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ABSTRACT Appearance-based gaze estimation techniques have been greatly advanced in these years.
However, using a single camera for appearance-based gaze estimation has been limited to short distance
in previous studies. In addition, labeling of training samples has been a time-consuming and unfriendly step
in previous appearance-based gaze estimation studies. To bridge these significant gaps, this paper presents a
new long-distance gaze estimation paradigm: train a camera to perform eye tracking by another eye tracker,
named Learning-based Single Camera eye tracker (LSC eye-tracker). In the training stage, the LSC eye-
tracker simultaneously acquired gaze data by a commercial trainer eye tracker and face appearance images
by a long-distance trainee camera, based on which deep convolutional neural network (CNN) models are
utilized to learn the mapping from appearance images to gazes. In the application stage, the LSC eye-tracker
works alone to predict gazes based on the acquired appearance images by the single camera and the trained
CNN models. Our experimental results show that the LSC eye-tracker enables both population-based eye
tracking and personalized eye tracking with promising accuracy and performance.

INDEX TERMS Eye tracking, gaze estimation, human-computer interaction, machine learning.

I. INTRODUCTION
Gaze estimation has been studied over a few decades and it
continues to remain as an interesting research topic [1], [2].
The main purpose of gaze estimation is to measure the
viewer’s gaze point on the display screen and/or particu-
lar objects. Application domains of gaze estimation include
medical diagnoses and analysis [3], human computer inter-
action [4], [5], psychological research [6], [7], computer
vision [1], product design [8], among many other areas
[1], [8]. The equipment and methodology for eye tracking
have also evolved for several generations [2]. The earliest
generation of eye moving measurement consists of scleral
contact lens, search coil, EOG and etc. [2]. In the second
generation of eye tracking equipment, researchers devel-
oped photo-oculography and video-oculography for gaze
estimation [2]. Then, in the third and fourth generations,
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analog/digital video-based methods that combined with
pupil/corneal reflection were widely employed [9], [10].
These methods have also been significantly augmented by
computer vision techniques and digital signal processors [2].

More recently, data-driven gaze estimation technology has
developed rapidly and attracted much attention, especially
camera-based appearance image gaze estimation method
through computer vision [1], [11]. In the early stage, image
template- and holistic-based methods were widely applied,
which can alleviate the effect of varying illuminations. For
instance, Zhu et al. [12] used Support VectorMachine (SVM)
and mean shift tracking to detect the eyes in common
illuminations. Samaria and Young [13] applied Hidden
MarkovModels (HMM) to identify faces with different facial
expressions and lighting patterns. Also, machine learning
methods such as subspace transformation can help to reduce
the computation costs [14]. With respect to such early meth-
ods, eigenface and templates for multi-scale representation
were typically used. However, these early methods detected
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faces and eyes with relatively low accuracy and it is neces-
sary/better to obtain other precise information for more accu-
rate gaze estimation. Along this direction, later methods used
features like wavelet [15] and Haar features [16] with conven-
tional classifiers such as RBF and boosting algorithms like
Adaboost to improve gaze estimation. However, manually-
crafted image features have known limitations such as limited
effectiveness and computational costs [17], [18].

With significant advancements of deep learning methodol-
ogy in recent years, feature selection and end-to-end map-
ping has become much more powerful and promising. For
example, convolutional neural network (CNN) can be trained
effectively for extracting descriptive convolutional kernels
as features [18], [19]. Based on this powerful methodology,
the eye tracking or gaze estimation problem can be formu-
lated as an end-to-end CNN model, i.e., from a single face
image, the 2D or 3D coordinates of the human gaze point
on the screen or an object can be estimated [20], [21]. In the
literature, multiple studies have demonstrated the promise of
this research direction. Zhang et al. [22] tried to estimate
the gaze point in the wild based on appearance images, and
then created the MPIIGaze dataset from laptop users con-
taining more than 213K image samples. They also presented
evaluations of different state-of-the-art gaze estimation meth-
ods based on the MPIIGaze dataset. However, the partic-
ipant human subjects needed to concentrate on looking at
the specified points, and key-pressed interactions with the
laptop were required to ensure the subject’s attention. As a
consequence, the experimental paradigm in [22] is essentially
obtained from static images, which ignored the human eye
glances, continuous movements, and etc. Krafka et al. [23]
developed a mobile App which can collect human subject’s
facial image and gaze point through interaction, called Gaze-
Capture. Through training by iTracker [23], which is actu-
ally a convolutional neural network (CNN) designed for eye
tracking, they obtained more data and lower error compared
with previous works [23]. Zhang et al. [21] proposed an
appearance-based method only using single full-face image
by CNN. These weights are applied on the feature maps to
distinguish the importance of different facial regions. The
authors reported that they had achieved great improvement
both on MPIIGaze and EYEDIAP dataset for 3D gaze esti-
mation [21]. This work essentially indicated that the full face
image contain the key information for gaze estimation, which
inspired the work in this paper.

