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ABSTRACT It is always difficult to evacuate crowds in public places like subway stations. The traditional
crowd behavior simulation models often ignore two important issues in crowd evacuation: pedestrian
tracking and individual differences. To solve the problem, this paper combines social force model (SFM)
with deep learning into a novel pedestrian detection method. Firstly, several deep learning algorithms for
pedestrian detection were compared, and the best ones for sparse and dense crowds were determined. Next,
the pedestrian positions in a real video were acquired by the selected algorithms, and converted into actual
coordinates in the scene. Then, the evacuation process was simulated with our method and the SFM based
on these coordinates. The results show that our model output closer-to-reality results than the SFM. The

research findings shed important new light on evacuation in crowded areas.

INDEX TERMS Deep learning, social force model (SFM), crowd simulation.

I. INTRODUCTION

Many megacities have appeared across the globe for two
intertwined reasons: the population boom and the accelerated
urban growth. There are now 36 cities with over 10 million
residents around the world. Tokyo, for instance, is home to
37 million citizens. Meanwhile, the Chinese mainland boasts
15 cities with a population in excess of 10 million. With city’s
development, the urban traffic environment is becoming more
complex. Public places, like subway stations and bus stops
can be very crowded. People usually enter and exit these
places in order. However, accidents like crowding and tram-
pling may happen in emergencies (e.g. fire or earthquake).
It may lead to greater congestion, or more severe accidents,
due to large gatherings of people at transport hubs. To design
rational evacuation routes and strategies, many scholars have
attempted to develop suitable models for real-world scenes
and crowd behaviors [1]-[5].

To simulate crowd behaviors, Helbing et al. analyzed
crowd panic in details, and put forward the social force model
(SFM) [6]. Considering the discreteness of pedestrian flow,
this model attributes the dynamic feature of pedestrian flow
to the interaction force between individuals. Since its birth,
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the SFM has been continuously optimized. Nevertheless, nei-
ther the original nor the optimized models take account of
individual factors like height and strength. Moreover, these
models ignore the mentality of individuals in sparse crowds.

To make up for these gaps, this paper aims to predict the
speed and mentality of individuals in sparse crowds through
pedestrian detection [7]-[9]. To this end, the existing deep
learning algorithms were adopted to detect and locate pedes-
trians quickly, and the SFM was introduced to simulate the
real evacuation process. The contributions of our research are
summed up as follows:

1. The pedestrians were detected by deep learning, and
their speeds and accelerations were computed based on their
trajectories. Several pedestrian detection algorithms were
compared, and the one with the best effects on both sparse
and dense crowds was selected for transfer learning on our
dataset, with the aim to improve the detection accuracy.
Next, the center of gravity of the crowd was pinpointed by
classification algorithms in deep learning. Then, the specific
position of an individual in the scene was derived from the
center of gravity and boundaries of the crowd, thus forming
the trajectory of each pedestrian.

2. Some individuals in the crowd are blocked and not cap-
tured by camera. For these individuals, their speeds and accel-
erations were also computed based on their trajectories, and

155361


https://orcid.org/0000-0002-7094-0466
https://orcid.org/0000-0001-9025-3375
https://orcid.org/0000-0002-7639-0696

IEEE Access

X. Li et al.: Simulation of Evacuating Crowd Based on Deep Learning and SFM

substituted into the SFM to predict the next positions. Pedes-
trian detection and trajectory calculation were introduced
to solve the defects of the SFM in dealing with individual
differences and random events. In return, the SFM enhances
the computing accuracy of deep learning for dense crowd.
The combination of deep learning and the SFM ensures
the effectiveness and accuracy of the designed evaluation
process.

The remainder of this paper is organized as follows:
Section Il introduces deep learning, the SFM and the coupling
between them; Section III sets up our emergency evacuation
strategy for crowded areas; Section IV verifies our strategy
through simulation and comparative analysis; Section V puts
forward the conclusions of this research.

