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ABSTRACT Despite its efficiency in conventionalmultiple-inputmultiple-output (MIMO)wireless systems,
quadrature spatial modulation (QSM) becomes less efficient in massive MIMO systems since it does not
adapt to the number of antennas but always uses one or two out of them. To adopt QSM in massive MIMO
systems, a parallel quadrature spatial modulation (PQSM) scheme is proposed in this paper. In PQSM,
the transmit (Tx) antennas are divided equally into P > 1 groups, and the bit sequence to be transmitted
during a time slot is divided into P + 1 parts. Then, the first part is applied to map an M -QAM complex
constellation symbol while the remaining P parts of the bitstream are used to perform P QSMs in parallel.
By allowing a tradeoff between the spatial modulation order and signal constellation order, PQSM enables
lower bit error rate (BER) with no loss of spectral efficiency compared with QSM. For a fixed signal
constellation, PQSM yields higher spectral efficiency than QSM since more selected antenna indices can
carry more data bits. The algorithm pertaining to the proposed scheme is designed, and an upper bound on
the average bit error rate (ABER) is derived. Moreover, to minimize the ABER, an algorithm is developed
to optimize the number of Tx antenna groups and the signal constellation order. Monte-Carlo simulation
results demonstrate the superiority of PQSM over generalized SM and QSM, as well as the effectiveness of
the developed performance analysis.

INDEX TERMS Average bit error rate, inter-channel interference, massive multiple-input multiple-output,
parallel quadrature spatial modulation, spectral efficiency.

I. INTRODUCTION
Since massive multiple-input multiple-out (MIMO)
technology can greatly improve system capacity and spec-
tral efficiency, it is widely recognized as a key technology
in 5G and beyond wireless communication systems [1]. The
traditional MIMO technologies, such as Vertical Bell Labs
layered space-time (V-BLAST) schemes, break input data
stream into multiple sub-streams that are transmitted through
multiple antennas, and consequently the spectral efficiency
increases linearly with the number of transmit (Tx) antennas.
However, V-BLAST-based MIMO systems suffer from high
inter-channel interference (ICI) at the receiver. The detection
algorithm for reducing ICI in massive MIMO systems is
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very complicated, and the high ICI would degrade sys-
tem performance [2]. Therefore, how to effectively improve
spectral efficiency through multiple antennas and avoid ICI
becomes a challenging problem in massive MIMO. The
spatial modulation (SM) based MIMO techniques provide
an inspiring solution [3]. In principle, SM introduces an
extra spatial dimension into MIMO systems, and extends
digital modulation from two-dimensional mapping to three-
dimensional mapping. That is, data bits are transmitted not
only by the mapped signal constellation symbols (i.e., data
symbols), but also by the selected antenna indices (i.e., spatial
symbols) [4].

During a transmission time slot, the original SM
scheme [3] selects one antenna out of all Tx antennas and
transmits data symbol through a single radio frequency (RF)
link. Although it is able to avoid ICI and inter-symbol
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interference (ISI), its spectral efficiency can only increase
logarithmically rather than linearly with the number of Tx
antennas. To exploit more Tx antennas, generalized spatial
modulation (GSM) was studied in [5], [6], where a combina-
tion of multiple Tx antennas is used as a spatial symbol. Since
GSM uses multiple active antenna indices to encode infor-
mation bits, it enables higher spectral efficiency than SM.
Moreover, in GSM, the same data symbols are transmitted
through different antennas, so it can effectively avoid ICI and
ISI.

Quadrature spatial modulation (QSM) proposed in [7] is a
new method to enhance the overall spectral efficiency of the
SM technique while retaining almost all inherent advantages
of SM systems. In QSM, each complex data symbol is divided
into real and imaginary parts, which are simultaneously trans-
mitted to the receiver by two mutually orthogonal carriers
over one or two antennas depending upon the subsequent
data bits [8]. For a MIMO system with Nt Tx antennas and
M -QAM constellation adopted, QSM provides log2 (Nt ) bits
per channel use (bpcu) improvement in spectral efficiency
compared with the original SM whose spectral efficiency is
log2 (NtM ) bpcu [3]. Moreover, since two mutually orthogo-
nal carriers are used in QSM, ICI is completely avoided [9].
As a result, QSM is widely recognized as a promising tech-
nique for future wireless communications systems and has
attracted significant research interest in recent years. To name
just a few, the performance of QSM over Nakagami-m fad-
ing channels was studied in [10], whereas a comprehensive
framework for QSM in generalized fading scenarios was
investigated in [11]. The impact of co-channel interference
on QSM was explored in [12] and a differential QSM was
introduced in [13]. Also, an anti-eavesdropping scheme was
designed for QSM in [14] and the performance of QSM
in cognitive radio systems was studied in [15]. To further
improve the performance of QSM, the minimum Euclidean
distance of signal symbols was increased in [16] and the
signal space diversity was exploited in [17]. Application of
QSM to 5G outdoor millimeter-wave communications was
reported in [18]. Very recently, a precoding aided QSM was
proposed in [19], where the precoding matrix is designed to
preprocess the in-phase and quadrature signals of QSM.Also,
the secure transmission for differential QSM with artificial
noise was investigated [20].

