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ABSTRACT This paper considers consensus control of unknown nonlinear multi-agent systems with
unknown disturbance under undirected networks. The expected output signal of the leader is not available to
all subsystems, only some subsystems can obtain it, and other subsystems will obtain the output regulation
error through the network connections. The critical contribution of this paper is to develop a new distributed
adaptive control protocol and disturbance observer based on relative output information to achieve the
consensus control objective of the subsystems. Since only the relative output information is used, the adaptive
control protocol we proposed is distributed. Also, a new lemma is proposed for the first time to analyze
the stability of the subsystems. Comparing to current results, the challenge exists in this paper is that the
external disturbance is unknown and does not have explicit expression. Based on this, designing a disturbance
observer based on relative output information to achieve consensus output regulation is the motivation of this
paper. Different from the existing disturbance suppression methods, only the relative output information is
used for disturbance suppression, and only the part of disturbance that affects the common trajectory will be
suppressed. The stability analysis of the systems is carried out by using algebraic graph theory, Lyapunov
function, and Barbalat lemma. The outcome of the paper is that all variables of the systems are bounded
and the output regulation errors of the subsystems converge to zero asymptotically. Finally, a numerical
simulation is given to demonstrate the effectiveness of the proposed method.

INDEX TERMS Consensus control, disturbance suppression, nonlinear multi-agent systems.

I. INTRODUCTION
As an important research direction in the field of artificial
intelligence, multi-agent system has achieved remarkable
achievements in economic, military, transportation, clinical
medicine, architecture, aerospace and so on [1]–[7]. In simple
terms, a multi-agent system refers to a certain number of
physical or abstract conceptual individuals who present an
orderly coordinated movement behavior on the collective
level through mutual cooperation between each other and
the self-organization of these individuals, so that the group
composed by these individuals has some complex functions.

In recent years, more and more researchers are paying
attention to the modeling problem of complex dynamic
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networks, that is, complex dynamic networks are regarded
as multi-agent systems. In a network-connected multi-agent
system, each subsystem has the same or similar dynamics and
performs the same tasks. The practical application includes
vehicle formation control, cooperative control and so on [8].
This type of control system is often referred to the consensus
control system, because all subsystems can be controlled to
achieve the same control objectives. The consensus problem,
as the basis study of multi-agent systems, is mainly used
to study how all individuals in a multi-agent system can
achieve consensus under the condition of the limited local
information exchange [9], whose main task is to design a
control protocol based on local information exchange tomake
the states of all agents to achieve a common state value.
There are three core elements in the study of consensus
problems: the dynamic equations of agents, the topological
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relationships between agents, and the rules for information
exchange between agents. The significant difference between
the consensus control and other control designs is the use
of information gathered from adjacent subsystems [10], [11].
The structure of the network connection described as a con-
nection graph is critical to consensus control design, which
determines the success of any proposed consensus control
design. The adjacency matrix or Laplacian matrix based on
graph theory is used to describe the network connection, and
some characteristics such as the eigenvalues of the Laplacian
matrix are used for control design (e.g. [12]–[17]). In par-
ticular, some important properties of Laplace matrix related
to consensus control are described in detail in [18]. The
nonlinearity of the system is another challenge in consensus
control, when the states of the subsystems or just the outputs
are available, they can be used to resolve the nonlinearity of
the state or output feedback linearization, or even to design
the local controller to make the dynamics identical. There are
many results on nonlinear and adaptive of nonlinear systems
in the output feedback form when they stand alone [19]–[22].
In [23], the fully distributed adaptive consensus control of a
class of high-order nonlinear systems with a directed topol-
ogy and unknown control directions is studied under the
condition that the smooth nonlinear functions are known. In
addition, relative information, such as the relative output or
state of a subsystem relate to other subsystems, is typically
used for consensus control, rather than measurement of the
actual output or state of the subsystem [24]. The motivation
for using relative information is due to applications such as
formation control, where each subsystem or agent is non-
introspective [25].

Disturbance suppression has always been one of the
basic problems in control design, and has been widely used
in aerospace, automation, process engineering and so on.
Its significant applications in different fields make it may
appear in multifarious names such as disturbance attenuation,
anti-disturbance, and output regulation except disturbance
suppression [26]–[31]. In real production process, external
disturbance exists generally, which is the main reason for the
poor stability and performance of the system. In order to sup-
press deterministic disturbances such as constant and sinu-
soidal disturbances, the controller must be able to generate
the required inputs to eliminate the disturbances. This desired
control input can be generated by disturbance observer or an
internal model, which depends on the disturbance sup-
pression problem’s form [32]–[34]. Many researchers have
study the consensus of multi-agent systems with distur-
bance [35]–[38]. For more details, the disturbance suppres-
sion of a single-input single-output smooth nonlinear system
with uncertain internal modes is studied, where the nonlinear
function is known [27]. What is studied in [39] is the consen-
sus disturbance suppression of a linear multi-agent system.
The disturbance is generated by a known external system,
and the designed disturbance observer is under the premise
of the states of the system are completely known. In [40],
the containment of a linear multi-agent system with bounded