While these appearance-based eye tracking approaches
[20]–[23] have made great advancements, however, they can
be further significantly improved in several key aspects.
As we all known, deep learningmodels such as CNNs heavily
depend on the scale and quality of the training data, but col-
lecting a large number of high-quality training samples is very
costly and time consuming [24]. For instance, the MPIIGaze
dataset took several months to collect 213K images from
15 participants [22], and these datasets do not necessarily
contain all kinds of conditions such as different head poses
and gaze directions.

Second, state-of-the-art commercial eye trackers have lim-
ited tracking distance as summarized in [25]. For instances,
current popular remote eye trackers like EyeLink 1000Plus,
Tobii T60XL and Tobii Pro TX300, manufactured by SR
research, have recommended tracking distances less than
65 cm. In fact, long-distance eye tracking, e.g., over 100cm
or even more, has a variety of important applications. For
instance, an eye tracker that can monitor human’s eyes in
long distance, and it could be installed on the indoor ceiling
or telegraph pole far away to obtain the human’s gaze point,
which can provide a new human-machine interface in a wider
space. Also, the eye tracking system can be combined with
robots for interaction in distance in order to control or acquire
feedback. Thus, the related applications would no longer be
confined to screenmedia but it is beyond current eye trackers’
capability.

From our perspective, the challenges associated with cur-
rent eye trackers come from several factors. First, the infrared
used in commercial eye trackers based on pupil/corneal
reflection scatters significantly in the process of reflection
and other illuminants may also interfere in the range of
long-distance measurement. As a result, those pupil/corneal
reflection-based eye trackers are fundamentally limited in
their tracking distance, warranting the development of novel
approaches. Second, all appearance-based eye tracking meth-
ods entail and heavily rely on ‘‘ground truth’’ label infor-
mation that needs the participant subjects to interact with
the eye tracking system, in which process time delay and
efficiency decline are inevitable. Also, those appearance-
based gaze estimation methods’ applications are limited to
short-distance scenarios. More specifically, the eye tracking
devices constrain the users to keep a close distance with the
camera and attached devices, e.g., mobile phones, laptops and
desktop computer screens.

To overcome the above-mentioned key limitations, this
paper presents a novel long-distance gaze estimation
paradigm: train a single camera to perform eye tracking by
another eye tracker, named Learning-based Single Camera
eye tracker (LSC eye-tracker). The paradigm is composed
of two stages: training and application. In the training stage,
the LSC eye-tracker acquired eye gaze data by a commercial
trainer eye tracker and appearance images of faces/eyes by
another long-distance trainee camera simultaneously, based
on which deep convolutional neural network models are
employed to learn an end-to-end mapping from appearance
images to eye gazes. In the application stage, the LSC eye-
tracker directly predicts eye gazes based on the acquired
appearance images by the single camera and the trained CNN
models.

The innovations and contributions of this LSC eye-tracker
are threefold. First, we significantly relax the distance lim-
itation for appearance-based gaze estimation, in this work,
to 1.2m and 1.8m. The doubling and tripling of current
state-of-the-art eye tracking distance limits would enable and
facilitate many applications in the future. Second, the simul-
taneously acquired eye-tracking data together with the single
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camera provides an easy and cost-effective way to labeling
data for CNN training. In particular, using commercial remote
infrared-based eye tracker in our LSC eye-tracker records the
gaze point data in real-time with high frequency, which elimi-
nates the need for user interaction and dramatically improves
the efficiency of labeling data collection. Third, as a result
of labeling efficiency improvement, it is possible to collect
a large number of training samples. In this paper, we have
collected about 2,000,000 samples from more than 16 par-
ticipating subjects in 1.2m distance and 1.8m distance with
our novel LSC eye-tracker paradigm. The big data collection
capability enables a big-data strategy for training effective
CNN models for both population-based eye tracking and
personalized eye tracking with reasonably good accuracy and
performance, thus it opens up new capabilities and applica-
tion scenarios for long-distance eye tracking in the future.

II. SYSTEM DESIGN
This section introduces our system design and articulates how
to achieve long-distance gaze estimation based on appearance
images acquired by a single camera. In order to achieve
such a long-distance gaze estimation system, there are three
important problems to be solved. First, different from the
previous appearance-based short-distance gaze estimation,
the camera for appearance images capture in our LSC eye-
tracker needs to be placed far from users, which causes the
acquired face image resolution decreasing significantly. Also,
large irrelevant areas of the background in the face image
need to be dealt with effectively. Second, for a learning-based
data-driven system, annotating the eye gaze label is extremely
important, which influences the learning-based system per-
formance dramatically. Third, collecting a large number of
samples costs the participant subjects more time, and thus
the data recording efficiency needs to be considered carefully.
After data collection, the data can be used to train models in
different ways, and then they can be used to predict the user’s
gaze point on the screen via the single long-distance camera
alone.