Despite its efficiency in conventional MIMO systems,
QSM becomes less efficient in massive MIMO systems since
it does not adapt to the number of antennas but always uses
one or two out of them. Although GSM can be applied in
massive MIMO systems, the number of possible Tx antenna
combinations in GSM cannot be fully used for spatial sym-
bols. For instance, if a combination of Nu out of Nt antennas
is used as a spatial symbol, the number of possible antenna
combinations is Nc =

(Nt
Nu

)
, with

(
·

·

)
being the binomial

coefficient. Among them, only 2blog2 Ncc combinations, with
b·c being the floor operation, can be exploited to convey
spatial symbols. As a result, the mapping from information
bits to the possible antenna combinations is not one-to-one.

Furthermore, as Nt and Nu increase, the antenna mapping
table of GSM becomes very complicated [5].

To adapt QSM for massive MIMO systems, a parallel
quadrature spatial modulation (PQSM) scheme is proposed
in this paper. In PQSM, the Tx antennas are divided equally
into P > 1 groups, and the bit sequence to be transmitted
during a time slot is divided into P + 1 parts. The first part
is applied to map anM -QAM complex constellation symbol,
and the remaining P parts are used to perform P QSMs in
parallel. Clearly, PQSM reduces to the conventional QSM
when P = 1.

Compared with GSM and QSM, the proposed PQSM
presents attractive features including, i) PQSM can achieve
the best tradeoff between the order of signal constellation and
the order of spatial modulation, thus reducing the average
bit error rate (ABER); ii) PQSM can obtain higher spectral
efficiency than conventional QSM by activating an optimal
number of Tx antennas groups (denoted Popt) instead of one
or at most two antennas; and iii) By transmitting the same
data symbol in parallel, PQSM retains the key advantage of
SM, namely, the complete avoidance of ISI and ICI. Further,
PQSM has spatial diversity gain and it is able to increase the
reliability of the wireless channel, by providing replicas of
the transmitted data symbol to the receiver.

In summary, the main contributions of this paper are as
follows:
• A PQSM scheme is developed for massive MIMO sys-
tem, and the algorithm to implement PQSM is explicitly
formulated.

• An optimization algorithm is designed to get the opti-
mal number of Tx antenna groups and the correspond-
ing order of signal constellation in the sense of mini-
mum ABER, achieving the best tradeoff between spatial
domain and signal domain in a massive MIMO system.

• The spectral efficiency, an upper bound on ABER,
and the receiver complexity of PQSM are analytically
derived and compared with those of GSM and QSM.
Both theoretical analysis and simulation results demon-
strate the superiority of PQSM over QSM and GSM,
in terms of spectral efficiency and/or ABER.

To detail the proposed PQSM scheme, the rest of this paper
is organized as follows. Section II describes the principle of
PQSM and its implementation algorithm. Section III ana-
lyzes its performance, including the ABER performance and
receiver complexity. The optimal number of antenna groups
and order of signal constellation are determined in Section IV.
Simulation results are presented and discussed in Section V
and, finally, Section VI concludes the paper.
Notation: Throughout the paper, regular letters denote

scalars while bold ones in lower- and upper-case represent
vectors and matrices, respectively. The symbol Cm×n means
the complex space of m× n dimensions. The operators <{·}
and ={·} take the real and imaginary parts of a complex
variable, respectively. The (i, j)th entry of matrix A is denoted
Ai,j, and (·)T and (·)H refer to the transpose and Hermitian
transpose, respectively. ‖ · ‖ means the Euclidean norm of
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FIGURE 1. Principle of the proposed PQSM scheme.

a vector or the Frobenius norm of a matrix. The abbreviation
CN (0,N0) implies a complex Gaussian distribution with zero
mean and variance N0. Finally, the binomial coefficient and
Gaussian Q-function are defined as

(m
n

)
, m!

n! (m−n)! and

Q(x) , 1
√
2π

∫
∞

x exp
(
−

1
2 t

2
)
dt , respectively.

II. PQSM: PRINCIPLE AND IMPLEMENTATION
Consider an Nr × Nt MIMO system, with Nr and Nt being
the number of receive (Rx) and Tx antennas, respectively.
Also, Nt is assumed to be an even integer as a power of two.
Suppose that the channels between the transmitter and the
receiver are subject to block flat Rayleigh fading. In other
words, the channel matrixH ∈ CNr×Nt keeps constant during
a time slot, but varies independently between consecutive
time slots. The (m, n)th entry of H refers to the channel
coefficient from the nth Tx antenna to themth Rx antenna, and
all entries of H are independent and identically distributed
(i.i.d.) circularly symmetric complex Gaussian random vari-
ables according to CN (0, 1).

Figure 1 illustrates the principle of the proposed PQSM
scheme. At first, Nt Tx antennas are equally divided into
P groups. Since one QSM, which occupies one or two Tx
antennas, is applied in each antenna group, the maximum
value of P is Nt/2. Thus, we have 2 ≤ P ≤ Nt/2. For
antennas in the ith group, for all i ∈ {1, 2, · · · ,P}, they are
indexed ni ∈ {(i− 1)Nt/P + 1, (i − 1)Nt/P + 2, · · · ,
i Nt/P}, as shown in Figure 1.

