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ABSTRACT User interaction prediction for Web applications is crucial to improve browsing experience.
With the prediction, for instance, a browser can prefetch the content to be accessed next reducing long
wait times in advance. However, predicting the user interaction is challenging in practice. Collecting
detailed interaction data is difficult due to the constraints on target application and platform. Moreover,
Web navigation prediction mechanisms for general applications have a low accuracy with conventional
machine learning models. To this end, in this paper, we propose a Web interaction profiling framework,
WebProfiler, which collects user interaction data in a generic way and accurately predicts the next navigation.
Both navigation and click events are collected by using JavaScript event handlers and clicked objects are
identified reliably through a document object model based approach. Furthermore, we adopt gated recurrent
unit (GRU), a representative deep learning technique suitable for coping with time series Web interaction
data, and present two advanced techniques for training the GRU-based model: uniform resource locator
(URL) grouping to handle the variant URLs of a Web page and Web embedding to represent both events in
a unified vector space. The experimental results based on the real user interaction data showed that click
events within an application improved the overall prediction performance by 13.7% on average, which
were overlooked by most of the previous research. In addition, WebProfiler achieved an average F-measure
of 0.798 for top three candidates where URL grouping and Web embedding contributed to 52.4% of the
performance improvement.

INDEX TERMS Deep learning, gated recurrent unit (GRU), navigation prediction, user interaction, web
applications.

I. INTRODUCTION
Understanding user interaction for Web applications is key to
improving users’ Web browsing quality of experience (QoE).
Web browsing consists of a series of clicks triggered by users
and corresponding navigations to other applications. If such
prior knowledge of user interaction is provided, a browser
can prefetch the content to be accessed next in background,
making it instantly available when a user requests that con-
tent. Prefetching enables Web applications accompanying
multiple multimedia resources or subsidiary resources from
external domains to reduce long wait times to download those
resources. For example, Google Chrome provides a predic-
tion service to load pages more quickly by initiating actions
such as DNS prefetching, TCP and TLS preconnection, and
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preloading of Web pages before actual requests are made [1].
To generate those predictions, modern browsers leverage
resource hints [2] provided byWeb applications to hide laten-
cies for networking, processing, and rendering. Resource
hints are specified in source code by developers in advance,
which are typically generated by using heuristic rules based
on the static information of document markup and structure,
navigation history, and user-dependent data (e.g., type of
device, available compute and memory resources, network
connectivity, user preferences). On the other hand, navigation
prediction based on the relation between user interaction and
Web applications produces more valuable hints beyond these
simple heuristics. With conventional resource hints, a user
can prefetch only the resources directly related to the current
Web page and is unable to obtain any information of the
application navigated next. With Web navigation prediction,
a user can prefetch not only the relevant resources to the
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current application, but also the potential resources carried
by the next navigation proactively. This prediction ability in
turn shorten the response time of each navigation, enhancing
the performance of Web prefetching even better.

However, user interaction prediction for Web applications
is difficult in practice. First, collecting detailed data is chal-
lenging due to the limited scope of target application and
platform. Most of the previous research efforts [3]–[5] tried
to exploit the user interaction information collected at server
side, which is limited to specific Web application services.
Such application-specific data impedes a clear understand-
ing of the behaviors of users who navigate to various Web
applications. Meanwhile, other methods working at client
side [6]–[8] tried to collect detailed user interaction data
such as clicks, phone calls, and application executions. These
client-side solutions, however, require modification of Web
browser or application’s source code, or they are only lim-
ited to be used on mobile platforms. Measurement overhead
restricts the scalability of data collection tools, which leads
to a narrow view of user interaction in real application usage.

Second, navigation prediction for general Web applica-
tions has a low accuracy with conventional machine learning
models. As described in Section II, researchers have studied
user interaction prediction for Web applications focusing
on two typical application types: Web search [9]–[16] and
online advertising [5], [17], [18]–[24]. Although they pro-
vided in-depth insights on these traditional Web applications,
today’s complex Web environment with diverse applications,
including augmented or virtual reality, finance, healthcare,
social network, video streaming, and Web of Things, has
not been studied well. In addition, Web applications have a
low predictability of user behavior inherently since a user
can navigate anywhere through browsers whereas usage is
restricted to installed applications in mobile environments.
In [8], the authors presented methods to collect click data
in Android mobile applications and predict click sequences
of buttons using deep learning. As described later in this
paper, unlike mobile applications, additional methods for
performance improvement are essential for Web applica-
tions because of the low accuracy of conventional prediction
models.