To solve the problems mentioned above, in our proposed
LSC eye-tracker system, as illustrated in Fig. 1, firstly, a sin-
gle camera for long-distance appearance image collection
(called trainee eye-tracker) was installed on a support, which
is movable and the height of the camera holder on the support
can also be adjusted. Second, in order to obtain the eye gaze
label with high efficiency and accuracy, we used a commer-
cial eye-tracker (SciEyeTM aSeePro 2.0) to record the gaze
point data (called trainer eye-tracker). The trainer eye-tracker
estimates the gaze points on the screen based on infrared
reflection with high accuracy and speed. However, there is
a constraint for the trainer eye-tracker: it should be placed
close to the user, typically around the display, as illustrated
in Fig. 1. Sowe placed the trainer eye-tracker under the screen
regularly, rather than next to the camera. With this arrange-
ment, although the trainee camera for appearance image cap-
ture and trainer eye-tracker for eye gaze label collection were
placed separately, as long as they work simultaneously and

FIGURE 1. (a) Data collection system design. The trainee camera and the
trainer eye tracker are installed separately in different distances. The
human-eye tracker distance can satisfy the distance requirement of the
commercial trainer eye tracker. The trainee camera should be installed at
the top in order to capture the subject’s whole face. (b) Actual
experimental setup for dataset collection.

the data from them can be synchronized correctly. Concep-
tually, this is one of the major methodological innovations
and contributions of this work. After the collection of the
appearance images and gaze points data, CNN and fully-
connected (FC) neural networks were used to train the end-
to-end system, and different models and training modes were
applied to test the system. Other details of the proposed LSC
eye-tracker, including both of the trainee camera and trainer
eye-tracker, are introduced and discussed in the Supplemental
Material.

Regarding the hardware design of our LSC eye-tracker
system, the trainee camera was placed at different distances
away from the top of the screen. In case of collecting the
facial image of the human subject, a certain height is needed
to install the camera. Because the trainee camera needs to
capture the whole face over the screen, the trainer eye tracker
was placed under the screen. Furthermore, there should be
no occlusion between the eye tracker and the eyes. In order
to implement such scenario, for the 1.2m distance condi-
tion, we set the height of the camera support at 90cm (AB,
as illustrated in Fig. 1a)), and the horizontal distance to be
about 80cm (BC), which obtains about 120cm (AC) from
the camera to the eyes. As for 1.8m condition, the height of
the camera become 120cm (AB), and 130cm for BC, which
obtains about 178cm (about 1.8m, as the participated subject
may move slightly). In these two conditions, the obtained
appearance image may be in different resolution. We resized
them into same size for easily comparison. If the participant
subject wears glasses, the glasses should be colorless and
transparent, and the glasses frame should not obscure the path
from the eyes to both the camera and the eye tracker.

During the experiments, the trainer eye tracker and the
trainee camera work at the same time, and they simultane-
ously record the image and eye gaze point on the screen
in each image frame. Each valid gaze point corresponds to
an image in the collected dataset. In this way, the labels of
the gaze points were obtained by the trainer eye tracker and
the corresponding facial image was collected as well, which
offers an easier and effective approach to obtaining the label
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FIGURE 2. Data collection states in (a) synchronous mode and
(b) asynchronous mode. The shadow within the time line indicates that
the device has been activated to store the data. The eye tracker will be
activated only when it has detected the subject’s eyes.

for each image. As the infrared-based commercial eye tracker
has high precision, this method works much faster and more
effective than those using human-computer interaction-based
strategies [18], [21], [23] that required viewers to stare at the
given points with key-press and with long interval for each
sample time.

Furthermore, as the distance between the eyes and the
eye tracker is fixed to satisfy the requirement of the device,
the camera is free to move and rotate disregarding the regu-
lar limitations. It is also more reasonable and accurate than
using synthetic methods to obtain extra images in different
angles. In order to test the influence of different distances,
we conducted two sets of experiments and the distances
from the trainee camera to the human eyes were set as 1.2m
and 1.8m, respectively. In order to reach such a fast sample
speed and maintain high precision of the screen gaze point
label, we used an infrared-based commercial eye tracker as a
conventional remote gaze estimation device, which can sat-
isfy this situation perfectly. The trainer eye-tracker was first
calibrated with its own software before use. Its acquisition
frequency can reach 40Hz. Since we need to record the gaze
fixation point of the eyes while acquiring the appearance
image, and this involves the synchronization of the eye-
tracker and the camera capture.

In the same loop of the recording program, we first col-
lected 1 frame of the eye movement data, and judge the
availability of the data. In fact, the eye-tracker may not have
detected the eye fixation sometimes. Under the condition that
the gaze point is available, the image was stored serially on
the disk as well as the gaze point data. Otherwise, either the
image or the gaze point data will not be stored as illustrated
in Fig. 2a. In this way, each image can correspond to a
gaze point label containing 4 float numbers which were the
normalized coordinates of both left and right eyes on the
screen.

In another way, considering the asynchronous method,
while programming in different threads or processes, the sen-
sor sampling rates can be improved. However, time stamp
for both image and gaze point needs to be recorded and to

be corresponded afterwards and cannot satisfy to real-time
utilizations. In such a kind of fusion system, the sampling
process follows event-driven theory. The data alignment can
cause a mass and also reduce the accuracy of data corre-
spondence. As illustrated in Fig. 2b, each images captured
by the camera must be stored. And due to the collecting and
recording speed differences between the two sensors, it is
difficult to match the time stamp as demonstrated that like
which gaze data (X or Y) should be matched to image M?
Otherwise, it costs more to save all the data without efficiency
discrimination.