Il. RELATED WORK

A. EVACUATION MODEL

In 1971, Fruin [10] was the first to compare the move-
ment of a crowd to the flow of fluid. In 1989, May noted
the analogy between pedestrian flow and vehicle flow, and
proposed the concepts of subjective and micro-pedestrian
movements. In 1982, Hill suggested that pedestrians are
unconscious when choosing their paths to the target, and
that the routing strategy directly hinges on the length and
complexity of each path. Later, it was found that the path
selection could be affected by distance [11]-[15], the crowd-
ing degree [11], [13], [14], [16], cooperation, selfish behav-
ior [17] and conformity behavior [18]. In 2009, Kretz [11]
added an additional element in a model of pedestrian dynam-
ics that makes the agents deviate from the rule of the shortest
path. In 2010, Hartmann [12] proposed an approach corre-
spond to the shortest distances to the pedestrian’s targets with
respect to arbitrary metrics by adopting a continuum perspec-
tive, navigation fields. It offers an easily adaptable framework
for realistic navigation of single pedestrians as well as crowds
in microscopic approaches to pedestrian dynamics. In 2011,
Guo and Huang [13] proposed a method for formulating the
route choice behavior of pedestrians in evacuation in closed
areas with internal obstacles, which can simulate two classes
of phenomena that cannot be reproduced accurately by those
existing methods.. In 2012, Bovy and Stem [19] held that
individuals in an evacuating crowd might not find the fastest
evacuation route, and that the evacuation time of selfish
individuals is shorter than that of cooperative ones. In 2017,
Haghani and Savri [14] made a report on discrete-choice
estimates derived from observations of SC and RC methods
and found the potential applicability of the SC methods in
virtual-reality decision experiments.

Most models on pedestrian dynamics are grounded on indi-
vidual trajectory. The most popular ones include gas dynamic
model and pedestrian network flow model. In 2002, Hughes
model [20] was developed to describe and predict the 2D
macro-features of crowd movement. It is shown that pedes-
trians, such as pilgrims, aim at achieving each immediate
goal in minimum time rather than achieving all goals in
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overall minimum time. In 2015, Jiang et al. [21] built a high-
order macro model for bidirectional pedestrian flow, which
can reproduce the self-organizing stratification of the flow.
In 2016, Carrillo et al. [22] improved the Hughes model for
the smooth turning and temporary waiting of pedestrians.

The SFM is the most representative pedestrian flow
model [2], [3], [23]-[27]. In 2000, Helbing et al. [23] simulate
the evaluation of a panic crowd with the SFM, drawing on
the self-driven multiparticle system. Considering the impacts
of conformity behavior and panic, these scholars concluded
that individuals moving faster than usual tend to fall and
get injured, forming obstacles that slow down the crowd
evacuation and affect the use of emergency exit. In 2015,
Johansson et al. [25] improved the SFM to describe the
pedestrians in waiting situation, and studied their interaction
with non-waiting pedestrians. They showed that the treatment
of waiting pedestrians had a significant impact on simulations
of pedestrian traffic. They introduced a series of extensions
to the social force model to produce waiting behavior, pre-
sented a sensitivity analysis and provided sufficient criteria
for stability. Li ef al. [26] found that the evacuation speed of
crowded escalators is slower than the mean walking speed
of pedestrians. To reduce the congestion risk, the speed of
the escalator should be set slower than the average speed of
the pedestrians, and conductors can be employed to divert the
traffic at the entrance, turns, and exit of the escalator. In 2018,
Liu et al. [27] simulated and analyzed emergency evacua-
tion with video data model. They quantified the relationship
values among pedestrians, and group force was added to the
primary social force model. The proposed approach was con-
sistent with real-world situations and could assist in analyzing
emergency evacuation scenarios.

B. PEDESTRIAN DETECTION BASED ON DEEP LEARNING
Many deep learning methods have been applied to pedestrian
detection, which aims to identify all pedestrians in each frame
of images or videos.

One of the most frequently applied deep learning
methods is the region-based convolutional neural network
(R-CNN) [28]-[30]. The R-CNN trains CNNs end-to-end
to classify the region proposals into object categories or
background. In 2013, Szegedy et al. [31] introduced deep
neural networks (DNNs) to object detection problem, and
successfully classified and pinpointed the objects, which
achieves state-of-the-art performance on Pascal 2007 VOC.
In 2014, Sermanet et al. [32] proposed an image positioning
method that simultaneously categorizes, locates and detects
objects through a single CNN. But it needs a huge amount of
computation. The computing load of the R-CNN was greatly
reduced in the Fast R-CNN [34], and further lowered in Faster
R-CNN [29], [35]. The Fast R-CNN was inspired by spatial
pyramid pooling (SPP) [33], while the Faster R-CNN draws
on the region proposal network (RPN).