A. TRANSMITTER DESIGN
Assume M -QAM signal constellation is applied at the trans-
mitter, withM being the order of signal constellation. In other
words, the same M -QAM data symbol is sent to all the Tx
antenna groups in a time slot. In PQSM scheme, P QSMs
are performed in parallel in P groups of Tx antenna. Since
2 log2 Ñ bits can be carried by the activated antenna indices
in one QSM [7], P QSMs can carry 2P log2 Ñ bits in spatial

domain, where Ñ = Nt/P is the number of antenna in each
antenna group. In addition, an M -QAM signal constellation
symbol can carry log2M bits in signal domain. Therefore,
in PQSM, the number of data bits to be transmitted during a
time slot is

K = log2M + 2P log2
Nt
P
, (1)

namely, the spectral efficiency of PQSM isK bits per channel
use (bpcu). Then, the K bits are divided into P + 1 parts of
length k0, k1, · · · , kP, with k0 = log2M and k1 = k2 =
· · · = kP = 2 log2 (Nt/P). Next, the operation of PQSM at
the transmitter is described step-by-step.
1) The first k0 bits are used to map a corresponding data

symbol x out of the M -QAM constellation, given by

x = x< + jx=, (2)

where j =
√
−1 is the imaginary unit. Then, the sym-

bol x is processed by an inphase/quadrature (IQ)-
modulation based RF chain, yielding

s(t) = <
{
xe−j2π fct

}
= x< cos(2π fct)+ x= sin(2π fct), (3)

where fc refers to the carrier frequency.
2) The intermediate k1 bits are used for the first QSM.

Specifically, the k1 bits are equally divided into two
subgroups of length log2 (Nt/P), and each subgroup is
applied to activate one antenna out of the first group
of Tx antennas. Assume that the indices of the acti-
vated antennas are `<1 and `=1 , it is evident that `<1 ,
`=1 ∈ {1, 2, · · · ,Nt/P}. Afterwards, x< and x= of the
data symbol x are transmitted through antennas `<1 and
`=1 , respectively.

3) The subsequent ki bits, for all i ∈ {2, 3, · · · ,P},
are used for the ith QSM. Like the preceding step,
the ki bits are equally divided into two subgroups
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of length log2 (Nt/P), and each subgroup is applied
to activate one antenna out of the ith group of
Tx antennas. Assume that the indices of the cho-
sen antennas are `<i and `=i , where `<i , `=i ∈

{(i− 1)Nt/P+ 1, (i− 1)Nt/P+ 2, · · · , iNt/P}, then
x< and x= in (3) are transmitted through the antennas
`<i and `=i , respectively.

As described in Section I, since one QSM activates one or
two antennas, after performing P QSMs in parallel, the num-
ber of activated Tx antennas is between P and 2P, and the
number of selected Tx antenna indices used for carrying
data bits is 2P. Namely, the data symbol x is simultane-
ously transmitted through activated Tx antennas with indices
(`<1 , `=1 ), · · · , (`<P , `=P ).

Since more selected antenna indices can carry more data
bits, for fixed spectral efficiency K and fixed number of Tx
antennas Nt , larger P implies smaller M as per (1). In other
words, by choosing different values of P, the proposed PQSM
allows a tradeoff between the spatial domain and the signal
domain. Clearly, lower signal constellation order enables
larger Euclidean distance between constellation points, yield-
ing lower ABER. Higher spatial modulation order, on the
other hand, brings higher BER of spatial symbols detection.
As a result, there exists a tradeoff between the spatial modu-
lation order and the signal constellation order, whose optimal
values will be determined in Section IV.

Now, the codeword to be transmitted is specified. On one
hand, if `<i 6= `=i , for all i ∈ {1, 2, · · · ,P}, then the data bits
transmitted by the activated antennas during a time slot form
the codeword w ∈ CNt×1, which is of the form

w= [ 0 x< 0 j x= 0 x< 0 jx= · · · 0 x< 0 jx= 0 ]T ,
↑ ↑ ↑ ↑ · · · ↑ ↑

`<1 `=1 `<2 `=2 · · · `<P `=P
(4)

where the antenna indices selected to transmit the data sym-
bol are specified. It is clear from (4) that, except the rows with
indices `<i and `=i , for all i ∈ {1, 2, · · · ,P}, all elements in
w are set to zero. On the other hand, if `<i = `=i , `i, for all
i ∈ {1, 2, · · · ,P}, namely, both the real and imaginary parts
of data symbol x are transmitted through the same antenna
with index `i in the ith Tx antenna group. Accordingly, the `thi
element of codeword w shown in (4) becomes

w`i = x< + jx=. (5)

No matter which case above occurs, ICI can be totally
avoided since the carriers of x< and x= are orthogonal to each
other. Finally, the modulated codeword with normalized Tx
power is readily given by

s =
w
‖w‖

. (6)

To precisely illustrate the principle of the transmitter
design based on the above discussions, the proposed PQSM
transmission scheme is formalized in Algorithm 1. As an
illustrative application, an example is shown below.

Algorithm 1 The Proposed PQSM Transmission Scheme
Require: Nt = number of Tx antennas,M = signal modula-

tion order, P = number of antenna groups, and a random
bit sequence q = [b1b2 · · · bK ].

Ensure: The modulated codeword s.
1: Initialization: k0 = log2M , k1 = · · · = kP =

2 log2(Nt/P), and λ , 2 log2(Nt/P);
2: Divide the Tx antennas into P groups with indices ni ∈
{(i− 1)Nt/P + 1, (i − 1)Nt/P + 2, · · · , iNt/P}, for all
i ∈ {1, · · · ,P};

3: Divide the bit sequence q into P + 1 parts:
q0 = [b1b2 · · · bk0 ] and qi = [bk0+(i−1)λ+1 bk0+(i−1)λ+2
· · · bk0+iλ], for all i ∈ {1, · · · ,P};

4: Map q0 onto a M -QAM constellation symbol
x = x< + j=;

5: Subdivide qi into two parts of equal length, by which
the antenna indices `<i and `=i are determined, for all
i ∈ {1, · · · ,P};

6: With `<i and `=i , for all i ∈ {1, · · · ,P}, the modulated
codeword s is obtained as per (6).