While considering these cases, we use synchronization
method in practice. The sampling rate can reach 2.5Hz with
the resolution of 4096 × 2160 and about 10Hz with the
resolution of 1920 × 1080. Although the frame rates were
still a bit low, it can satisfy our application in real-time as
the human eye’s time resolution is lower than 10Hz. Com-
paring with those interaction-based with long interval label
recording system, our proposed paradigm can also be used to
analyze the instantaneous gaze variation. And with the speed-
up of the recording hardware, the collecting frequency speed
can be improved in the future.

III. PROCESSING STEPS
Since we expect to obtain the eye gaze estimation on the
screen from an appearance image captured by the trainee
camera, the image must contain human subject’s face and
eyes. In previous literature studies, by using remote eye
trackers, images were captured from short distance and the
eye-tracker’s cameras were placed around the display screen.
Therefore, the facial image typically occupied a large propor-
tion of the whole image. In comparison, for the long-distance
gaze estimation in this work, the facial image occupies a
small proportion of the whole image as the trainee camera
was installed substantially farther than the short distance
scenarios. Furthermore, for a less constrained environment,
if the human subject freely moves the body at any time,
the camera may only capture the side face image. In this sit-
uation, multi-camera-based methods were investigated in the
literature. For instance, multi-cameras were used to extend
the detecting range in case of different head orientations [26].
Other research studies focused on adaptively fusing multiple
independent cameras in order to enhance the gaze estimation
accuracy [27]. Also, in the head-mounted gaze estimation
system,multiple cameraswere used for detecting the eyes and
the head separately [9]. At this stage, our proposed LSC eye-
tracker system uses a single camera as we focus on simpler
and low-cost solution for now, and the multi-camera system
will be explored in our future studies.

Notably, the whole image captured from a long-distance
trainee camera may contain irrelevant background. In order
to segment the facial area, we first performed necessary
preprocessing steps to obtain the facial image. In addition,
the features of the face can better reflect the orientation
of the viewing angle. When the human eye is observing
an object, it is not merely involving eyeball movement.
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While scanning a large viewing area, the head also shifts with
it. During the LSC eye-tracker data collection experiment,
we asked participated subjects to watch unfamiliar videos,
fix the position of the seat, and keep watching the screen.
However, the participant subjects will inevitably have blinks
and other behaviors in which they do not look at the screen.
These cases have been a challenging problem for all kinds of
eye trackers [28], [29]. For such a difficult situation, we ana-
lyze, in real-time, whether the eye-tracker has successfully
detected the pupil and also discard the real-time image sam-
ples with unidentified pupils. This strategy would reduce the
data sampling frequency, but it can facilitate the subsequent
processing steps. These operations were realized based on
the SDK provided by the commercial eye tracker. If the eye
tracker does not detect the eyes, the sampled images will be
discarded, which may decrease the frame rates for different
participated individuals.

As used in many face image analysis applications, facial
landmarks are points that sketch the outline information of
the face. It can partly reflect the orientation of the head
and the direction of the pupil’s gaze. In order to find out
whether these facial landmarks can be used to enhance the
performance of the gaze estimation, we tried two publicly
available tools which can extract facial landmarks for verifi-
cation. For example, OpenFace [30] is an open-source facial
behavior analysis toolkit, which was developed for computer
vision and machine learning, interactive applications, and
facial behavior analysis. It can be used for facial landmarks
detection [31], head pose tracking [32], facial action unit
recognition [33], and even gaze tracking [34]. The facial land-
marks are extracted by a novel local detector, Convolutional
Experts Network (CEN), and they also proposed an algorithm
called Convolutional Experts Constrained Local Model (CE-
CLM) and tested it on public datasets [31]. We used this
toolkit for facial landmarks detection and compared with
another commercial web interface called Face++ [35] by
Megvii Technology. It provides web APIs for obtaining faces
and landmarks from static images but it is not open-source.

The facial landmarks extracted by these two tools are the
contour feature points of the face, including the contour
features of the eyes, nose, mouth and etc. Landmark exam-
ples by OpenFace CLM-framework are illustrated in Fig. 3a.
We obtained and stored the facial ROIs through both Open-
Face CLM-framework and Face++. The difference between
these two tools is that OpenFace CLM-framework performs
background subtraction on the original image according to
the outer contour of the face and performs spatial rotation
transformation according to the predicted head orientation.
In comparison, Face++ only selects the face part of the
original image through the square box and it does not perform
other transformation operations, as illustrated in Fig. 3b, 3c.
Additional details of the facial landmarks and other informa-
tion obtained by these two tools are shown in Table 1.

In order to obtain high-quality training samples, we man-
ually screened the collected samples after the facial image
area was obtained, and filtered out the images that identified

FIGURE 3. (a) OpenFace CLM-framework extracted facial ROI and facial
landmark features. The facial landmarks include the facial edge and the
outlines of the facial features. Head direction can be also evaluated.
It can also process background elimination. (b) Landmarks extracted by
Face++ (c) Facial image extracted by Face++.

