition while
pseudo-inverse can not, which indicates that the proposed
control allocation method is necessary in the control scheme.

V. CONCLUSION
In this paper, a control scheme combining attitude con-
trol of combined spacecraft with reaction wheels subject
to actuator saturation, actuator fault, measurement uncer-
tainty, inertia uncertainty and external disturbance is estab-
lished. The proposed robust control allocation scheme, which
uses disturbance-observer-based dynamic surface method to
design the virtual feedback control, and employs the robust
LMI-based control allocation scheme to suitably distribute
the total virtual control torque into the active reaction wheels,
enables the overall closed-loop states ultimately converge
to an adjustable small neighborhood of zero. Simulation
results have been carried out to show the advantages and
improvements over existing controllers. In the future work,
the extension of the proposed approach to output feedback
control of combined spacecraft will be investigated.

REFERENCES
[1] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, ‘‘A review of space

robotics technologies for on-orbit servicing,’’ Prog. Aerop. Sci., vol. 68,
no. 8, pp. 1–26, 2014.

[2] P. Huang, M. Wang, Z. Meng, F. Zhang, and Z. Liu, ‘‘Attitude takeover
control for post-capture of target spacecraft using space robot,’’ Aerosp.
Sci. Technol., vol. 51, pp. 171–180, Apr. 2016.

[3] X. Huang and G. Duan, ‘‘Fault-tolerant attitude tracking control of com-
bined spacecraft with reaction wheels under prescribed performance,’’ ISA
Trans., to be published. doi: 10.1016/j.isatra.2019.08.041.

[4] A. H. J. de Ruiter, ‘‘Spacecraft attitude tracking with guaranteed perfor-
mance bounds,’’ J. Guid., Control, Dyn., vol. 36, no. 4, pp. 1214–1221,
Jul./Aug. 2013.

[5] A. H. J. de Ruiter, ‘‘Observer-based adaptive spacecraft attitude con-
trol with guaranteed performance bounds,’’ IEEE Trans. Autom. Control,
vol. 61, no. 10, pp. 3146–3151, Oct. 2016.

[6] L. Sun and Z. Zheng, ‘‘Disturbance-observer-based robust backstepping
attitude stabilization of spacecraft under input saturation and measurement
uncertainty,’’ IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 7994–8002,
Oct. 2017.

[7] L. Sun and Z. Zheng, ‘‘Saturated adaptive hierarchical fuzzy attitude-
tracking control of rigid spacecraft with modeling and measurement uncer-
tainties,’’ IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3742–3751,
May 2019.

[8] W. C. Durham, ‘‘Constrained control allocation,’’ J. Guid., Control, Dyn.,
vol. 16, no. 4, pp. 717–725, 1993.

[9] X. Hang and G. Duan, ‘‘A developed constrained control allocation
approach based on pseudo inverse,’’ in Proc. Chin. Autom. Congr. (CAC),
Oct. 2017, pp. 195–200.

[10] X. Huang and G. Duan, ‘‘Attitude control and structure robust control
allocation for combined spacecraft,’’ Control Theory Appl., vol. 35, no. 10,
pp. 1447–1457, 2018.

[11] O. Härkegård, ‘‘Dynamic control allocation using constrained quadratic
programming,’’ J. Guid. Control Dyn., vol. 27, no. 6, pp. 1028–1034, 2004.

[12] X. Huang and G.-R. Duan, ‘‘Dynamic infinity-norm constrained control
allocation for attitude tracking control of overactuated combined space-
craft,’’ IETControl Theory Appl., vol. 13, no. 11, pp. 1692–1703, Jul. 2019.

[13] Q. Hu, B. Li, and A. Zhang, ‘‘Robust finite-time control allocation in
spacecraft attitude stabilization under actuator misalignment,’’ Nonlinear
Dyn., vol. 73, nos. 1–2, pp. 53–71, 2013.

[14] Q. Shen, D. Wang, S. Zhu, and E. Poh, ‘‘Postcapture robust nonlinear
control for tethered space robot with constraints on actuator and veloc-
ity of space tether,’’ IEEE Trans. Contrl Syst. Technol., vol. 25, no. 3,
pp. 1068–1075, 2017.