Example: Consider a MIMO system with Nt = 8 Tx
antennas and 4-QAM signal constellation applied, i.e.,
M = 4. In the case of P = 2, the Tx antennas are divided
equally into two groups, with antenna indices n1 ∈ {1, 2, 3, 4}
and n2 ∈ {5, 6, 7, 8}. By virtue of (1), the block length
(i.e., the spectral efficiency) can be calculated and given by
K = 10, implying k0 = 2 and k1 = k2 = 4. To be specific,
assume the data sequence to be transmitted is

q =
[
0 1 1 1 0 1 1 0 1 0

]
. (7)

As per Algorithm 1, q can be divided into three parts:

q0 =
[
0 1

]
, q1 =

[
1 1 0 1

]
, and q2 =

[
1 0 1 0

]
.

Then, q0 is mapped onto the 4-QAM constellation, yielding
x = −1+ j. Afterwards, q1 is subdivided into two parts: [1 1]
and [0 1], implying `<1 = 4 and `=1 = 2. Similarly, q2 is
subdivided into [1 0] and [1 0], yielding `<2 = `=2 = 7. As a
result, according to (4), (5) and (6), the modulated codeword
is given by

s = 1
2 [ 0 j 0 −1 0 0 −1+ j 0 ]T ,

↑ ↑ ↑

2 4 (7, 7)
(8)

where the activated antenna indices (`<1 , `=1 ) = (4, 2) and
(`<2 , `=2 ) = (7, 7) are specified. Thus, after performing
PQSM modulation, the bit sequence q is mapped onto a data
symbol x = −1 + j, which is then transmitted through the
activated antennas with indices (4, 2) and (7, 7).
Remark 1 (On the Data Symbol Transmitted in a Time

Slot): In PQSM, the same data symbol is transmitted in
parallel through the activated antennas in a time slot, yield-
ing higher spatial diversity gain without ICI. On the con-
trary, if different symbols are transmitted in a time slot,
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although the spectral efficiency can be further improved,
it introduces ICI at the receiver, where advanced receiver like
minimum mean squared error (MMSE) detector may have
to be employed [21], [22]. As described in Section I, detec-
tion algorithms capable of reducing ICI in massive MIMO
systems are very complicated, and high ICI would greatly
degrade system performance.

B. DEMODULATION OF PQSM AT THE RECEIVER
At the receiver side, the received signal y ∈ CNr×1 can be
expressed as

y = Hs+ n, (9)

where n ∈ CNr×1 represents the additive white Gaussian
noise (AWGN)with entries subject to i.i.d. CN (0,N0). As the
transmit power of codeword s is normalized to unity, the aver-
age signal-to-noise ratio (SNR) at the receiver is defined as
ρ , 1/N0.
Recalling Eq. (4) where `<i and `=i denote the activated

antenna indices at the ith Tx antenna group, let h`<i and h`=i
be the ` th

<i
and ` th

=i
columns of H , i.e.,

h`<i =
[
h1,`<i , h2,`<i , · · · , hNr ,`<i

]T
h`=i =

[
h1,`=i , h2,`=i , · · · , hNr ,`=i

]T , (10)

where i ∈ {1, 2, · · · ,P}. Moreover, since only P pairs of
antenna indices are selected for data transmission, (9) can be
rewritten as

y =
P∑
i=1

h`<i x< + j
P∑
i=1

h`=i x= + n = g+ n, (11)

where

g ,
P∑
i=1

h`<i x< + j
P∑
i=1

h`=i x=. (12)

Assume that channel state information (CSI) is perfectly
known and the optimum maximum likelihood (ML) detec-
tor is exploited at the receiver. Accordingly, the estimated
antenna indices and transmitted data symbols are readily
given by[
ˆ̀
<, ˆ̀=, x̂<, x̂=

]
= arg min

`<,`=,x<,x=
‖y− g‖2

= arg min
`<,`=,x<,x=

‖g‖2 − 2<{yHg}, (13)

where

ˆ̀
< = ( ˆ̀<1 , ˆ̀<2 , · · · , ˆ̀<P ), (14a)
ˆ̀
= = ( ˆ̀=1 , ˆ̀=2 , · · · , ˆ̀=P ), (14b)

`< = (`<1 , `<2 , · · · , `<P ), (14c)

and

`= = (`=1 , `=2 , · · · , `=P ). (14d)

III. PERFORMANCE AND COMPLEXITY ANALYSES
In this section, an upper bound on the ABER of PQSM is
first derived and, then, the receiver complexity is quantified
and compared with those of GSM and QSM.

A. BIT ERROR RATE ANALYSIS
Now, we analyze the ABER performance of PQSM by using
the well-known union bound technique [23, pp. 263-264].

Specifically, with the optimumML detector given by (13),
the union bound on the ABER can be given by

P̄E ≤
1

K 2K

2K∑
n=1

2K∑
m=1

P̄APEP
(
sn→ ŝm

)
en,m, (15)

where P̄APEP
(
sn→ ŝm

)
denotes the average pairwise error

probability (APEP) given that the codeword sn is transmitted
whereas the estimated codeword at the receiver is ŝm, and en,m
is the total number of erroneous bits pertaining to the pairwise
error event sn→ ŝm, i.e., the Hamming distance of codeword
sn and ŝm.