TABLE 1. Comparison between OpenFace and Face++.

the wrong ROIs containing no face. Our results show that
the OpenFace CLM-framework has a higher error rate than
Face++. In addition, among the facial landmarks obtained
by these two tools, there are some parameters related to the
screen size. Although we use the same screen in our entire
data collection procedure for different distances, the nor-
malized processing would help us to have more samples
of different sizes later. And all these tests mentioned above
are processed on the dataset with the image resolution of
4096× 2160 pixels.

However, these two face analysis tools are very computa-
tionally expensive and time-consuming. Although the Open-
Face CLM-framework can run locally, it costs about 3s for
an individual high-resolution image. And as for Face++web
API, the time is consumed on data transmission through the
network. Each image costs about 12s, without considering
the possible failure of network itself. Notably, YOLO [36]
was also exploited in this work, which is a state-of-the-art
real-time object detection system that has a very fast (e.g.,
50 fps) and good performance. The accuracy of the prediction
by YOLO also depends on the training inputs, and more
samples are needed especially for particular application like
eye tracking. However, the segmentation of the face byYOLO
is not as good as the two tools mentioned above, and YOLO
cannot extract the facial landmarks neither. Thus, in this
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FIGURE 4. (a) Deep learning model uses facial image only (type 1).
Preprocessing tools can obtain the facial image. Two convolutional and
pooling layers were used and then followed by FC layers. The outputs are
the normalized gaze point coordinates. (b) Deep learning model uses
facial landmarks and other features only (type 2). The model uses FC
structure through the whole network. The outputs are the normalized
gaze point coordinates, which are the same as in (a).

paper, we first used the OpenFace CLM-framework and
Face++ for preprocessing the collected face images, as these
two tools can automatically extract the facial images with
finer boundary and facial landmarks. It should be pointed
out that they were only used for data collection and model
training, without considering time consumptions. Speed-up
and optimization will be explored in our future studies.

IV. DEEP LEARNING MODELS
The state-of-the-art deep learning works such as
[18], [21]–[23] all used multi-CNN and FC layers. How-
ever, different network structures are utilized in terms of
different data types. References [18] and [22] only used
eye images for gaze estimation, in which multi-CNN and
FC layers are applied. Reference [21] used facial images
instead, and applied spatial weights for improving. Further-
more, reference [23] used both eye image, facial image
and face mask, in which 4 CNN pipe lines were used for
processing and feature extraction, then combined through FC
layers, which inspired us to apply multi-feature to improve
the performance. Hence, we designed three types of deep
network models to test the effectiveness and efficiency of
facial image and landmarks data, as well as their combination,
as illustrated in Fig. 4a, 4b and Fig. 5.

All these three models use the normalized screen coor-
dinates obtained by the trainer eye tracker as the assumed
‘‘ground truth’’. For the first type, only facial images were
used for training (type 1). Then we used landmark features
individually (type 2) and their combination was used to train
the model together (type 3). These three models were tested
to see whether/how the landmark features contain useful
information for eye gaze estimation and if yes, how much
contribution they make.

FIGURE 5. Combination model uses both the facial image and landmark
features (type 3). The upper part of the model is similar to the facial
image model. As for facial landmarks part, landmarks, bounding box size,
head direction, gaze direction and face location extracted by the
preprocessing tools are all used as the features for training.

For the type 1 model, we assume that the facial images can
reflect the position of the human eyes gaze point when the
human body does not move with head while watching the
screen. Regarding the CNN models, the activation function
of each CNN layer adopts Relu, and after each max pooling,
a layer of dropout is added to prevent over-fitting. After
the second max pooling layer, all nodes are expanded into a
single row, and then the FC neural network is used for fitting.
The model is illustrated in Fig. 4a.

For the type 2 model, we only used the facial landmarks
and other features as the feature vectors for training obtained
by the OpenFace CLM-framework and Face++, respec-
tively. The model adopted is an FC network. The numbers of
nodes in each layer are 128, 64, 32, 16 and 4, respectively. The
activation function for each CNN layer is Relu, and dropout is
also used to prevent over-fitting for each layer. Among these
three types of models, the ground truth for each model is the
same. Four values for each sample contain the normalized
binocular screen fixation x and y coordinates.

For the type 3 model, by using such an FC layer, if the
training and test results were close to those using facial image
only or their combination, we believe that the landmarks
include most of the information of human gaze point and
it would be more helpful for future related model design.
However, if the results were not good, we believe that there is
some information more important than the landmarks within
the facial image. As for the combination of them all, those
landmarks were indeed extracted from the image, and we
consider it as an enhancement for the facial image, which also
tests the importance of those landmarks.

The combination model merges the two networks men-
tioned above, gradually increases the network depth, and
merges after completely forming a single row and finally
adopts an FC network for training, as illustrated in Fig. 5.
In this way, we aim to emphasize the importance of these
facial landmarks which were extracted as the meaningful
contour of the face. These feature points include the bounding
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box size and other relatively coordinates data can reflect
part of the position information of the face in the original
whole image. These additional inputs are not like those stud-
ies adding extra eye image as input. The facial landmarks
and other features are not image information and may be
more useful in other applications (e.g., facial expression
recognition).