exogenous disturbances is studied, and the external distur-
bance is generated by exogenous system. In [41], the con-
tainment of a linear multi-agent system with disturbance
generated from heterogeneous nonlinear external systems
is studied under the condition that the nonlinear function
is global Lipschitz. The consensus control of disturbance
suppression based on disturbance observer for nonlinear
multi-agent system lacks systematic study. The purpose of
this paper is to bridge this gap.

In this paper, we consider distributed adaptive consensus
control and disturbance suppression of unknown nonlinear
multi-agent systems. The subsystem in this paper is general
nonlinear dynamic, which can be used in real plants. Through
relative output feedback, we present a new distributed adap-
tive protocol and a disturbance observer to achieve state con-
sensus, which utilize the relative output information obtained
from the neighboring subsystems and consider the high-order
nonlinear terms. The gain of the observer depends on the net-
work connectivity. When the connected graph of the system
is undirected, the symmetry of Laplace matrix is used in the
design of disturbance observer for the adaptive control of
the network connected system. Since the proposed scheme
is based on relative output information, it will not suppress
the disturbance that does not cause the common trajectory
difference of subsystems. The stability analysis of the subsys-
tem is carried out using carefully selected Lyapunov function
candidate.

The rest of this paper is described as follows. In Section 2,
we give some useful preliminaries, problem statement and
assumptions. In Section 3, we introduce the state transfor-
mation and some lemmas. In Section 4, based on relative
output information, the distributed adaptive control protocol
and disturbance observer are proposed. In Section 5, an exam-
ple with the simulation results is given to demonstrate the
effectiveness of the proposedmethod. Finally, in Section 6 we
conclude this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. GRAPH THEORY
The communication topology amongN+1 subsystems is rep-
resented by an undirected graph G without self-loops. It con-
sists of a finite nonempty set of nodes v = {0, 1, 2, · · · ,N }
and a set of edges ε ⊆ v×v. Each node stands for a subsystem
and each edge stands for a connection. If node j is a neighbor
of node i, then we denote it by an edge (j, i) ∈ ε, which
represents that node j can obtain information from node i and
vice versa, i.e., all the subsystems can obtain each other’s
information. The weighted adjacency matrix of a graph G is
a nonnegative matrix A = (aij) ∈ RN×N , which is defined
as aij = 1 if (j, i) ∈ ε and otherwise aij = 0. According
to the connection is undirected, we can get the adjacency
matrix is symmetric, i.e., A = AT . We define the in-degree

matrix D as a diagonal matrix with D = diag

(
N∑

j=0,j 6=i
aij

)
,

then the Laplacianmatrix of the undirected graphG is defined
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as L = D − A, where diagonal elements Lii =
N∑

j=0,j 6=i
aij and

Lij = −aij, i 6= jwhich implies that its row sum is zero. If the
subsystem has no neighbor we call it leader, and we call it the
follower if it has at least one neighbor.

B. PROBLEM FORMULATION
In this paper, a multi-agent system consisted ofN+1 coupled
nonlinear subsystems is considered, of which the dynamics of
the ith subsystem can be described as:

ẋi = Acxi + φ (yi)+ b (ui + ωi) ,

yi = Cxi, (1)

with Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Rn×n, b =

b1
b2
...

bn

 ∈ Rn,CT
=


1
0
...

0

 ∈ Rn, and xi ∈ Rn, ui, yi ∈ R (i = 0, 1, . . . ,N )

are the state, control input and output of the ith subsystem,
respectively; n represents the order of the subsystems and it
is a known positive constant integer, with b being an unknown
Hurwitz vector of system (1), here we assume that it satisfies
b1 6= 0 which indicates the relative degree of the system is 1,
φ : R × Rm → Rn contains unknown nonlinear functions
with each element being polynomials of its variables and
satisfies φ (0) = 0, ωi is unknown exogenous disturbance of
the subsystem and satisfies ω0 = 0, in addition, it contains
slowly-time-varying functions, hence its derivative can be
neglected.

In what follows, the multi-agent system we mainly con-
sidered in this paper contains one leader and N followers.
For notational convenience, we suppose that the subsystem
indexed by 0 is leader, and by 1, 2, . . . ,N are followers, and
for the input of the leader we set its value as 0, that is u0 = 0,
which implies that the leader is self-active and can move
independently.