In this paper, we propose a Web interaction profiling
framework,WebProfiler, which collects navigation and click
events across Web applications, and predicts the next nav-
igation accurately. We present an event tracing tool based
on JavaScript event handling and identify individual click
events using the document object model (DOM) architecture.
By utilizing event handlers based on JavaScript, one of the
fundamental technologies in Web environments, WebProfiler
can collect navigation and click events for general applica-
tions without any modification of browser or application’s
source code. Clicked objects are represented by their posi-
tions and features in DOM trees, which leads to consistent
object identification regardless of device or browser used
for measurement. To design the navigation prediction model,
we adopt gated recurrent unit (GRU), one of the variants of

recurrent neural network (RNN) which is a representative
deep learning technique suitable for handling time series
Web interaction data. The performance of our GRU-based
prediction model is optimized by analyzing various hyper-
parameters and other machine learning models. In addition,
we propose two advanced techniques to enhance the poor
prediction performance of the baseline due to the variety of
Web applications: uniform resource locator (URL) grouping
to cope with the variant URLs for a single Web page and
Web embedding to represent both navigation or click events
in a unified vector space. To comprehend user interaction
for Web applications and evaluate the proposed prediction
model, we deploy the event tracing tool and collect real
interaction data. Based on the collected data, we verify that
WebProfiler can predict Web navigation accurately for gen-
eral applications in practice. The major contributions of this
work can be summarized as follows:
• WebProfiler not only collects detailed Web interac-
tion data regardless of target application and platform,
but also achieves reliable object identification for click
events on any device or browser. Our JavaScript-based
event tracing and object identification using the DOM
tree contribute to the generic data collection method for
Web interaction prediction. We validate the feasibility
of our event tracing tool by developing a prototype
operable on aWeb browser with the highest usage share.

• We enhance the accuracy of our navigation prediction
model by designing advanced techniques of URL group-
ing and Web embedding in addition to adopting the
GRU-based prediction architecture. WebProfiler groups
Web resources with relevant addresses and maps user
interaction events to a low-dimensional space to max-
imize the accuracy of the GRU-based prediction model.

• We deploy our event tracing tool to real users to con-
struct an extensive dataset for Web interaction and eval-
uate the prediction performance of WebProfiler based
on the collected dataset. The experimental results show
that click events occurring within a single applica-
tion improved the navigation-only prediction perfor-
mance by 13.7% on average whereas most of the
previous research considered only the user interaction
data directly related to navigations between Web pages.
Furthermore, WebProfiler predicted next navigations
with an F-measure of 0.798 for top three candidates
where URL grouping and Web embedding contributed
to 52.4% of the performance improvement.

The remainder of this paper is organized as follows.
In Section II, we review the previous work related to user
interaction data collection and prediction for Web applica-
tions. We outline the overall architecture of WebProfiler with
its design principles in Section III. Section IV describes
how to trace and identify interaction events for Web appli-
cations with the analysis on collected user interaction data.
Section V presents the core components of our GRU-based
navigation prediction model including URL grouping and
Web embedding. In Section VI, we analyze the results of our
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experiments, demonstrating the effectiveness of our method
compared to other schemes. Section VII discusses the limita-
tions and opportunities for future work, and we conclude in
Section VIII.

II. RELATED WORK
In spite of the importance of user interaction profiling and
prediction for general Web applications, only few research
efforts have focused on these topics thoroughly and most
of the existing studies have their own limitations to be
addressed. In this section, we discuss the state-of-the-art in
a brief manner.