In summary, the input source of the CNN model is the
preprocessed facial ROI by OpenFace CLM-framework or
Face++. The structure of the CNN and pooling layers are the
same as those in the first model which was trained with facial
ROI individually. It consists of two layers of convolution
and max pooling, all of which have been activated by Relu
function and dropout has been used to prevent from over
fitting. The node number of the flatten layer is 21,632 and
then was reduced into 128 for merging with the landmark
features.

The facial landmarks and other features in the model 3
include landmarks, bounding box size, head direction vec-
tor, gaze direction vector and face location coordinates.
In Face++, the total number of input nodes is 212, and
then was reduced into 128 nodes by FC dense neural net-
work. Since the inputs from both facial image and landmark
features are transformed into 128 nodes, we merge them
together by connecting the two 128 dimensional vector into a
256 dimensional vector. Then FC layers are used for follow-
up processing steps. The numbers of nodes in each dense
layer are 64, 16 and 4, respectively. The ‘‘ground truth’’ used
is the same as the two types of models mentioned above.

These models were tested on a small dataset with a high
resolution of 4096× 2160 pixels, including more than 100K
samples of 6 subjects with both 1.2m and 1.8m distances
setup. We also used a larger dataset collected under same
conditions to further verify our proposed models. Only the
best model (using facial image only) among those three tested
on the small dataset was tested on this larger dataset. To gain
the speed-up for real-time utilization, we used YOLOv3 for
facial ROI image extraction as a preprocessing step. The
facial images were obtained via training the YOLOv3 deep
learning model. As for gaze estimation, we followed the type
1model. Except the input source, all the hyper-parameters are
all the same for these three types of CNN models.

V. EXPERIMENT SETUPS
We designed and conducted several comparative experi-
ments. For the capturing distance of facial images, we tried
the distance from the camera to the head with 1.2m and 1.8m,
respectively, and each experimental data was collected and
processed separately. Under different distance conditions,
the position of the trainer eye tracker is the same: just below
the monitor and about 60cm from the participant subject’s
face, as illustrated in Fig. 1b.

In addition, we used two tools to obtain facial ROIs, land-
marks and other features: OpenFace CLM-framework and
Face++. The OpenFace CLM-framework can obtain facial
ROIs and 234 dimensional landmarks and other features.

Face++ can intercept square faces in the original image
and obtain 211 dimensional landmarks features. For different
situations, this paper uses three different models to train and
compare the performance. After this process, the best model
was selected for a larger dataset test. Details of the facial
image, individual model, landmarks model and combination
models are given in the Supplemental Material.

For all training data, we used 10-folds cross-validation
to test the model’s fitting ability and the feasibility of the
method. And all the models are trained based on each sub-
ject’s data individually. Then we evaluated the mean errors of
the results. Six participants have conducted the experiments
and each one was asked to watch one video that he or she
had never watched before. They were asked to participate in
both 1.2m and 1.8m distance experiments. And each experi-
ment lasted about 2.5 hours and collected about 10K image
samples.

In the larger dataset experiments, we used lower resolution
(1920 × 1080) to capture the images in order to obtain
more samples and reduce the cost and time consumption
of the subjects. In total, more than 16 subjects attended the
experiment and both 1.2m and 1.8m distances were tested.
We have collected around 50K samples of each subject. Each
collection process lasted about 1.5 hours. After that, we used
YOLOv3 to extract the facial ROIs and then did the training
processes with the best model that we had obtained from the
small dataset mentioned above.

Due to the loss errors declining curves, we found that the
convergence rate gradually slowed down and after around
15 epochs, the loss errors did not decrease much. So we
reduced the training epochs from 30 to 20. Another parameter
that we changed was the facial image size. We resized the
facial image extracted by YOLOv3 to 200× 200 resolutions.
We believe this can improve the performance of our model
and this size is also more reasonable for comparing with
other works. Other parameters of the large dataset training
process were all the same, and details are provided in the
Supplemental Material.

The image recording resolution and model type of the
large dataset were chosen according to the experimental per-
formance on the small dataset. On these two datasets, both
1.2m and 1.8m distance experiments were processed for com-
parison, and in-depth study on population-based experiment
was tested on the large dataset. In order to speed up the
preprocessing process and due to the poor performance on
feature-based model, YOLOv3 was used to obtain the facial
images instead of OpenFace CLM-framework and Face++.

VI. EXPERIMENTAL RESULTS
In the experiments, cross-validation was used to test the
accuracy and performance of each experiment. Different dis-
tances, preprocessing tools and feature models were tested
on the small dataset. After obtaining the results on the
small dataset, an in-depth study was performed on the large
dataset, in which a significantly larger number of samples
were processed with faster preprocessing tool. In Table 2,
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TABLE 2. Experiment design and comparison between different datasets.

experimental results and comparisons on both small dataset
and large dataset are briefly summarized, respectively, which
will be further detailed in the following subsections.