[15] J. Luo, C. Wei, H. Dai, Z. Yin, X. Wei, and J. Yuan, ‘‘Robust inertia-free
attitude takeover control of postcapture combined spacecraft with guaran-
teed prescribed performance,’’ ISA Trans., vol. 74, pp. 28–44, Mar. 2018.

[16] P. Huang, D. Wang, Z. Meng, F. Zhang, and J. Guo, ‘‘Adaptive postcapture
backstepping control for tumbling tethered space robot–target combina-
tion,’’ J. Guid., Control, Dyn., vol. 39, no. 1, pp. 150–156, 2015.

[17] P. Huang, D. Wang, F. Zhang, Z. Meng, and Z. Liu, ‘‘Postcapture robust
nonlinear control for tethered space robot with constraints on actuator and
velocity of space tether,’’ Int. J. Robust. Nonlinear Control, vol. 27, no. 16,
pp. 2824–2841, Nov. 2017.

VOLUME 7, 2019 156205

http://dx.doi.org/10.1016/j.isatra.2019.08.041


X.-W. Huang, G.-R. Duan: Robust Control Allocation in Attitude Fault-Tolerant Control

[18] S. Cao and Y. Zhao, ‘‘Anti-disturbance fault-tolerant attitude control for
satellites subject to multiple disturbances and actuator saturation,’’ Non-
linear Dyn., vol. 89, no. 4, pp. 2657–2667, 2017.

[19] B. Xiao, Q. Hu, and Y. Zhang, ‘‘Adaptive sliding mode fault tolerant
attitude tracking control for flexible spacecraft under actuator satura-
tion,’’ IEEE Trans. Control Syst. Technol., vol. 20, no. 6, pp. 1605–1612,
Nov. 2012.

[20] H.-T. Chen, S.-M. Song, and Z.-B. Zhu, ‘‘Robust finite-time attitude track-
ing control of rigid spacecraft under actuator saturation,’’ Int. J. Control
Autom. Syst., vol. 16, no. 1, pp. 1–15, Feb. 2018.

[21] B. Zhou, H. Gao, Z. Lin, and G.-R. Duan, ‘‘Stabilization of linear systems
with distributed input delay and input saturation,’’ Automatica, vol. 48,
no. 5, pp. 712–724, 2012.

[22] Z. Gao, Z. Zhou, M. S. Qian, and J. Lin, ‘‘Active fault tolerant con-
trol scheme for satellite attitude system subject to actuator time-varying
faults,’’ IET Control Theory Appl., vol. 12, no. 3, pp. 405–412, Feb. 2018.

[23] D. Ran, X. Chen, A. de Ruiter, and B. Xiao, ‘‘Adaptive extended-state
observer-based fault tolerant attitude control for spacecraft with reaction
wheels,’’ Acta Astronautica, vol. 145, pp. 501–514, Apr. 2018.

[24] Q. Li, L. Yin, H. Wang, X. Cao, and J. Cui, ‘‘Adaptive prescribed per-
formance fault estimation and accommodation for a class of stochastic
nonlinear systems,’’ IEEE Access, vol. 7, pp. 14139–14149, 2019.

[25] Y. Miao, F. Wang, and M. Liu, ‘‘Anti-disturbance backstepping atti-
tude control for rigid-flexible coupling spacecraft,’’ IEEE Access, vol. 6,
pp. 50729–50736, 2018.

[26] T. He and Z. Wu, ‘‘Extended disturbance observer with measurement
noise reduction for spacecraft attitude stabilization,’’ IEEE Access, vol. 7,
pp. 66137–66147, 2019.

[27] D. Zhou and B. Xu, ‘‘Adaptive dynamic surface guidance law with input
saturation constraint and autopilot dynamics,’’ J. Guid. Control Dyn.,
vol. 39, no. 5, pp. 1–8, 2016.

[28] P. Huang, M. Wang, Z. Meng, F. Zhang, Z. Liu, and H. Chang,
‘‘Reconfigurable spacecraft attitude takeover control in post-capture
of target by space manipulators,’’ J. Franklin Inst., vol. 353, no. 9,
pp. 1985–2008, Jun. 2016.