The output regulation error is defined as

ei = yi − y0, i = 1, . . . ,N . (2)

In our design, not every subsystem can obtain the informa-
tion of y0. But there exists at least one path from the leader to
the follower. To describe the graph G completely, we define
a diagonal matrix 1 to represent the access to y0, element
δii = 1 denotes the ith subsystem can obtain the information
of y0 in the control design, otherwise δii = 0. To achieve
the consensus tracking objective, subsystems that can’t obtain
the information of tracking signals depend on the network
connections.

Consensus refers to that the states and outputs of subsys-
tem track the state and output of the leader asymptotically.
Through using the relative output information yi − yj, i 6= j

to design an adaptive control protocol and a disturbance
observer, the distributed adaptive consensus output regulation
and disturbance suppression problem considered in this paper
is solved. The network connection between each subsystem
provides the relative output information, which guarantees
that the output regulation errors ei for i = 1, . . . ,N in the
state space convergence to zero asymptotically under any
initial condition.

Three standard assumptions about the dynamics of the
subsystems and network connections are given as follows.
Assumption 1: The sign of the unknown high-frequency

gain b1 is given in advance.
Assumption 2: The connection graph among the subsys-

tems is undirected.
Assumption 3: For the nonlinear function φ, there exists

an unknown positive real number αφ and a known positive
integer p, such that

‖φ (yi)− φ (y0)‖2 ≤ αφ
(
e2i + e

2p
i

)
.

Remark 1: The subsystem (1) is in the standard output
feedback form. In [20], the geometric conditions for trans-
forming a nonlinear system into the output feedback form are
given. In practice, for the mass-spring-damper systems with
hardened or softened springs the nonlinear relations between
the spring forces and the displacements can be modeled in the
nonlinear output feedback form using polynomial nonlinear-
ities output feedback. And the displacement is disturbed by
the external disturbance.
Remark 2:Assumption 1 is essential for designing the con-

trol protocol and disturbance observer to achieve the objective
of consensus control. Assumption 2 ensures all followers can
obtain each other’s information and the adjacency matrix is
symmetric, i.e., A = AT , and for more details on this assump-
tion, please refer to [42]. For a general linear system with
unknown parameters, assumption 3 holds. The assumption
is also valid when the tracking trajectory y0 is bounded and
the polynomial order is p, in which the positive constant p
is a bounded constant. The similar assumption can be found
in [43]. From a practical point of view, the leader’s trajectory
is bounded and the nonlinear functions can be approximated
by polynomials under assumption 3. Examples for physi-
cal systems satisfied assumptions 1 and 3 are mass-spring-
damper systems and van der Pol oscillators, where van der
Pol oscillators describe the dynamics of a RLC circuit with a
nonlinear resistor [19].

III. MAIN RESULTS
To extract the internal dynamics of (1) with z̄i ∈ Rn−1,
a state transformation is introduced for the subsystem i, and
z̄i ∈ Rn−1 is given by

z̄i = xi,2:n −
b2:n
b1

yi, (3)

where (·)2:n denotes the 2nd row to the nth row of the
vector or matrix. For further deduce, we introduce the
coordinates

156958 VOLUME 7, 2019



Q. Wang et al.: Distributed Adaptive Consensus Control and Disturbance Suppression of Unknown Nonlinear Multi-Agent Systems

(z̄i, yi), then the system (1) is transformed to:

˙̄zi = ẋi,2:n −
b2:n
b1

ẋi,1

=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




xi,2
xi,3
...

xi,n−1
xi,n

+ φ2:n (yi)

+


b2
b3
...

bn−1
bn

 (ui + ωi)

−



b2
b1
b3
b1
...

bn−1
b1
bn
b1

 ·
(
xi,2 + φ1 (yi)+ b1 (ui + ωi)

)

= Bz̄i + φ̄ (yi) ,

ẏi = Cẋi=
[
1 0 · · · 0

]



0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1
0 0 0 · · · 0

xi+φ (yi)

+


b1
b2
...

bn−1
bn

 (ui + ωi)


= z̄i,1 + φ̄y (yi)+ b1 (ui + ωi) , (4)

where B is the left companion matrix of b given by

B =


−b2/b1 1 0 · · · 0
−b3/b1 0 1 · · · 0

...
...

...
. . .

...

−bn−1/b1 0 0 · · · 1
−bn/b1 0 0 · · · 0

 , (5)

and

φ̄ (yi) = B
b2:n
b1

yi + φ2:n (yi)−
b2:n
b1
φ1 (yi) ,

φ̄y (yi) =
b2
b1
yi + φ1 (yi) .