To calculate the APEP needed in (15), we first derive
the instantaneous pairwise error probability. To be specific,
in case s is transmitted whereas it is incorrectly decoded as ŝ,
the instantaneous pairwise error probability given the CSIH ,
can be written as

Pr
(
s→ ŝ|H

)
= Pr

(
g→ ĝ|H

)
= Q

(√
µ
)
, (16)

where g was earlier defined in (12), and

ĝ ,
P∑
i=1

ĥ`<i x̂< + j
P∑
i=1

ĥ`=i x̂=, (17)

µ ,
1

2N0
‖g− ĝ‖2 =

2Nr∑
n=1

α2n, (18)

with αn ∼ CN (0, σ 2) referring to the channel estimation
error, for all n ∈ [1, 2Nr ]. The parameter µ defined in (18)
is of Chi-squared distribution with 2Nr degrees of freedom,
i.e., its PDF is expressed as

fµ(x) =
1

√
2πx σ

e−
x

2σ2 , x ≥ 0, (19)

where

σ 2
=
ρ

2

P∑
i=1

βi, (20)

with βi given by (21), as shown at the bottom of the next
page [7].

With (16) and (19), the APEP needed in (15) can been
computed as

P̄APEP
(
sn→ ŝm

)
=

∫
∞

0
Q
(√

x
)
fµ(x) dx. (22)

After some calculus operations, (22) can be written in the
closed-form:

P̄APEP
(
sn→ ŝm

)
=

(
1− γ
2

)Nr Nr−1∑
i=0

(
Nr − 1+ i

i

)(
1+ γ
2

)i
, (23)
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where γ ,
√

σ 2

2+σ 2
. Moreover, performing Taylor series

expansion over (23) and ignoring higher order terms, (23) can
be approximated as

P̄APEP
(
sn→ ŝm

)
≈

2Nr−10(Nr + 0.5)
√
π (Nr )!

(
1
σ 2

)Nr
. (24)

Finally, substituting (23) into (15) yields the union upper-
bound on ABER, explicitly shown in (25), as shown at the
bottom of this page.

B. RECEIVER COMPLEXITY ANALYSIS
In this subsection, the computational complexity of the opti-
mum ML detector discussed in Section II-B is quantified,
and compared with those of GSM and QSM. In particular,
both the number of complex multiplications and additions are
accounted for in the following calculation.

For the proposed PQSM scheme, as per (12)-(13), the com-
plexity emanates from:
i) computing g, which requires (4P− 1)Nr complex oper-

ations;
ii) computing ‖y − g‖2, which requires 3Nr − 1 complex

operations;
iii) repeating the above operations M(Nt/P)2P times.
To sum up, the computational complexity of the optimumML
receiver of PQSM is given by

η1 = (4PNr + 2Nr − 1)2K . (26)

As far as QSM is concerned, according to [7, Eq. (3)],
the complexity of ML detector is the result of
i) computing g, which requires 3Nr complex operations;
ii) computing ‖y−g‖2, which requires 3Nr −1 operations;
iii) repeating the above operations M ′Nt2 times, where M ′

is the signal constellation order of QSM.
Thus, the receiver complexity of QSM is given by

η2 = (6Nr − 1) 2K
′

, (27)

where

K ′ = log2M
′
+ 2 log2 Nt (28)

is the spectral efficiency of QSM in bpcu [7].
When PQSM and QSM are applied to the same MIMO

system, if their orders of signal constellation are identical
(i.e., M = M ′), comparing (1) with (28) one can conclude

TABLE 1. Comparison of receiver complexity.

that PQSM has higher spectral efficiency (i.e., K > K ′ for
all P ≥ 2) but at the cost of ABER. Therefore, the receiver
complexity of the two schemes is not comparable in this
case. For a fair comparison, assume that both schemes have
the same spectral efficiency, i.e., K = K ′, which implies
M < M ′, then by virtue of (26) and (27), the receiver
complexity ratio of PQSM to QSM is

R =
η1

η2
=

4PNr + 2Nr − 1
6Nr − 1

, (29)

which equals unity if P = 1, and approximates (2P + 1)/3
if P > 1. It is not surprising that R = 1 if P = 1, since in
such a case the proposed PQSM reduces to the conventional
QSM. On the other hand, if P > 1, it is clear that the
computational complexity of PQSM is linearly proportional
to P, i.e., the number of Tx antenna groups. This is indeed
the cost of the ABER gain obtained by PQSM, as illustrated
in Section V.

The receiver complexity of GSM can be computed by
using a similar approach as in [5]. For comparison pur-
pose, the receiver complexities of PQSM, QSM and GSM
are summarized in Table 1, where NP = (Nt/P)2P, and
N ′c = 2blog2 (

Nt
Nu)c withNu being the number of active antennas

in GSM. The parameters M , M ′ and M ′′ refer to the orders
of signal constellation applied to PQSM, QSM and GSM,
respectively.

It is noteworthy that the receiver complexity in PQSM
can be readily reduced because there are many zeros in
the transmission vector as shown in (4). Moreover, since
the same data symbol is transmitted in parallel by multiple
activated Tx antennas, there is no ICI and, thus, the receiver
complexity can be further reduced. For more details on
receiver complexity reduction, the interested reader is
referred to [24], [25].