In addition, single-shot detector (SSD) [36], you look only
once (YOLO) algorithm [37] and CornerNet [38] have also
been employed to detect pedestrians. Without needing to
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FIGURE 1. The typical structure of the CNN.

generate proposals, the SSD can achieve comparable accu-
racy more efficiently than two-shot detectors. The YOLO
obtains bounding boxes and the class probability of each
box with a single neural network, but faces high coordinate
errors. Compared with the SSD, CornerNet removes the set
of anchors. By detecting objects as paired keypoints, Law
and Deng [38] eliminated the need for designing a set of
anchor boxes commonly used in prior single-stage detectors.
In addition, a new type of pooling layer helps the network
better localize corners, which CornerNet achieved a 42.2%
AP on MS COCO.

ill. METHODOLOGY

This paper extracts the actual position of pedestrians by
the deep learning algorithm Faster R-CNN. The SFM-based
simulation focuses on the positions of visible and invisi-
ble pedestrians. The pedestrian behaviors were simulated by
connecting the visible and invisible positions of the same
individual in all frames into the trajectory of that person. This
section begins with basic convolutional neural network for
deep learning. Then, the improvement of the CNN by the
objection recognition algorithm Faster R-CNN, and the origi-
nal social force model are introduced. Finally, the simulation
algorithm combining social force model with deep learning
is proposed.

A. CONVOLUTIONAL NEURAL NETWORK

The CNN is a feedforward network that performs well in
largescale images. The main operations of the CNN include
convolution, pooling and full connection. Specifically, con-
volution is to extract features from the input in two steps:
dividing the original image into several small regions, and
acquiring the relevant features from each region; pooling
compresses the image to save the main features and reduce the
number of parameters; full connection connects every neuron
in layer i to a neuron in layer i4-1. The typical structure of the
CNN is shown in Figure 1 below.
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As shown in Figure 1, the CNN usually has several con-
volutional layers. The first convolutional layer extracts low-
level features, the second extracts mid-level features, and the
third extracts high-level features. Each convolutional layer is
followed by a pooling layer, such that feature extraction and
image compression are repeated until most feature are high-
level ones. The features on the last layer are used for tasks like
classification and regression. The fully-connected layer often
adopts the DNN structure, and outputs the classification result
using the Softmax activation function. The DNN structure is
presented in Figure 2 below.

In Figure 2, every neuron is connected to all neurons in the
previous layer. These neurons satisfy the linear relationship
7z =Y wix; + b, where z is the output of the current neuron,
w is the weight, x is the output of neurons in the previous layer
and b is the bias value.

B. FASTER R-CNN - OBJECT RECOGNITION

The CNN is suitable for analyzing an image containing
a single object [39], [40]. If the image contains multiple
objects, it should be split into multiple parts. This process
may produce a heavy computing load. To solve the problem,
the RPN needs to be introduced to create the region of interest
(ROI) for target detection.
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FIGURE 4. The structure of Fast R-CNN.

Firstly, the texture of each pixel is computed, and the
two pixels with the most similar texture are combined into
the same group. Then, the groups with similar texture are
combined into a region proposal. The resulting ROIs are
converted into fix-sized images, and imported to the CNN.
Several fully-connected layers are added to classify targets
and extract the bounding box. The resulting R-CNN is illus-
trated in Figure 3 below.

The accuracy of the R-CNN is positively correlated with
the number of region proposals, many of which are overlap-
ping with each other [28]. Suppose there are 2,000 region pro-
posals to be inputted into the R-CNN independently. Then,
the feature extraction needs to be performed 2,000 times for
different ROIs. As aresult, the R-CNN is very slow in training
and inference.

The above defect can be overcome by the Fast R-CNN
(Figure 4). The Fast R-CNN extracts the features of the entire
image, rather than acquire the features part by part [34].
Then, the region proposals are created directly on the feature
map.

As shown in Figure 4, Fast R-CNN places the feature
extraction procedure with heavy computing load after convo-
lution operations, and thus achieves a faster speed than the
R-CNN. However, Fast R-CNN mainly relies on exterior
region proposals like selective search.
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Faster R-CNN retains the design of Fast R-CNN, but
replaces the region proposals with a deep network. The new
RPN is more efficient in creating the ROIs. The structure of
Faster R-CNN is shown in Figure 5.