A. USER INTERACTION AND BETTER WEB QOE
With the evolution of Web architectures and protocols for
dynamic and complex Web applications, many attempts have
been made to improve Web QoE. Especially, since one of
the most commonly used metrics to perceive Web QoE is
latency (e.g., page load time) [25], there were several efforts
to prefetch Web content utilizing user interaction informa-
tion for better Web QoE. Google Chrome included user
action predictors from resource requests and response traf-
fics to reduce page load time with speculative optimizat-
ion [26]. [27] suggested a mobile content prefetcher of
social network feeds for a popular social networking service
(i.e., Twitter) by analyzing content consumption behaviors
of users. [28] showed that prefetching Web resources based
on gaze activity with external tracking equipment improved
Web navigation latency. While these efforts showed that user
interaction data could be helpful to improve Web QoE, their
browser-specific, application-specific, or high measurement
overhead solutions are hard to be applied to other Web
environments. On the other hand, WebProfiler is applica-
ble to both user interaction data collection in modern Web
browsers and navigation prediction for general Web appli-
cations, which leads to better Web QoE regardless of target
environment.

B. DATA COLLECTION FOR USER INTERACTION
There have been various approaches to collect user interac-
tion data within various contexts. Amongst them, we discuss
Web-based and mobile-based approaches.

1) WEB-BASED APPROACHES
[3] described a general architecture to collect users’ Web
browsing behaviors at server side in order to realize automatic
Web personalization. [4] collected a sequence of each user’s
HTTP requests for Sybil user detection from a Chinese social
networking service (i.e., Renren). Reference [5] utilized vari-
ous features such as advertising information, user informa-
tion, advertising-user interaction, and advertising position
bias collected at the Twitter servers. These server-side collec-
tion approaches were typically suitable for particular applica-
tions and the collected data had a low level of granularity on
user interaction, most of which occurs at client side. On the
other hand, [6] presented a client-sidemethod to collect users’

click events to analyze Web page revisitation by modifying
the source code of the Firefox browser. Since modern Web
browsers have fast update tempos [29], it is desirable to
decouple data collection tools from Web browsers or operat-
ing systems. WebProfiler achieves this separation by imple-
menting its event tracing tool as a standard-compliant browser
extension.

2) MOBILE-BASED APPROACHES
Collecting user interaction data in mobile environments is
challenging due to constrained user inputs (e.g., no mouse
movement) and limited infrastructure support. To this end, [7]
proposed an Android service application programming inter-
face (API) for collection and prediction of user interaction
so that application developers can manually inject the API
calls into their source code. However, this approach would
not suitable forWeb applications sincemodification of source
code for every existing application is impossible in prac-
tice and calling platform-dependent APIs in mobile Web
browsers is rarely supported as well. PathFinder [8] proposed
a method to identify dynamically-located buttons appeared
at mobile display, which could collect user interaction data in
an application-independent manner. However, this approach
could not be extended and applied directly to Web applica-
tions in two aspects. First, PathFinder relied on the Android
accessibility service (i.e., operating-specific), which reduced
its portability filtering out all the events occurring in Web-
based applications (i.e., WebView). Moreover, the clicked
button identification method based on the size and position of
each candidate button caused unreliable object identification
over different types of devices or client software. On the con-
trary, WebProfiler is relatively portable and efficient thanks
to its sole dependency on the modern Web architecture.

C. WEB NAVIGATION PREDICTION FOR MODERN
WEB APPLICATIONS
Web navigation prediction has been studied for a decade
using server logs on user requests [30] or click-driven search
queries [9]–[12] in diverse contexts. [30] proposed a com-
bined predictor of Markov model and support vector machine
(SVM) with Dempster’s rule which can predict the next page
given a user’s session log. Although [30] worked towards
similar goals, we employ a novel GRU-based prediction
model for WebProfiler with advanced techniques for perfor-
mance improvement using fine-grained user interaction data.
Meanwhile, there have been a lot of research efforts on click
models which tried to simulate users’ click behaviors with
Bayesian networks [9], [10] or neural networks [11], [12].
Since these efforts mainly focused on Web search scenarios,
it is difficult to apply their approaches to generalWeb applica-
tions. Another study for Web search [13] proposed a decision
tree ensemble predictor which utilized mouse cursor move-
ments using a JavaScript-based logger for better prefetch-
ing on search engine result pages. However, this prediction
method has high measurement overhead for logging mouse
cursor positions frequently (every 250 milliseconds) and is
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hard to be utilized in mobile environments where no mouse
cursor exists, and, above all, is limited to Web search as
well. Recently, [14] proposed a regression-based expectation-
maximization algorithm to enhance traditional position bias
click models for personal search and [15] explored the unique
biases compared to desktop environments for mobile search,
respectively. In addition, [16] introduced a non-parametric
calibrationmethod called isotonic regression to improve click
models trained with suboptimal hyperparameters. Despite
these persistent research efforts onWeb search, however, they
have only tried to understand and predict user interaction
based on inherent properties such as relevance between user
queries and resulting documents, and relative positions on
search engine result pages.