βi =


|x<|2 + |x̂<|2 + |x=|2 + |x̂=|2, if h`<i 6= ĥ`<i and h`=i 6= ĥ`=i
|x< − x̂<|2 + |x=|2 + |x̂=|2, if h`<i = ĥ`<i and h`=i 6= ĥ`=i
|x<|2 + |x̂<|2 + |x= − x̂=|2, if h`<i 6= ĥ`<i and h`=i = ĥ`=i
|x< − x̂<|2 + |x= − x̂=|2, if h`<i = ĥ`<i and h`=i = ĥ`=i

(21)

P̄E ≤
1

K 2K

2K∑
n=1

2K∑
m=1

[
en,m

(
1− γ
2

)Nr Nr−1∑
i=0

(
Nr − 1+ i

i

)(
1+ γ
2

)i]
. (25)
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IV. OPTIMAL NUMBER OF ANTENNA GROUPS AND
SIGNAL CONSTELLATION ORDER
Since PQSM allows a tradeoff between the spatial domain
and the signal constellation domain, in this section the opti-
mal number of Tx antenna groups and order of signal constel-
lation, denoted by Popt andMopt respectively, are determined
so as to minimize ABER. Specifically, the optimization prob-
lem can be formulated as

(Popt,Mopt) = argmin
P,M

P̄E (30a)

s.t. 2 ≤ P ≤
Nt
2
, (30b)

log2M + 2P log2
Nt
P
= K , (30c)

Nt
P

is an integer as a power of 2. (30d)

Although this is a complex discrete variable optimization
problem, it can be readily solved by means of simple search-
ing, since the number of feasible parameter pairs (P,M )
is not large. For instance, consider a MIMO system with
(Nt ,Nr ) = (16, 16) and K = 18. According to
Eqs. (30b)-(30d), the set of feasible parameter pairs (P,M )
can be explicitly given by {(2, 64), (4, 4), (8, 4)}, which has
only three possibilities. As a result, the values ofPopt andMopt
can be readily determined via a searching algorithm.

In a real-worldMIMO system, the ABERmust be less than
a predefined threshold, denoted by Eth, that is, an additional
constraint is

P̄E ≤ Eth. (31)

Given Nt , Nr and K , it is clear that the upper bound on
ABER, i.e., (25), depends upon SNR. Thus, for any feasible
parameter pair (P,M ), we need an appropriate SNR to sat-
isfy (31). According to (15), (20) and (24), it is not hard to
find that the ABER is a monotonically decreasing function of
ρ. Thus, by choosing an appropriate ρ, Eq. (31) can always
be satisfied.

Accounting for all the above concerns, a search algorithm
to determine the values of Popt and Mopt is formalized in
Algorithm 2. As an illustrative example, consider a MIMO
system with (Nt ,Nr ) = (8, 8) and K = 12, it is not
hard to find that the possible set of feasible parameter pairs
is {(2, 16), (4, 16)}. By using Algorithm 2, we can readily
obtain the optimal parameter pair (Popt,Mopt) = (2, 16).
Compared with the conventional QSM scheme, the pro-

posed PQSM scheme with the optimal values of Popt and
Mopt offers the best tradeoff between the spatial domain
and the signal constellation domain, which enables to min-
imize the ABER without loss of spectral efficiency, thus
improving the system reliability. The performance of Algo-
rithm 2 will be illustrated in Subsection V-C.
Remark 2 (On the Value of 1ρ in Step 5 of Algorithm 2):

For a given MIMO system and target spectral efficiency,
the goal of Algorithm 2 is to find the optimal number of
Tx antenna groups and optimal signal constellation order

Algorithm 2 Optimal Number of Tx Antenna Groups and
Order of Signal Constellation
Require: Nt = number of Tx antennas, Nr = number of

Rx antennas, K = target spectral efficiency, and Eth =
threshold of ABER.

Ensure: (Popt,Mopt) {The optimal number of Tx antenna
groups and the optimal order of signal constellation}.

1: List the set of all the feasible parameter pairs
{(P1,M1), · · · , (Pn,Mn)} as per (30b)-(30d), where
n is the number of feasible parameter pairs;

2: Set the initial SNR ρ = 0 (in the unit of dB) and
the initial ABER vector PE = [P̄E1 , P̄E2 , · · · , P̄En ] =
[1, 1, · · · , 1], where P̄Ei is the initial ABER correspond-
ing to feasible parameter pair (Pi,Mi), for all i ∈
{1, · · · , n};

3: Set P0 = min(PE);
4: while P0 > Eth do
5: ρ = ρ +1ρ, where 1ρ denotes the SNR increment;
6: for i = 1 : n do
7: Compute P̄Ei corresponding to feasible parameter

pair (Pi,Mi) according to (25);
8: end for
9: Update P0 = min(PE);
10: Identify k as the index of the smallest entry in PE;
11: end while
12: (Popt,Mopt) = (Pk ,Mk ).

achieving the best tradeoff between the spatial domain and
the signal domain, such that the ABER of the MIMO sys-
tem is minimized. On one hand, for each feasible parameter
pair (Pi,Mi), where i ∈ [1, n] with n being the number of
feasible parameter pairs, Algorithm 2 calculates the ABER
vector PE = [P̄E1 , P̄E2 , · · · , P̄En ] under a certain SNR ρ,
where P̄Ei is the ABER corresponding to feasible parameter
pair (Pi,Mi). By gradually increasing ρ until at least one
entry of vector PE is less than or equal to Eth, and assume
the smallest entry in vector PE at this time is P̄Ek , namely,
P̄Ek = min(P̄E1 , P̄E2 , · · · , P̄En ). Then, (Pk ,Mk ) is the opti-
mal feasible parameter pair (Popt,Mopt). In other words, in the
process of gradually increasing ρ, the feasible parameter pair
(Pk ,Mk ) that first satisfy P̄Ek ≤ Eth is taken as the optimal
parameter pair. On the other hand, according to (15), (20)
and (24), it is evident that ABER monotonically decreases
as ρ increases. As a result, (31) can be satisfied as long as
ρ is sufficiently large. In other words, 1ρ can be as large as
possible to find the optimal solution quickly. Consequently,
in our simulation experiments to be discussed next,1ρ is set
to unity.