As shown in Figure 5, Faster R-CNN enjoys high detection
accuracy, thanks to the removal of the feature map [29].
Therefore, Faster R-CNN is selected for object detection in
this research.

C. SOCIAL FORCE MODEL

In 1995, the SFM was established by Helbing et al. according
to Newton’s second law of motion [6]. The model assumes
that pedestrians are influenced by three factors: mentality,
other pedestrians and environment. The influences of the
three factors can be respectively measured by three forces: the
self-driving force, the acting force between two pedestrians
and the acting force between a pedestrian and obstacles. The
resultant force of the three forces is the acceleration of each
pedestrian. The force pattern and speed of each pedestrian
in the SFM are presented in Figure 6, where fo is the self-
driving force of pedestrian i, fj; is the acting force between
pedestrians i and j, f,-w is the acting force between pedestrian
i and the wall, ¥; is the actual speed of pedestrian i and v/e"
is the speed in the direction towards the target.
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FIGURE 6. The force and speed of each pedestrian based on the SFM.

The acceleration of pedestrian i can be computed by:

’"% =F+ D i+ D 6))
J(FD) w
where m; is the weight of the pedestrian.
The self-driving force of pedestrian i can be defined as:
P m Wt)e? — () )
Ti
where v?(t) and V;(¢) are the expected speed and actual speed
of pedestrian i at time ¢, respectively; 7; is the time for pedes-
trian 7 to avoid colliding into other pedestrians and obstacles,
i.e. the time for him/her to adjust speed.
In 2005, Helbing et al. pointed out that anxiety directly
bears on the expected speed of each pedestrian, and defined
the anxiety as [23]:

ni(t) = 1 — vig(t)/v2(0) 3)

where vj(t) is the expected speed of pedestrian i in the
direction towards the target; v?(O) is the initial value of the
expected speed. The initial value can be computed by:

w0 = (1= mOWP(O) + niovy @
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where v/"* is the maximum speed of the pedestrian under the
circumstance.

The acting force between two pedestrians f ;j is the resultant
of the repulsion f 4 and the contact force f #? between them. The
acting force and the repulsion can be respectlvely computed
by:

fi =15+ 5 5)

. 1 + cos ;)
fijs' = Ajexp [(rij — dij)/Biln;j (Ai +d-= )”')TU>

Q)

where A; and B; are two constants; r;; is the sum of the radius
of pedestrian i and that of pedestrian j; nj; = (7 — 7}) /dyj;
Ai € (0,1) is the effect of visual anisotropy of moving
pedestrians; cos(g;;) = —?z,-j ¢;. The contact force fp can
be further divided into extrusion and friction:

 _ P Zp
Ty =7+ g

ff = kelryj — dipity; + rcg(ryy — dip G — Vi (8)
where «k is the friction coefficient; g is the gravitational
acceleration; t,] = (- nl], n )

The acting force between a pedestrian and the wall ﬁw
can be calculated similarly to the acting force f ;i between

pedestrians i and j:

Jow = Fiu 4 ©)
f;iv = Ay exp [(riw — diw)/Bw]’_'iiw (10)
fow =Fiw + o (11
[, = kg(rij — diiivy + kg(riw — din)(=Vi - To)li ~ (12)

where f,w is the force applied by the wall to pedestrian i; f3), is
the subjective repulsion of pedestrlan i f is the contact force
between pedestrian i and the wall; lfv‘ is the extrusion force
applied by the wall to pedestrian i; fp 2 is the friction between

the wall and pedestrian i.

155365



IEEE Access

X. Li et al.: Simulation of Evacuating Crowd Based on Deep Learning and SFM

D. EVACUATION BEHAVIOR SIMULATION

In the principle of Faster R-CNN, the coordinates of pedes-
trian pixels in the original image were obtained, and con-
verted to scene coordinates. Taking them as inputs, deep
learning and SFM were combined into Algorithm 1 below.