Denote zi = z̄i−z̄0. Thenwe can obtain the dynamic of (zi, ei)
as

żi = Bzi + ψ (yi, y0) ,

ėi = hT zi + ψy (yi, y0)+ b1 (ui + ωi) , (6)

where h = [1, 0, . . . , 0]T ∈ Rn−1, ψ (yi, y0) = φ̄ (yi) −
φ̄ (y0), and ψy (yi, y0) = φ̄y (yi)− φ̄y (y0).

Lemma 1 (Young’s inequality): General form: Suppose
m, n are non-negative real numbers,p > 1, 1p +

1
q = 1, then

we have

mn ≤
mp

p
+
nq

q
.

Generalized form: mn ≤ γ P

p |m|
p
+

1
qγ q |n|

q, where γ is
arbitrarily small.

The following lemma can be obtained from above Young’s
inequality, it will be used throughout the paper and plays a
key role in dealing with polynomials.
Lemma 2 [44]: For a variable m ∈ R > 0, there exists

positive integers χ1, χ2, and χ3 with χ1 ≥ 2, χ3 < χ1 < χ2
and positive real constants β1 and β2, such that

mχ1 ≤ β1mχ2 + β2mχ3 . (7)

Moreover, with given β1, β2 is a function of β1 and χi for
i = 1, 2, 3, and is independent on m.
Proof: Let a, b > 0, a+ b = χ1, p, q > 0 and 1

p +
1
q = 1.

Then from Young’s inequality, we can obtain that(
βma

) (
mbβ−1

)
≤ βp

map

p
+ β−q

mbq

q
, (8)

where β is an any positive number. Setting ap = χ2 and
bq = χ3, we have

a =
χ2 (χ1 − χ3)

χ2 − χ3
, b =

χ3 (χ2 − χ1)

χ2 − χ3
,

p =
χ2 − χ3

χ1 − χ3
, q =

χ2 − χ3

χ2 − χ1
.

Then with βp/p = β1, we have

β2 =
χ2 − χ1

χ2 − χ3

(
χ2 − χ3

χ1 − χ3
β1

)− χ1−χ3
χ2−χ1

. (9)

G

From Assumption 3 and Lemma 2, it is not hard to obtain
below two inequalities:

‖ψ (yi, y0)‖2 ≤ αψ
(
e2i + e

2p
i

)
, (10)

ψ2
y (yi, y0) ≤ αy

(
e2i + e

2p
i

)
, (11)

where αψ and αy are some unknown positive real constants.
Before we introduce the control design, the following use-

ful lemma is given in order to derive the expected results.
Lemma 3: According to the fact that there exists no neigh-

bor of the leader, the Laplacian Matrix L associated with
graph G can be partitioned as:

L =
[

0 01×N
Loc L̄

]
,

where the matrix L̄ ∈ RN×N is a positive definite sym-
metric matrix, then for a positive diagonal matrix S =
diag {s1, . . . , sN }, the following inequality holds:

SL̄ + L̄T S ≥ θ0I (12)
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for some positive constant θ0. Evidently, there has l̄ij = lij for
i, j = 1, 2, . . . ,N .
Proof: The above result has been applied in the literature

of Li et al. [45]. From the structure of L in [17], it can be easy
seen that L̄ is a non-singular M -matrix and positive definite
symmetric matrix. The existence of S for (12) is obtained by
the theorem in [17]. G
For i = 1, 2, . . . ,N , we define

ζi =

N∑
j=0

aij
(
yi − yj

)
. (13)

which implies that

ζi =

N∑
j=1

lijyj + li0y0 =
N∑
j=1

lijyj +
N∑
j=0

lijy0 −
N∑
j=1

lijy0

=

N∑
j=1

lijyj −
N∑
j=1

lijy0 =
N∑
j=1

l̄ijej. (14)

Let e = [e1, e2, . . . , eN ]T and ζ = [ζ1, ζ2, . . . , ζN ]T .
Then, from (14) we can get

ζ = L̄e. (15)

Obviously, ζi is available to the ith subsystem’s control
design.

In order to facilitate the stability analysis of the subsys-
tems, a new lemma about the relationship between e and ζ is
proposed.
Lemma 4: According to ζ = L̄e, for any positive integer p

we have the following inequality:
N∑
i=1

e2pi ≤ N
p−1λ

−p
min

(
L̄T L̄

) N∑
i=1

ζ
2p
i (16)

where λmin
(
L̄
)
denotes the minimum eigenvalue of L̄.