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, Monte-Carlo simulation results pertaining
to the proposed PQSM scheme with different Tx antenna
groups and signal constellation orders are presented and com-
pared with the conventional QSM [7] and GSM [5] schemes.
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FIGURE 2. The ABER of PQSM (P = 2) versus SNR for different antenna
configurations and various signal constellation orders.

For each Monte-Carlo realization, at least 106 sym-
bols are transmitted to obtain the ABER for each SNR
value, and the transmission energy Es is normalized to
unity.

A. THE TIGHTNESS OF THE ABER UPPER-BOUND
GIVEN BY EQ. (25)
Figure 2 shows the ABER of PQSM with P = 2 versus
SNR in the unit of dB, where three scenarios are considered,
namely, (Nt ,Nr ) = (4, 4) with 16-QAM, (Nt ,Nr ) = (8, 8)
with 16-QAM, and 4-QAM. For each scenario, the simulation
results are compared with the upper-bound computed as per
(25). It is observed that, for each scenario, the upper-bound
is very tight with corresponding simulation result at high
SNR, which corroborates the effectiveness of our preceding
analysis. Moreover, if the signal constellation is fixed to 16-
QAM, the ABER decreases significantly as the number of
antennas increases from (4, 4) to (8, 8), due to larger Rx
diversity gain, corresponding to the steeper slope of the lat-
ter curve than the former in the figure. On the other hand,
if the antenna configuration is fixed to (Nt ,Nr ) = (8, 8),
the ABER decreases significantly when the signal constel-
lation changes from 16-QAM to 4-QAM, since the latter
has larger Euclidean distance between signal constellation
points. This is widely known as coding gain, correspond-
ing to the horizontal shift of the latter curve relative to the
former.

B. COMPARISON OF PQSM AND QSM
As discussed earlier, the spectral efficiency of PQSM is
K = log2M + 2P log2(Nt/P) while that of QSM is
K ′ = log2M

′
+ 2 log2 Nt . If the same order of signal

constellation is applied, i.e., M = M ′, the spectral effi-
ciency of PQSM is clearly higher than QSM, as shown
in Table 2. In the following, to guarantee the fairness of
performance comparison, both PQSMandQSMuseM -QAM

TABLE 2. Comparison of spectral efficiency between PQSM and QSM
using the same 4-QAM constellation.

FIGURE 3. The ABER comparison between PQSM (P = 2) and QSM, with
(Nt , Nr ) = (8, 8), (16, 8), (16, 12) and K = 10, 14, 14, respectively.

constellation with appropriate orders of spatial modulation
and signal constellation, such that they achieve the same
target spectral efficiency.

In Figure 3, the ABER performance of PQSM and QSM
are compared, where (Nt ,Nr ) = (8, 8), (16, 8) and (16, 12),
and K = 10, 14 and 14 are considered, respectively. The
number of Tx antenna groups of PQSM is fixed to P = 2.
As seen from the figure, for each scenario, PQSM has lower
ABER than that of QSM in the whole SNR region under
consideration. This is because in the PQSM scheme two
pairs of Tx antenna indices are selected in a time slot, which
reduces the signal constellation order by mapping more bits
to the spatial domain than to the signal domain. This decrease
in signal constellation order leads to larger Euclidean dis-
tance between constellation points, thus yielding lower
ABER.

Figure 3 also illustrates that, compared with QSM,
the ABER improvement of PQSM is more significant when
the number of Tx antennas becomes larger. In particular, if the
ABER is set to 10−3, it is observed from the figure that
PQSM has about 4 dB SNR gain over QSM in the case of
Nt = 8, while the gain is larger than 9 dB when Nt = 16. The
significant SNR gain is mainly due to the fact that the PQSM
scheme requires a lower signal constellation order to achieve
the same spectral efficiency as QSM when the number of
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FIGURE 4. The ABER comparison between PQSM (P = 2) with
(Nt , Nr ) = (16, 8) and QSM with (Nt , Nr ) = (64, 8), in the same context of
K = 16 and 16-QAM.

Tx antennas increases. Consequently, PQSM is more suitable
than QSM for massive MIMO systems.

In Figure 4, the ABER performance of PQSM with P = 2
and QSM schemes under the same constellation order
M = 16, is compared. To achieve the same spectral efficiency
K = K ′ = 16 bpcu, the PQSM scheme needs Nt = 16
whereas QSM requires Nt = 64. This means that, given
a particular signal constellation order, PQSM can achieve
the same spectral efficiency as QSM but with much less Tx
antennas. In such a case, Figure 4 shows that the ABER
performance of PQSM is almost the same as that of QSM at
low SNR, yet slightly worse at high SNR. The reason behind
this observation is that the ABER is dominated by the signal
constellation symbols at low SNR whereas by the spatial
symbols at high SNR [3]. This figure demonstrates that, for
the same spectral efficiency and similar ABER, PSQM needs
much less Tx antennas than QSM, which greatly reduces the
hardware cost in practice.