Algorithm 1
Input: current frame, Py, and vy,
Output: Py and vy
Initialize the scene, including exits, entrances, walls and
obstacles.
Py < [l.vy < [I
i< 0
Pre < PL
Obtain the positions Pg of all pedestrians from deep learn-
ing.
Convert Pg into Pc.
for each pedestrian k in P¢ do
-—
Pp < {Pl cPL “PlPk’ < d}
Pyli] < Pg
if Pp is non-empty
then
if there is a point P; in the set Pp and the angle

_ N
of p,p, and vy are less than 6
then

N e~
W < PP [ At
vy lil < Vi.
remove P; from Ppc.
else
W lg- Y v
jeb
wylil < Vi
find the nearest P; to Py in set Pp, and
remove P; from Pyc.
end if
else
_v)k < vo_e)k
wylil < Vi
end if
i<—i+1
end for
for each pedestrian k in Py ¢ do
PP + _v)k - At
if px is not in the exit

then
Pyli] < Py
vy k] < _v)k + _a)SFM - At
I<—i+1
end if
end for

In Algorithm 1, the input values are the images of the
current frame, as well as the coordinates (Pp) and speeds
(vr) of pedestrians in the previous frame; the output values
are the coordinates (Pr) and speeds (vp) of pedestrians in
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FIGURE 7. The scene of our dataset.

the current frame; each uppercase subscript represents a set
of coordinates, while each lowercase subscript stands for a
single coordinate.

Firstly, the scene is initialized, and the speed and accelera-
tion of each pedestrian are computed by the SFM. Then, Prc
is obtained as a copy of Pr. The coordinates Ps of pedestrian
positions in the current frame are converted into the scene
coordinates Pc.

For each pedestrian k in Py, all the pedestrians within the
distance of d(0.4m) are collected into a set Pp. Let v; be the
speed of pedestrian k, and e; be the vector of the direction
to the exit. If it is in the speed direction of a point P; in the
Pp, then the pedestrian £ must be moving along the direction
of the ray P;P; and his/her speed must be the ratio of P;Py
to the interval At between two frames. Otherwise, the SFM
simulation does not accurately reflect the real situation.

Next, the closest point to the pedestrian was selected as the
position that the pedestrian appeared in the previous frame.
The pedestrian speed was corrected against the mean speed
of the crowd, and the speed direction was set towards the exit.
If Pp is an empty set, then the pedestrian must be new to
the scene. In this case, his/her speed was set to the normal
walking speed, and the direction was set towards the exit.

For the pedestrians not fully captured by camera, their
speeds and positions were computed by the SFM. The com-
puted accelerations are denoted as aggys. Once a pedestrian
reaches the exits, he/she was removed from the scene.

IV. EXPERIMENTAL VERIFICATION

Our method was compared with the original SFM in terms of
trajectory and time through a five-stage experiment, which
involves data preprocessing, pedestrian tracking, coordinate
conversion, feet detection and SFM simulation.

A. DATA PREPROCESSING
The scene of our crowd evacuation dataset is the entrance
hall (Figure 7) of the teaching building in a middle school of
Jilin province, China. The camera was placed at the southwest
corner of the hall.

The 6m-long, 4.8m-wide hall has three doors. The floor
is covered by 0.6x0.6m ceramic tiles. The desk on the right
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TABLE 1. The accuracy and time of the three models.

Model D1 D1 Time D2 D2 Time
Accuracy (ms) Accuracy (ms)
Model A 0.934 74 0.750 107
Model B 0.912 91 0.818 121
Model C 0.917 108 0.831 148

side was regarded as the obstacle in evacuation. The hall is
connected to the other parts of the building by a corridor on
the left, a corridor on the right, and stairs at the bottom of the
image. A total of 50 people volunteered to act as the evac-
uating crowd. They simulated the scenes in subway station
by entering into the hall through the left corridor, the right
corridor and the stairs in order. The simulation lasts 140min,
including 120min of free access and 20min of evacuation. The
current study focuses on the middle door, where is located at
1280x 720 25fps in the video with intervals of 0.04s.

B. PEDESTRIAN TRACKING

Three popular object detection models were compared,
including SSD ResNet50 FPN (Model A), Faster
R-CNN-ResNet 50 (Model B) and Faster R-CNN ResNet 101
(Model C). All models were pretrained on COCO dataset.
The experiment was conducted on Ubuntu 16.04, using
Scikit-learn 19.1 and Redis 4.08.

A total of 500 images were randomly selected and grouped
into dataset D1 (with fewer than 15 pedestrians in the
scene), and another 500 random images were collected into
dataset D2 (with more than 15 pedestrians in the scene).
The accuracy and time of the three models are compared
in Table 1 below. Note that the accuracy refers to the ratio
of the number of pedestrians identified by each model to
the number of pedestrians marked manually, and the time
stands for the processing time of each model. Fewer than
half of the manually marked pedestrians are blocked by other
pedestrians.