Proof: By direct calculation we can get
N∑
i=1

ζ
2p
i

= N

[ 1
N

N∑
i=1

(
ζ 2i

)p]1/pp

≥ N

([
1
N

N∑
i=1

(
ζ 2i

)])p
= N 1−p

(
‖ζ‖2

)p
= N 1−p ∥∥L̄e∥∥2p = N 1−p

(
eT L̄T L̄e

)p
≥ N 1−p

[
λmin

(
L̄T L̄

)
eT e

]p
= N 1−pλ

p
min

(
L̄T L̄

)
‖e‖2p

= N 1−pλ
p
min

(
L̄T L̄

)( N∑
i=1

e2i

)p

≥ N 1−pλ
p
min

(
L̄T L̄

) N∑
i=1

e2pi

from which, (16) is obtained. G
Barbalat Lemma has been widely used in stability analysis

of control systems since it was proposed. And the most com-
mon expression and corollary of this lemma are as follows:

Lemma 5 [46]: Barbalat Lemma: If a scalar function f (t)
is uniformly continuous such that limt→∞

∫ t
0 f (τ )dτ exists

and is finite, then limt→∞ f (t) = 0.
Corollary 1: If f (t) ∈ L2 ∩ L∞, ḟ (t) ∈ L∞, then

limt→∞ f (t) = 0.

IV. CONTROL DESIGN
In this section, a distributed adaptive control protocol and a
disturbance observer are proposed to solve the general non-
linear multi-agent systems’ consensus output regulation and
disturbance suppression problem, i.e., all the followers can be
driven to follow the leader asymptotically.

In order to deal with the disturbance in the subsystem,
a disturbance observer can be designed as

˙̂ωi = sign (b1) si (ki + ηi)
(
ζi + ζ

2p−1
i

)
with ω̂i (0) = 0

(17)

k̇i = αk
(
ζ 2i + ζ

2p
i

)
with ki (0) = k0 (18)

where ω̂i is the estimate of ωi, k0 is an any known positive
constant, αk is a positive design parameter and ηi = ζ 2i .
Design the control protocol using output information as

follows:

ui = −sign (b1) (ki + ηi)
(
ζi + ζ

2p−1
i

)
− ω̂i. (19)

Theorem 1: Suppose Assumptions 1-3 are satisfied. The
consensus output regulation and disturbance suppression
problem of network connected unknown nonlinear sys-
tems consisting of system (1) is solved by the disturbance
observer(17), distributed control protocol (19) together with
adaptive laws (18), which implies that the output regulation
error ei converges to zero asymptotically for i = 1, 2, . . . ,N .
Proof: Firstly, to analyze the dynamics of zi, let

Vz =
N∑
i=1

zTi Pzi.

Since B is Hurwitz, there exists a positive define matrix P
such that

PB+ BTP = −3I .

From (6), we can obtain

V̇z

= 2
N∑
i=1

zTi Pżi = 2
N∑
i=1

zTi P (Bzi + ψ (yi, y0))

= −3
N∑
i=1

∥∥∥z2i ∥∥∥+ 2
N∑
i=1

zTi Pψ (yi, y0)

≤ −2 ‖z‖2 + ‖P‖2
N∑
i=1

‖ψ (yi, y0)‖2

−

(
‖z‖2−2

N∑
i=1

zTi Pψ (yi, y0)+‖P‖
2

N∑
i=1

‖ψ (yi, y0)‖2
)
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≤ −2 ‖z‖2 + ‖P‖2
N∑
i=1

‖ψ (yi, y0)‖2

−

(
‖z‖ − ‖P‖

N∑
i=1

‖ψ (yi, y0)‖

)2

≤ −2 ‖z‖2 + ‖P‖2
N∑
i=1

‖ψ (yi, y0)‖2. (20)

Using (10) and Lemma 4, we have

V̇z ≤ −2 ‖z‖2 + ‖P‖2 βψ
N∑
i=1

(
ζ 2i + ζ

2p
i

)
(21)

where βψ is a positive real constant.
Then, through submitting equation (19) into (6), we can

obtain the subsystem dynamics of ei as

ėi = hT zi + ψy (yi, y0)− b1sign (b1) (ki + ηi)
(
ζi + ζ

2p−1
i

)
+b1

(
ωi − ω̂i

)
= hT zi+ψy (yi, y0)−|b1| (ki+ηi)

(
ζi+ζ

2p−1
i

)
+b1ω̃i,

(22)

where ω̃i = ωi − ω̂i.
Next, to consider the stability of ζ , ki and ω̃, we define

Vζ,ω̃ =
N∑
i=1

2si

(
ki

(
ζ 2i

2
+
ζ
2p
i

2p

)
+

(
ζ 4i

4
+
ζ
2p+2
i

2p+ 2

))

+
1

2αk

N∑
i=1

(
ki − k∗

)2
+ |b1| ω̃T L̄ω̃ (23)

where k∗ is a design constant that will be determined later
and ω̃ = (ω1, · · · , ωn)