[29] A. H. de Ruiter, C. Damaren, and J. R. Forbes, Spacecraft Dynamics and
Control: An Introduction. Hoboken, NJ, USA: Wiley, 2013.

[30] P. Singla, K. Subbarao, and J. L. Junkins, ‘‘Adaptive output feedback
control for spacecraft rendezvous and docking under measurement uncer-
tainty,’’ J. Guid., Control, Dyn., vol. 29, no. 4, pp. 892–902, Jul./Aug. 2006.

[31] M. Chen, B. B. Ren, Q. Wu, and C. Jiang, ‘‘Anti-disturbance control
of hypersonic flight vehicles with input saturation using disturbance
observer,’’ Sci. China Inf. Sci., vol. 58, no. 7, pp. 1–12, 2015.

[32] L. Guo and W.-H. Chen, ‘‘Disturbance attenuation and rejection for sys-
tems with nonlinearity via DOBC approach,’’ Int. J. Robust Nonlinear
Control, vol. 15, no. 3, pp. 109–125, 2005.

[33] G.-R. Duan and H.-H. Yu, LMIs in Control Systems: Analysis, Design and
Applications. Boca Raton, FL, USA: CRC Press, 2013.

[34] J. Zhang, Q. Hu, and D. Wang, ‘‘Bounded finite-time attitude tracking
control for rigid spacecraft via output feedback,’’ Aerosp. Sci. Technol.,
vol. 64, pp. 75–84, May 2017.

[35] J. T.-Y.Wen andK. Kreutz-Delgado, ‘‘The attitude control problem,’’ IEEE
Trans. Autom. Control, vol. 36, no. 10, pp. 1148–1162, Oct. 1991.

[36] Q. Hu, X. Huo, B. Xiao, and Z. Zhang, ‘‘Robust finite-time control for
spacecraft attitude stabilization under actuator fault,’’ Proc. Inst. Mech.
Eng. I, J. Syst. Control Eng., vol. 226, no. 3, pp. 416–428, Mar. 2012.

XIU-WEI HUANG received the B.E. degree in
information and computing science and M.E.
degree in control science and technology from
the Harbin Institute of Technology, Harbin, China,
in 2013 and 2015, respectively, where she is cur-
rently pursuing the Ph.D. degree in control science
and technology. Her research interests include atti-
tude control and control allocation of combined
spacecraft.

GUANG-REN DUAN was born in Heilongjiang,
China, in April 5, 1962. He received the B.Sc.
degree in applied mathematics and the M.Sc. and
Ph.D. degrees in control systems theory from the
Harbin Institute of Technology.

From 1989 to 1991, he was a Postdoctoral
Researcher with the Harbin Institute of Technol-
ogy, Harbin, China, where he became a Professor
of control systems theory, in 1991. He visited the
University of Hull, U.K., and the University of

Sheffield, U.K., from December 1996 to October 1998. He was a Lec-
turer with the Queen’s University of Belfast, U.K., from October 1998 to
October 2002. Since August 2000, he has been elected Specially Employed
Professor with the Harbin Institute of Technology, sponsored by the Cheung
Kong Scholars Program of the Chinese Government, where he is currently
the Director of the Center for Control Theory and Guidance Technology.
He is the author or coauthor of four books and more than 200 SCI indexed
publications. Particularly, he has published a book, as the sole author, entitled
Analysis and Design of Descriptor Linear Systems (NewYork: Springer,
2010). He has published more than 30 articles in IEEE Transactions. He
has taught quite a few courses at the Harbin Institute of Technology and
Queen’s University of Belfast. Particularly, he has lectured the graduate
course Introduction to Linear Matrix Inequalities in Control Systems Anal-
ysis and Design at the Harbin Institute of Technology, in the Fall semester
from 2004 to 2005, and in the Spring semester from 2006 to 2011. His main
research interests include parametric robust control systems design, linear
matrix inequality-based control systems analysis and design, descriptor sys-
tems, flight control, and magnetic bearing control.

156206 VOLUME 7, 2019