C. OPTIMAL NUMBER OF TX ANTENNA GROUPS AND
ORDER OF SIGNAL CONSTELLATION
To validate the performance of Algorithm 2 for PQSM,
Figure 5 depicts the ABER performance of PQSM for differ-
ent (P,M ) pairs, with (Nt ,Nr ) = (16, 16) and K = 18 bpcu.
For theMIMO systemwith (Nt ,Nr ) = (16, 16) and the target
spectral efficiency K = 18 bpcu, the set of all (P,M ) feasible
pairs is {(2, 64), (4, 4), (8, 4)}. According to Algorithm 2,
it is not hard to determine that the optimal parameters are
(Popt,Mopt) = (4, 4). As can be seen from Figure 5, the case
with (P,M ) = (Popt,Mopt) = (4, 4) outperforms the others,
since it achieves the best tradeoff between spatial modulation
order and signal constellation order. On one hand, for the
scenarios of PQSM (P = 2) with 64QAMand PQSM (P = 4)
with 4QAM, the latter has larger Euclidean distance between
signal constellation points, thus yielding lower ABER. On the
other hand, for the scenarios with P = 8 and P = 4, although

FIGURE 5. The ABER of PQSM (P = 2, 4, 8) in the same context of
(Nt , Nr ) = (16, 16) and K = 18.

FIGURE 6. The ABER comparison between PQSM (P = 2, 4) and GSM
(Nu = 3, 4, 6), in the same context of (Nt , Nr ) = (8, 8) and K = 10.

both of them have the same spectral efficiency and the order
of signal constellation. However, the latter has lower BER
of spatial symbols detection than the former. Consequently,
the case of P = 4 has lower ABER than the case of P = 8.
To be specific, if the ABER is set to 10−3, Figure 5 shows that
the case with (P,M ) = (Popt,Mopt) = (4, 4) has about 9 dB
SNR gain over the case with (P,M ) = (2, 64), and 2.5 dB
gain over the case with (P,M ) = (8, 4).

D. COMPARISON OF PQSM AND GSM
Figure 6 compares the ABER performance of PQSM with
(P,M ) = (2, 4), (4, 4) and GSM with (Nu,M ) = (3, 32),
(4, 16), (6, 64), where (Nt ,Nr ) = (8, 8), K = 10 bpcu,
and Nu denotes the number of active antennas in GSM.
As observed from the figure, both PQSM schemes have lower
ABER than that of GSM schemes. This is because, to achieve

154758 VOLUME 7, 2019



G. Huang et al.: PQSM for Massive MIMO Systems With ICI Avoidance

FIGURE 7. The ABER performance comparison between PQSM (P = 2, 4)
and GSM (Nu = 4, 8).

the same target spectral efficiency, PQSM uses a lower order
of signal constellation than that of GSM, thus yielding lower
ABER. It can also be seen from Figure 6 that the ABER
performance of PQSM (P = 2) outperforms that of PQSM
(P = 4). In other words, using more Tx antenna groups
does not necessarily lead to lower ABER. Accordingly,
Algorithm 2 can be exploited to find the optimal number of Tx
antenna groups and the optimal order of signal constellation,
given by (Popt,Mopt) = (2, 4), which is in agreement with the
simulation results shown in Figure 6.

Figure 7 compares the ABER of PQSM and GSM, where
two scenarios, namely, (Nt ,Nr ) = (8, 6) and (16, 8), and
K = 12 and 18, are considered, respectively. For the cases
of (Nt ,Nr ) = (8, 6) with K = 12 and (Nt ,Nr ) = (16, 8)
with K = 18, according to Algorithm 2, it is not hard
to find the optimal parameters are (Popt,Mopt) = (2, 16)
and (4, 4), respectively, as depicted in Figure 7. For each
case, PQSM and GSM use the same number of maximum
activated antennas. Figure 7 shows that, for the same spec-
tral efficiency, PQSM outperforms GSM in terms of ABER.
Specifically, if the ABER is set to 10−3, for the case with
(Nt ,Nr ) = (16, 8), the PQSM scheme with (P,M ) = (4, 4)
has about 10 dB SNR gain over the GSM scheme with
(Nu,M ) = (8, 32), while for the case (Nt ,Nr ) = (8, 6)
the PQSM scheme with (P,M ) = (2, 16) has about 4 dB
SNR gain over the GSM with (Nu,M ) = (4, 64). The reason
behind this performance gain is that PQSM can map more
information bits to the spatial domain and use a lower order of
signal constellation, achieving a tradeoff between the spatial
modulation order and the signal constellation order.

VI. CONCLUDING REMARKS
To achieve higher spectral efficiency and/or reliability in
massiveMIMO systems while avoiding ICI, a PQSM scheme
was proposed in this paper, which includes the conventional
QSM as a special case. The distinctive feature of the PQSM

technique is to allow a tradeoff between spatial modulation
order and signal constellation order. On one hand, for a fixed
order of signal constellation, PQSM can achieve higher spec-
tral efficiency with higher spatial modulation order, or main-
tain the spectral efficiency but using much less Tx antennas.
On the other hand, by choosing the optimal number of Tx
antenna groups, PQSM can significantly decrease ABER
without loss of spectral efficiency. Furthermore, PQSM can
completely avoid ICI and ISI. Besides the implementation
algorithm of PQSM and the corresponding ABER analysis,
an optimization algorithm was designed to find the optimal
number of Tx antenna groups and optimal order of signal
constellation. Thanks to its flexibility and superiority over
conventional QSM and GSM, the proposed PQSM is more
suitable for massive MIMO promising in 5G wireless com-
munication systems.
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