T . From (12), (15), (17), (18) and (22),
we can obtain that

V̇ζ,ω̃

=

N∑
i=1

si

(
ζ 2i +

ζ
2p
i

p

)
k̇i +

N∑
i=1

2siki
(
ζi + ζ

2p−1
i

) N∑
j=1

l̄ijėj

+

N∑
i=1

2si
(
ζ 3i + ζ

2p+1
i

) N∑
j=1

l̄ijėj +
1
αk

N∑
i=1

(
ki − k∗

)
· k̇i

− 2 |b1|
N∑
i=1

N∑
j=1

ω̃j l̄ij ˙̂ωi

=

N∑
i=1

2si (ki+ηi)
(
ζi+ζ

2p−1
i

) N∑
j=1

l̄ijėj+
N∑
i=1

si

(
ζ 2i +

ζ
2p
i

p

)

·k̇i +
1
αk

N∑
i=1

(
ki−k∗

)
· k̇i−2 |b1|

N∑
i=1

N∑
j=1

ω̃j l̄ij ˙̂ωi

= − |b1| ζ T (K + η)
(
IN+ηp−1

) (
SL̄+L̄T S

) (
IN+ηp−1

)
· (K+η) ζ + 2ζ T (K + η)

(
IN+ηp−1

)
SL̄
((
IN ⊗ hT

)
z

+9y
)
+ αkζ

T
(
η +

ηp

p

)
S
(
IN + ηp−1

)
ζ

+ ζ TK
(
IN + ηp−1

)
·ζ − k∗

N∑
i=1

(
ζ 2i + ζ

2p
i

)
+

N∑
i=1

2si (ki + ηi)
(
ζi + ζ

2p−1
i

)
·

N∑
j=1

l̄ijb1ω̃j − 2 |b1|
N∑
i=1

N∑
j=1

ω̃j l̄ijsign (b1) si (ki + ηi)

·

(
ζi + ζ

2p−1
i

)
≤ −|b1| θ0ζ T (K+η)

(
IN+ηp−1

) (
IN+ηp−1

)
(K+η) ζ

+ 2ζ T (K + η)
(
IN+ηp−1

)
SL̄
((
IN⊗hT

)
z+9y

)
+αkζ

T
(
η+

ηp

p

)
S
(
IN+ηp−1

)
ζ+ζ TK

(
IN + ηp−1

)
ζ

−k∗
N∑
i=1

(
ζ 2i + ζ

2p
i

)
(24)

where si, i = 1, . . . ,N , are the diagonal elements of S, and S
has been defined in (12), z and9y are vectors that are formed
by stacking up their corresponding individual elements zi
and ψy (yi, y0) in the order from 1 to N , respectively, and
K = diag {ki} , η = diag {ηi} .

According to Lemma 1 and Lemma 2, we have

2ζ T (K + η)
(
IN + ηp−1

)
SL̄
((
IN ⊗ hT

)
z+9y

)
= 2ζ T (K + η)

(
IN + ηp−1

)
SL̄
(
IN ⊗ hT

)
z

+ 2ζ T (K + η) ·
(
IN + ηp−1

)
SL̄9y

≤ 2
[
θ

16

∥∥∥(K + η) (IN + ηp−1) ζ∥∥∥2 + 4
θ

∥∥SL̄z∥∥2]
+ 2

[
θ

16

∥∥∥(K + η) (IN + ηp−1) ζ∥∥∥2 + 4
θ

∥∥SL̄9y
∥∥2]

≤
θ

4

∥∥∥(K+η) (IN+ηp−1) ζ∥∥∥2+ 8
θ

∥∥SL̄z∥∥2+ 8
θ

∥∥SL̄9y
∥∥2

≤
θ

4

∥∥∥(K + η) (IN + ηp−1) ζ∥∥∥2 + 8
θ

∥∥SL̄∥∥2 ‖z‖2
+

8
θ

∥∥SL̄∥∥2 ∥∥9y
∥∥2 (25)

ζ TK
(
IN + ηp−1

)
ζ

≤
θ

8

∥∥∥K (IN + ηp−1) ζ∥∥∥2 + 2
θ
‖ζ‖2

≤
θ

8

∥∥∥(K + η) (IN+ηp−1) ζ∥∥∥2 + 2
θ
‖ζ‖2 (26)

αkζ
T
(
η +

ηp

p

)
S
(
IN + ηp−1

)
ζ

= αkζ
T η

(
IN +

ηp−1

p

)
S
(
IN + ηp−1

)
ζ

≤ αkζ
T η
(
IN + ηp−1

)
S
(
IN + ηp−1

)
ζ

= αkζ
T ηS

(
IN + ηp−1

)2
ζ
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≤ αkλmax (S) ζ T η
(
IN + ηp−1

)2
ζ

≤
θ

8
ζ T η2

(
IN + ηp−1

)2
ζ + β(θ )ζ T ζ

=
θ

8
ζ T
(
IN + ηp−1

)
η2
(
IN + ηp−1

)
ζ + β(θ )ζ T ζ

≤
θ

8
ζ T
(
IN + ηp−1

)
(K + η2)

(
IN + ηp−1

)
ζ + β(θ )ζ T ζ

=
θ

8

∥∥∥(K + η) (IN + ηp−1) ζ∥∥∥2 + β(θ ) ‖ζ‖2 (27)

where θ is a positive design parameter and β : R+ → R+ is
a function that depends on the design parameter.