As shown in Table 1, Model A was faster than the other
two models over D1 but less accurate than the latter over
D2; Model C was more accurate yet slower than Model B.
Therefore, Model A was selected for sparse crowds (with
fewer than 15 pedestrians) and model C was selected for
dense crowds (with more than 15 pedestrians).

Then, the pedestrian images and environment images were
converted into the size 240x400, and the empty parts were
filled with white color. Then, Model A and Model C were
applied for transfer learning. Through the learning, Model C
reached the accuracy of 0.961 on D1 and 0.880 on D2. In this
way, the position of each pedestrian was obtained, facilitating
the drawing of his/her frame.

C. COORDINATE CONVERSION

As shown in Figure 8, a rectangular plane coordinate system
P (Figure 9) was set up with the blue point as the origin,
the intersecting line between the doors and the floor as the
y-axis, the intersecting line between the side wall and floor
as the x-axis.
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FIGURE 8. The coordinate system in the image.
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FIGURE 9. The rectangular plane coordinate system.

FIGURE 10. The intersecting lines.

In Figure 9, each point corresponds to a pixel in Figure 8,
and each blue square is of the same size of the ceramic tile
(0.6x0.6m). Next is to convert the coordinates of each pixel
in Figure 8 to the coordinates in the coordinate system P. The
conversion process is explained as follows.

Firstly, the parallel lines in Figure 9 were mapped into
intersecting lines, similar to how straight rails intersect each
other in the distance. Two intersection points, A and B, were
obtained. As shown in Figure 10, the coordinates of the two
points are (x4, y4) and xp, yp), respectively, and can be
determined by computing the intersection between any two
lines. Then, the origin O in P and the x- and y-directions in
the original image can be derived from these coordinates.
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(b)

FIGURE 11. Several pedestrians in the scene.

In Figure 10, C is the position of the object; AC and BC are
two rays passing through point C; C; is the intersection point
between AC and BD; C; is the intersection point between BC
and AF. The coordinates of C, D, E and F can be measured
directly from the image. Then, y = appx-+bpp can be derived
from the coordinates of D and B, y = asrpx + bar from those
of Aand F, y = ascx + bac from those of A and C, and
y = apcx +bpc from those of B and C. Thus, the coordinates
of Cy and C; can be respectively computed by:

= b
Yy = appx + bpp (13)
Yy = aacx + bac

= b
Y = AAFX + DaAF (14)
Yy =agcx + bpc

The coordinates of C in P can be determined by:

xc = xg + 0.6 - dgca/der
yc = ye — 0.6 - dgc1/dep (15)

where dgco, deci, dep and dgp are the distances between
E and C;, Cy, D and F, respectively, in the original image;
Xg and Yg are the coordinates of point E, the corner of
ceramic tile. Here, the values of Xg and Yg are directly
measured as 4.2 and —3.6. Thus, the coordinates of C can
be determined as 4.5 and —3.9.

D. FEET DETECTION
With model B and Faster R-CNN, the boundaries of the crowd
were obtained very rapidly. It is impossible to pinpoint a pixel
with a single image alone. Therefore, the feet position of each
pedestrian was used to determine his/her position in the scene.

As shown in Figure 11, the center of gravity of the pedes-
trians was not always the midpoint of the bottom boundary.
Errors brought by the projection is expected to be controlled
within 0.2m. Assuming that the coordinates of that midpoint
are (60, 500) in P, the actual coordinates of the center of
gravity and their errors from the midpoint can be summed
up in Table 2 below.

To reduce the errors, the relative position (left, middle or
right in the image) of the feet was evaluated by deep learn-
ing models, including ResNet-50, ResNet-101 and VGG-16.
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TABLE 2. The actual coordinates of the center of gravity and their errors
from the midpoint.

Coordinates of Error (m)
(10, 500) 0.41
(20, 500) 0.42
(30, 500) 0.32
(40, 500) 0.21
(50, 500) 0.105
(70, 500) 0.105
(80, 500) 0.21
(90, 500) 0.31
(100, 500) 0.42
TABLE 3. The accuracies of the three models.
ResNet-50 ResNet-101 VGG-16
Accuracy 0.44 0.61 0.91

The pedestrian images were taken as training sets, and the feet
coordinates as labels. Then, the 5,000 labelled images were
divided into a training set (80%) and a test set (20%). Our
dataset was not expanded, to prevent the shift in the center
of gravity. The accuracies of the three models are compared
in Table 3.