A. EXPERIMENTAL RESULTS ON THE SMALL DATASET
For all types of experimental comparisons with the small
dataset, we used the 10-folds cross-validation to test the aver-
age error. First, we compare the effectiveness of our method
with different distances. OpenFace CLM-framework and
Face++ were applied to extract facial image and landmarks,
as well as other features. The OpenFace CLM-framework can
extract the affine-transformed face with the contoured back-
ground and the background removed, as shown in Fig. 3a.
The faces extracted by Face++ have no background as shown
in Fig. 3b, 3c.

Second, the differences among various types of feature
models are also compared. The result of simply using facial
images is much better than that of feature-based training. This
result supports the assumption that appearance-based gaze
estimation can use the image data to predict the gaze point
directly, which uses region information and considers more
than points combinations. In contrast, feature-based gaze esti-
mation uses features which are also extracted from the image.
Hence, the feature-based method estimates the gaze point
indirectly and may ignore other meaningful information.
Other details are illustrated in the Supplemental Materials.

As for the feature combination model’s training results,
the combination of both the facial image and landmark fea-
tures is slightly worse than using the facial images alone.
We believe it is due to that some of the feature points have no
influence on the eye gaze estimation. Otherwise, according
to the previous analysis, feature points such as landmarks
do not adequately characterize the attributes of the eye gaze
point. This phenomenon is consistent for the results of the
facial image and feature extraction algorithms with different
distances.

However, feature-based gaze estimation is still an efficient
and person-independent method. It does not need sample col-
lection and training in advance. If the meaningful features can
be extracted effectively and quickly, it would be better than
using facial image and data-driven approaches. However, how
to extract such meaningful features is the key problem for

FIGURE 6. Results of different subjects were sorted. (a) Angle error with
1.2m distance condition (b) Angle error with 1.8m distance
condition.

feature-based gaze estimation. More features and structural
information should be explored in the future, and we plan to
seek such kinds of features through the experience learned
from the results of appearance-based method in this work.

Third, while comparing the two preprocessing tools, Open-
Face CLM-framework and Face++, Face++ performed bet-
ter than OpenFace CLM-framework with models based on
facial images and feature combination. This might be due
to the accuracy of the facial image extraction. As shown
in Fig. 3a, the facial bounding contours by OpenFace CLM-
framework are not highly accurate compared with facial
landmarks in Fig. 3b by Face++, though Face++ does not
perform background subtraction on facial ROI. From this
point of view, accurate face areas and features are crucial for
eye gaze estimation.

B. EXPERIMENTAL RESULTS ON THE LARGE DATASET
In order to further verify our strategy and the system per-
formance, a 1920 × 1080 resolution sample dataset was
collected and was first processed with the YOLOv3 tool [36]
to extract the facial images. Each subject has approximately
50K samples (examples are shown in the SupplementalMate-
rial). However, due to data collection failure and individuals’
characteristics, the trainer eye tracker cannot detect every-
one’s eyes correctly (the sampling rate was low which was
always lower than 3Hz that we cannot collect enough samples
of those participant subjects). Only 18 subjects with 1.2m
distance and 16 subjects with 1.8 m distance were analyzed
in this paper.
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FIGURE 7. (a) 1.2m distance samples with facial ROI extracted (b) 1.8m
distance samples with facial ROI extracted. In each sub-figure, each row
demonstrated samples of one subject. The error of each row from top to
bottom is corresponded to the smallest, the second smallest, medium,
the second largest, and the largest noted on the right according to the
experimental results, as illustrated in Fig. 6.

The 5-folds cross-validation mean error results are illus-
trated in Fig. 6. The results of all of the subjects were
sorted. The mean error in 1.2m distance condition is about
1.79 degrees, and the error is 2.01 degrees for 1.8m dis-
tance condition. Fig. 7 illustrated several samples of subjects
in both 1.2m distance and 1.8m distance conditions. From
top to bottom, the rows demonstrated the facial ROIs of
the subjects with the most accurate result, the second most
accurate, medium level, the second most inaccurate, and the
most inaccurate, respectively. We believe that glasses frame
may shelter eyes and cause errors, however, there are few
participating subjects wearing glasses (examples of partic-
ipating subjects with eyes sheltered by glasses are shown
in Supplemental Material) and in-depth study needs to be
considered. When the trainer eye tracker cannot detect the
subjects’ eyes accurately, the training samplesmay negatively
contribute to the model training. Also, the samples of sub-
ject with closed eyes also matters remarkably (examples of
facial image with closed eyes are shown in the Supplemental
Material). These failures need to be omitted in order to obtain
usable and meaningful training samples. Notably, this type of
failure could be potentially avoided in the future, by asking
the participant subject to keep certain state and ensure that
their glasses (if any) should not shelter eyes from the sensors.

In spite of imperfect training samples, comparing with
previous studies in short distance, our results (1.79 degrees

TABLE 3. Distance errors comparison with other methods.

in 1.2m and 2.01 degrees in 1.8m) are considered promising
according to Table 3. Notably, our method focuses on training
each subject data individually, which also means person-
dependent. In fact, this approach can be used for individual
gaze estimation (personalized model). Once the model is
trained for a subject, like a radiologist, a surgeon, or a student
in professional studies, it can help the user to process remote-
operation, avoid direct contact and free the user from the
screen. The gaze movement differences between individu-
als may also be regarded as a biological feature which can
be used in security scenario. In addition to these situations
where personalized gaze estimation models are important,
we believe it is also useful to obtain a generalization model
for particular users without prior training samples collected.