According to (11) and lemma 4, it can be concluded that
below inequality holds:

∥∥9y
∥∥2 ≤ αy N∑

i=1

(
e2i + e

2p
i

)
≤ βy

N∑
i=1

(
ζ 2i + ζ

2p
i

)
, (28)

where βy is a positive real constant.
For (24), using (25), (26), (27), (28) and letting θ = |b1| θ0,

it can be obtained that

V̇ζ,ω̃

≤ −
θ

2

∥∥∥(K + η) (IN + ηp−1) ζ∥∥∥2 + 8
θ

∥∥SL̄∥∥2 ‖z‖2
−

(
k∗−β (θ)−

8
θ

∥∥SL̄∥∥2 βy− 2
θ

) N∑
i=1

(
ζ 2i + ζ

2p
i

)
. (29)

Finally, consider the following Lyapunov function candi-
date:

V = Vζ,ω̃ +
8
θ

∥∥SL̄∥∥2 Vz.
Differentiating V with respect to t along the trajectory

of (21) and (29), we have

V̇ ≤ −
θ

2

∥∥∥(K + η) (IN + ηp−1) ζ∥∥∥2 − 8
θ

∥∥SL̄∥∥2 ‖z‖2
−

(
k∗−β (θ)−

8
θ

∥∥SL̄∥∥2 βy− 2
θ
−
8
θ

∥∥SL̄∥∥2 βψ ‖P‖2)
·

N∑
i=1

(
ζ 2i + ζ

2p
i

)
. (30)

Choosing

k∗ = β (θ)+
8
θ

∥∥SL̄∥∥2 βy + 2
θ
+

8
θ

∥∥SL̄∥∥2 βψ ‖P‖2
results in

V̇ ≤ −
θ

2

∥∥∥(K+η) (IN+ηp−1) ζ∥∥∥2− 8
θ

∥∥SL̄∥∥2 ‖z‖2 . (31)

Clearly, V is a monotone non-increasing function.
Integrating both sides of (31), we have

V (t) ≤ V (0)−
∫ t

0

θ

2

∥∥∥(K + η) (IN + ηp−1) ζ∥∥∥2dτ
−

∫ t

0

8
θ

∥∥SL̄∥∥2 ‖z‖2dτ.

Therefore, we can conclude thatV is bounded and ki−k∗ ∈
L2 ∩ L∞, ζi ∈ L2 ∩ L∞, zi ∈ L2 ∩ L∞, ω̃i ∈ L∞ for
i = 1, 2, . . . ,N . The boundedness of ω̂i can be obtained
from the boundedness of ωi. Since k∗ is a constant, ki ∈
L∞. The boundedness of ui in (19) follows from ki ∈ L∞,
ζi ∈ L∞ and ω̂i ∈ L∞. By further analysis and induction,
we can conclude that all the variables in the subsystems
are bounded. According to ζi ∈ L2 ∩ L∞ and from (14),
we can obtain ei ∈ L2 ∩ L∞. Since the derivative of ei
is bounded, using Barbalat Lemma, we conclude that ei
for i = 1, 2, . . . ,N converge to zero as t tends to ∞,
i.e., limt→∞ e (t) = 0, which completes the proof. G

V. ILLUSTRATIVE EXAMPLE
In this section, a numerical example is used to demonstrate
the effectiveness of proposed control protocol design and
disturbance observer. Suppose that the network-connected
nonlinear system consists of 6 subsystems, which includes
one leader (labeled by 0) and five followers (labeled from
1 to 5). The dynamic of the subsystem 0 is represented by a
second-order nonlinear system as

ẋi =
[
0 1
0 0

]
xi +

[
β
(
yi − 1

3y
3
i

)
−yi/β

]
,

for i = 0, with yi = xi,1.
Similarly, the dynamics of the subsystem 1-5 are described

by

ẋi =
[
0 1
0 0

]
xi +

[
β
(
yi − 1

3y
3
i

)
−yi/β

]
+

[
b1
b2

]
(ui + ωi) ,

for i = 1, 2, . . . , 5, with yi = xi,1, where β, b1 and b2 are
unknown positive real parameters,ωi is unknown disturbance
that contains slowly-time-varying functions, b1 > 0 satisfies
Assumption 1, so we set b1 = b2 = 1. For the disturbance,
we set it as 

ω1
ω2
ω3
ω4
ω5

 = 0.1×


sin t
sin 2t
sin 3t
sin 4t
sin 5t

 .