In the context of online advertising, on the other hand,
many research efforts have been made for predicting click-
through rates (CTR). Reference [17] explored the importance
of bounce rate, the fraction of users who click on advertise-
ments but almost immediately move on to other tasks, and
utilized it to predict the effectiveness and quality of adver-
tisements. [18] introduced an RNN-based framework which
directly models the dependency on users’ sequential behav-
iors into the click prediction process through the recurrent
structure. [5] presented a learning-to-rank approach for adver-
tising in the Twitter timeline to address the training signal
sparsity and update its model online. Reference [19] investi-
gated the effects of feature sequence on the performance of
a convolutional neural network based CTR prediction model.
Reference [20] proposed a deep interest network model for
embedding and multi-layer perceptron based approaches to
design a local activation unit to adaptively learn the represen-
tation of user interests from historical behaviors with respect
to a certain advertisement, while [21] extended the model
to explore the change of users’ interests by distinguishing
global and recent click-through behaviors. Reference [22]
introduced both character-level and work-level approaches to
predict the CTR of a query-ad pair using deep convolutional
neural networks where the textual content appearing in a
query-ad pair and the page position on a search engine result
page are only given as input. Ouyang et al. examined vari-
ous types of relationships including user-to-ad, ad-to-ad, and
feature-to-CTR in [23], while, in [24], they tried to improve
the CTR prediction of a target ad considering auxiliary ads
from both the spatial domain and temporal domain. As inWeb
search, these studies are dedicated solutions tailored to the
characteristics of sponsored search or contextual advertising
and thus additional methods to relax the assumptions should
be devised to utilize them for general Web applications.

Other than the previous research for typical applications
mentioned above, [8] predicted click sequence of buttons in
mobile environments for general applications by adopting
a deep learning technique. Although the authors achieved
an acceptable level of prediction performance, applying
their solution to Web environments is not straightforward
because of the low accuracy of conventional prediction mod-
els when applied to Web applications as well as the diverse

FIGURE 1. Overall architecture of WebProfiler.

prediction targets in Web applications. To address the chal-
lenges found in the literature, WebProfiler provides an accu-
rate prediction method robust to navigations across various
Web applications.

In summary, the novelty of WebProfiler lies in its scalabil-
ity of user interaction data collection and accurate navigation
prediction for general Web applications. WebProfiler collects
fine-grained Web interaction data regardless of target appli-
cation and platform, and identifies clicked objects reliably on
any device or browser, whereas the existing data collection
methods for user interaction are limited to particular applica-
tions or rely on support from underlying platforms. Further-
more, we designed advanced techniques of URL grouping
and Web embedding to enhance the navigation prediction
accuracy of our GRU-based model, which can be applied
extensively to generalWeb applications as well, other than the
typical application types explored by the previous research on
Web interaction prediction.

III. DESIGN OF WEBPROFILER
WebProfiler is a comprehensive framework to improve Web
QoE through accurate navigation predictions by profiling
user interaction data. There are two fundamental design prin-
ciples that the prediction framework should follow. First,
it should be a generic method to collect user interaction data
without any restriction on target application and platform.
Measurement overhead must be minimized to understand
users’ behaviors properly extending the coverage of collec-
tion tools in practice. Second, accurate navigation prediction
should be made for various Web applications. In Web envi-
ronments where users can navigate to diverse applications
according to their preferences or contexts, additional methods
to enhance the low accuracy of existing prediction models
must be provided.