Second, in addition to training the personalizedmodel indi-
vidually, in order to compare with the other studies, we also
evaluated population-based (person-independent) models to
verify our methods. In this case, we extracted 2K samples
from each subject and then formed an integrated and aggre-
gated dataset. Experiments with different distances were con-
ducted respectively. The same model we used in individual
facial image training was applied. The comparisons with
other studies are illustrated in Table 3.

Those results in Table 3 are based on the reports in lit-
erature [23], and we did not realize these methods to com-
pare with our algorithm due to various constraints, such as
the experimental environment, methods, and system design.
Instead, an intuitive comparison is given in Table 3. In order
to compare with those results, we also transformed our results
into distance errors in cm.While transforming into sight view
angle error, the 1.2m distance result is 4.37 degrees, and it is
5.13 degrees for 1.8m. Notably, we can see that our models
can achieve relatively good results both in 1.2m and 1.8m
while comparing with these state-of-the-art methods.

Third, among all the experiments and comparison on the
large dataset, the results in both 1.2m and 1.8m are given.
Comparing different distances in the experiments, the per-
formances in 1.2m were all better than that in 1.8m. It is
easy to explain that the trainee camera can capture clearer
image in short distance. Facial and eye image should be
much clearer and accurate, which may contribute to the better
results. However, different from short-distance (about 0.6m)
condition, facial image extraction is not necessary, which is
fairly important in our study with long-distance condition.
Also, other extensible application like remote interaction and
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multi-person gaze estimation cannot be realized in short dis-
tance, which we would like to investigate in the future.

VII. CONCLUSION AND DISCUSSION
Gaze estimation, as a novel human-computer interface, has
been studied and developed extensively in recent years.
However, considering wider applications such as outdoor
environment and real-time interaction, problems including
distance limitation, discontinuous sample collection and
complex interaction procedures in training process still
remain to be solved. In this paper, we proposed a novel long-
distance gaze estimation paradigm called LSC eye-tracker,
which used a single trainee camera to acquire appearance
images from long distance and a trainer commercial eye
tracker for gaze data collection simultaneously. During the
training stage, deep CNN models are employed to learn an
end-to-end mapping from appearance images to eye gazes.
In the application stage, the LSC eye-tracker predicts eye
gazes based on the acquired appearance images from the
single trainee camera and the trained CNN models.

The perceived innovations of this study are threefold. First,
the LSC eye-tracker breaks the distance limit by placing
the single trainee camera and trainer eye tracker in differ-
ent distances. Both 1.2m (twice of the typical remote eye-
tracking condition) and 1.8m distance (three times of the
typical remote eye-tracking condition) were tested of each
participating subject. Second, the simultaneous data collec-
tion strategy eliminates the need for user interaction and
dramatically improves the labeled training data collection
efficiency. Issues of synchronizing the appearance images to
the eye gaze data were also studied in order to achieve a faster
sample collection strategy. Third, the above second inno-
vation contributes to collecting a larger number of training
samples, which benefits significantly to the model training
with a big-data strategy.

In the model training process, three types of feature models
were tested, including using the facial image individually,
using the facial landmark features individually and using
their combination. We tried all of them on a small dataset
with two different preprocessing tools (OpenFace CLM-
framework and Face++) for facial images and landmark
features extraction. The best model was using the facial image
individually, and we also tested it on a larger dataset with
both personalize and population-based validation. In order to
speed up the preprocessing procedure, we used YOLOv3 for
facial images extraction with the best model and lower image
resolution. Considering multiple application scenarios, in the
personalized experiments, we achieved the mean angle errors
about 1.79 degrees in 1.2m distance and 2.01 degrees in 1.8m
distance. In the population-based experiments, we achieved
the angle errors about 4.58 degrees in 1.2m distance and
5.39 degrees in 1.8m distance. We believe these accuracies
and results are state-of-the-art.

However, there are still limitations in our system that
could be improved in the future. As the current LSC eye-
tracker system focused on the long-distance gaze estimation

and fast data collection, the experiments settings required
subjects to keep static which has limitations in unconstrained
real-world settings [24]. Therefore, handling head pose and
eye location for gaze estimation should be enhanced for the
problem of non-frontal faces [23], [39], and the addition of
eye image synthesis might partly solve the head pose-free
problem [40]. Furthermore, data normalization for mapping
the input images and gaze labels to a normalized space [24]
seems possible and useful to solve such problems. Also, more
advanced CNN structures and models could be explored for
such end-to-end mapping from appearance images to eye
gazes.

In the future, by applying our proposed LSC eye-tracker
system, applications such as controlling the indoor household
appliances remotely with the development of IOT could be
possible. Also, electronic entertainments like somatic games
may obtain a novel feedback for human-computer interac-
tions. Furthermore, cameras that already installed outside
could extend their ability as well based on our proposed
strategy. We believe that multiple applications in both sci-
entific research and daily utilization could be enabled and
advanced through our LSC eye-tracker paradigm with further
improvements in the future.
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