For the parameter β,

β =

{
0.5 for0 ≤ t ≤ 20,
2 fort > 20,

which makes the trajectory of the leader has two different
limit cycles. It is worth noting that the system satisfies the
condition of van der Pol oscillator when ui = 0, and its tra-
jectories are bounded. And a van der Pol oscillator describes
the dynamics of a RLC circuit with a nonlinear resistor.
Therefore, the Assumption 3 is satisfied with p = 3.
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The weighted adjacency matrix of the graph corresponding
to the subsystems is selected as

A =


0 0 0 0 0 0
1 0 1 1 0 0
0 1 0 0 1 0
1 1 0 0 1 1
0 0 1 1 0 0
0 0 0 1 0 0

 ,

from L = D − A and L =
[

0 01×N
Loc L̄

]
, we can obtain the

Laplacian matrix and the Q matrix

L =


0 0 0 0 0 0
−1 3 −1 −1 0 0
0 −1 2 0 −1 0
−1 −1 0 4 −1 −1
0 0 −1 −1 2 0
0 0 0 −1 0 1

 ,

L̄ =


3 −1 −1 0 0
−1 2 0 −1 0
−1 0 4 −1 −1
0 −1 −1 2 0
0 0 −1 0 1

 .
Note that only two subsystems (subsystem 1 and 3) have

access to the leader for information. From the communication
topology, it can be seen that the Assumption 2 is satisfied.

The disturbance observer and control protocol are designed
as, for i = 1, 2, . . . , 5,

˙̂ωi = sign (b1) si (ki + ηi)
(
ζi + ζ

2p−1
i

)
,

ui = −sign (b1) (ki + ηi)
(
ζi + ζ

2p−1
i

)
− ω̂i, ηi = ζ

2
i ,

k̇i = αk
(
ζ 2i + ζ

2p
i

)
where s1 = s2 = s3 = s4 = s5 = 1, αk = 5.

The simulation study has been carried out for the subsys-
tems with the initial states of the leader and the followers are
chosen randomly for i = 0, 1, . . . , 5:[
x0,1
x0,2

]
=

[
0
0.5

]
,[

x1,1
x1,2

]
=

[
x2,1
x2,2

]
=

[
x3,1
x3,2

]
=

[
x4,1
x4,2

]
=

[
x5,1
x5,2

]
=

[
1
−1

]
,

and the initial conditions of the controller is
ki (0) = k0 = 1.
The state trajectories of all subsystems using disturbance

observer (17) and control protocol (19) are shown in Fig.1 and
Fig.2. In the simulation, the red curve represents the leader’s
state trajectory, and the other color curves represent the fol-
lowers’ state trajectory. From Figs. 1 and 2, it can be seen that
all the outputs and the states of the followers converge to the
trajectories of the leader asymptotically. Figs. 3, 4 and 5 show
the inputs ui, dynamic gains ki and disturbance estimations
ω̂i of the subsystems, respectively. Since the change in the
value of µ, from the graph it can be seen that the trajectories

FIGURE 1. The subsystem states xi,1, i.e., the outputs.

FIGURE 2. The subsystem states xi,2.

FIGURE 3. The subsystem inputs.

FIGURE 4. The controller gains ki .

FIGURE 5. The subsystem disturbance estimations ω̂i .

after 20 seconds is different. Then the excellent tracking
performance of the disturbance observer and control protocol
are verified.
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VI. CONCLUSION
In this paper, consensus control of unknown nonlinear
multi-agent systems with unknown disturbance under undi-
rected topologies is investigated. By regarding the leader
as a reference model and using relative output information,
we proposed a new distributed adaptive control protocol and a
disturbance observer of a network-connected unknown non-
linear systems. The method that we have proposed doesn’t
need any global information, but only the relative output
information. Also, unlike the previous disturbance suppres-
sion methods, only the relative output information is used
for disturbance suppression, and as a result only the part of
disturbance that affects the common trajectory will be sup-
pressed. Based on the scheme, all variables of the systems are
bounded and the output regulation errors of the subsystems
converge to zero asymptotically. The numerical simulation
results demonstrate the effectiveness of the proposed control
method. Future research will further consider the distributed
adaptive consensus control of heterogeneous unknown non-
linear multi-agent systems under directed graphs. In addition,
we will further relax the condition of the disturbance and the
disturbance we will choose is not matched, which would have
more practical application value.
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