Fig. 1 depicts the overall architecture of WebProfiler
including the primary components at both client side and
server side. On client browsers, the event tracing tool collects
navigation and click events occurring as users navigate to
general Web applications and sends them to the server. The
clicked objects are identified consistently by their positions
and features in DOM trees regardless of device or browser
used for measurement. The server stores the profile logs

VOLUME 7, 2019 154949



M. Joo, W. Lee: WebProfiler: User Interaction Prediction Framework for Web Applications

forwarded by client browsers in its database and utilizes it for
training the Web navigation prediction model. Unnecessary
data is filtered out and transformed into a proper form for
training through preprocessing. To improve prediction accu-
racy, URL variants for a single Web page are combined as
a group and both navigation and click events are embedded
in a unified vector space to reduce data sparsity. Finally, the
GRU-based model is trained for Web navigation prediction.
The trained model is stored in the server and used to predict
the application likely to be navigated next, given a new user
interaction data sequence.

IV. USER INTERACTION DATA COLLECTION
To collect navigation and click events in a generic way,
we design an event tracing tool which can be applied to any
Web application on any platform. This section presents the
detailed process of event tracing in Web browsers and how
clicked objects are identified reliably. Then, we analyze the
real user interaction data collected by our event tracing tool,
highlighting the necessity of advanced prediction techniques
for Web navigation prediction.

A. EVENT TRACING IN WEB BROWSERS
To capture users’ behaviors in Web browsers without any
restriction, we designed an event tracing tool based on
JavaScript event handlers. Alongside hypertext markup lan-
guage (HTML) and cascading style sheets (CSS), JavaScript
is one of the core technologies for the Web, which enables
Web pages to operate interactively and is the key part of
Web applications. JavaScript is used to handle the events
which occur when a browser accesses Web pages, where
these events are generated from Web page rendering, inter-
action with Web pages’ contents, device-related process-
ing issues, or other programming instances such as media
stream playback and animation timing. Most of today’s
Web applications (over 95%) use JavaScript as a client-side
programming language [31] and major Web browsers have
dedicated engines to execute it (e.g., V8 for Google Chrome,
SpiderMonkey for Firefox, JavaScriptCore for Safari, Chakra
for Microsoft Edge and Internet Explorer). Server-side
JavaScript implementations such as Node.js are developed
and used extensively as well. In this context, designing an
event tracing method based on JavaScript is the best way
to maximize the scalability of user interaction data collec-
tion regardless of target application or platform thanks to its
flexibility.

We embraced two kinds of JavaScript events for user
interaction prediction: one is fired when the document for
a Web application is loaded and parsed, and the DOM is
fully constructed (i.e., navigation event), and the other is fired
when a user clicks an HTML element within the document
(i.e., click event). When a navigation event is triggered by
a user, the event tracing tool records the user’s identifier,
event type, URL navigated, and timestamp, and stores it as
a profile log. For a click event, the detailed information of
the HTML element clicked by a user is collected in addition

FIGURE 2. Operating principle of event tracing and object identification
for click events in WebProfiler. The example shows the case when a user
navigates to ieeexplore.ieee.org and clicks a user interface object to
display previous items on a carousel.

to the items recorded for a navigation event. Whenever a
new Web page is loaded, an event handler for click events
is attached to the <body> element, which covers the entire
document area. This event handler catches every click event
occurring in the document with the dedicated path to the
clicked HTML element in the DOM tree. Web pages of an
application always have more than one <body> elements for
each HTML document and thus the JavaScript-based event
tracing tool of WebProfiler can record every user interaction
event for Web applications in their original forms, whether it
is planted at either client side or server side.