As shown in Table 3, VGG-16 achieved the highest accu-
racy in the small dataset. The poor performance of ResNet-
50 and ResNet-101 is attributable to their emphasis on texture
classification. The feet position is measured as r through
VGG, and the horizontal coordinate of the pedestrian’s posi-
tion can be calculated by Equation 16 in the picture.

X =a-ly + Xnin (16)

In Equation 16 Ix is the length in x-axis of the pedestrian
identification’s border in chapter 4.1, xp;j is the x-coordinate
of left border. When the feet position is on the left, a is
0.165, when the position is in the middle, a is 0.5, and a
takes 0.825 when the pedestrian foot position is on the right.
The y-coordinate of the pedestrian’s position is the border
y-coordinate under the pedestrian identification’s border in
the picture. The error between calculated coordinates and the
real coordinates of the maximum is less than 0.15m.

E. SFM SIMULATION

The SFM simulation parameters were configured as follows:
the weight of each pedestrian, 50kg (the mean weight of all
volunteers); the radius of each pedestrian, 0.4m; extrusion
between pedestrians, 2,000N; extrusion between pedestrian
and wall, 2,000N; B; 0.04m; B,,, 0.08m. (B; and B,, are the
constants of the social force model, which has been men-
tioned in Section 3.C)

Firstly, a single pedestrian in the scene was simulated by
the SFM. The results on a pedestrian coming out of the
left aisle are presented in Figure 12 for example, where the
blue line is the trajectory captured by the camera (the actual
trajectory) and the red one is the simulated trajectory.

As shown in Figure 12, the wall had a limited impact on the
single pedestrian. During the walking process, the pedestrian
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FIGURE 12. The simulated and actual trajectories of a single pedestrian.
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FIGURE 13. The trajectories simulated by our method.
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FIGURE 14. The trajectories simulated by the SFM.

trajectory was almost straight. The blue trajectory took 3.44s
and the red one took 3.64s, showing a very small difference.

Next, the trajectories of multiple pedestrians were simu-
lated separately by the SFM and our method, which couples
the SFM with deep learning. The results of the SFM are
displayed in Figure 14, and those of our method in Figure 13.

Comparing Figure 13 and Figure 14, it is easy to learn that
the walls exerted little impact on pedestrians. This is because
the volunteers are familiar with the environment. The results
of our method were closer to straight lines than those of the
SFM. This phenomenon can be explained as follows: The
SFM can neither predict the mentality of the volunteers, nor
capture the pedestrian positions in all frames. In addition,
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TABLE 4. Comparison of evacuation time and pedestrian speed.

Actual

Our method SFM
results
Evacuation Time 23s 25s 29s
Mean speed 0.94m/s 0.90m/s 0.84m/s

the initial speed inputted into the SFM is not the expected
speed.

As shown in Table 4, both our method and the SFM pro-
duced longer evacuation time and slower mean speed than the
actual results, but the results of our method were closer to the
actual data.

V. CONCLUSION

In this paper, we proposed a crowd model combining deep
learning and social force model simulation. For sparse and
dense crowd, we selected the optimal pedestrian detection
algorithm respectively and did the migration learning accord-
ing to the dataset of this paper. Then deep learning classifi-
cation algorithm is used to evaluate the drop point where the
pedestrian’s gravity center and acquire the pedestrian’s trajec-
tory. Pedestrian detection and trajectory calculation are used
to make up for the deficiency of social force models in human
body differences and random events, and social force models
are used to make up for the problem of personnel occlusion
and the lack of accuracy in crowded people. Through our
experiment, compared with the traditional social force model,
a more accurate crowd evacuation process, pedestrians’ tra-
jectory and evacuation time can be acquired through simula-
tion algorithm. The results also suggest that the more familiar
pedestrians are with the scene, the less influence the wall will
have on them. The accuracy of the Faster R-CNN selected
for the current experiment is low in dense crowds, and there
is only one exit of the data. In the future study, the pedestrian
detection accuracy will be further improved by employing
other algorithms to discuss evacuation path selection, and
explore the impact of multiple exits for evacuation.
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