To assess the feasibility, we implemented our event tracing
tool as an extension on the Chrome browser [32], which is
also built on Web technologies such as HTML, JavaScript,
and CSS. Fig. 2 presents how the extension operates with
a working example. A user navigates to ieeexplore.ieee.org
and the extension inserts the content script (i.e., content.js)
into the document of the Web application as its DOM con-
tents loaded. The background script (i.e., background.js)
which manages the overall operation of the extension col-
lects observed navigation events while collecting click events
detected by the content script as well. If the user accesses
the extension user interface page (i.e., popup.js), the status
of profile logs collected until that point is summarized and
displayed. The collected interaction events are stored in the
local storage in browsers temporarily, forwarded to the server
when an application transition occurs, and accumulated in
the database. Although we implemented the prototype of our
event tracing tool as a form of extension in this work, the same
software can be utilized with a slight interface modification
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since it is designed on the basis of JavaScript, one of the
essential components of Web applications. It can be imple-
mented on the JavaScript engine inside a browser or imported
at any part of source code of a Web application. Furthermore,
such client-side approach provides descriptive statistics on
the Web interaction of individual users over multiple applica-
tions. It is expected that our event tracing tool can be widely
used for the research on user interaction data collection for
Web applications by relieving the constraints on target appli-
cation and platform.

B. OBJECT IDENTIFICATION FOR CLICK EVENTS
Identifying clicked objects is challenging because the sizes
and positions of objects can vary as the state of a browser win-
dow displays them. In [8], for example, the authors presumed
that a button is equal to the button which has the most similar
size and position among candidate buttons considering the
display characteristics of the device used for measurement.
However, such method does not guarantee reliable object
identification over different types of devices or client soft-
ware. For Web applications where users interact with various
objects (e.g., text links, boxes, images) as well as explicitly
specified buttons, a more generic and reliable object identifi-
cation method should be devised.

To address this issue, we identified a clicked object as a
specific node located in its DOM tree. First, a unified string
for an HTML element corresponding to each click event is
generated by extracting all the elements located alongside
the path from the <body> node in the document to that node
in the DOM tree and separating them by a special character
(@ in this work). To distinguish between the elements with
the same tag name, the class (denoted as .class) and ID
(denoted as #ID) for each element are marked as well. For
example, in Fig. 2, the user clicks the arrow-shaped user
interface to browse previous items on a carousel and this
object is identified as a <span> element with the classes
of Carousel-nav-control and Carousel-nav-prev among the
descendant nodes of the <div> element with the ID of Lay-
outWrapper, which is one of the child nodes of the <body>
element. That is, it is represented as a unified string of
@BODY@DIV#LayoutWrapper@. . .@SPAN.Carousel-nav-
control.Carousel-nav-prev. In addition, the URL of each
navigated Web page precedes such unified string. If a clicked
object is a descendant node of a frame or iframe tag, the URL
of the corresponding (i)frame is attached instead of the navi-
gated URL in the parent window to specify its DOM tree. The
DOM-based identification method enables our event tracing
tool to minimize incorrect identifications over different types
of devices or client software, since it is designed based on the
intrinsic architecture of HTML documents without relying on
any estimation-based or platform-dependent methods.

C. REAL USER INTERACTION DATA
We collected Web interaction data in real application usage
of 15 users for 8 weeks. Indiscriminate collection of user
interaction data might raise privacy concerns of participants.

FIGURE 3. Histograms of the number of appearances of Web applications
and objects for both event types. (a) Frequency of unique applications for
navigation events. (b) Frequency of unique objects for click events.

To ensure the privacy of participants, we used a randomly
generated 32-digit hexadecimal string as each user’s identifier
and processed collected interaction data in an anonymous
way. The user identifier (UID) remains the same over dif-
ferent machines if the browser with our event tracing tool is
signed in with an identical account. This allows us for con-
sistent observations of user interaction regardless of environ-
ment. We deployed our event tracing tool to volunteer users
fromMay 7 to July 4, 2019, and collected 305,064 interaction
events in total: 90,267 for navigation events and 214,797 for
click events, respectively.

Fig. 3 illustrates the distributions of the number of appear-
ances ofWeb applications and objects for both navigation and
click events. Fig. 3 (a) shows how many times each unique
URL is observed for the navigation events in the real user
interaction dataset. For the entire set of navigation events,
42,731 unique URLs appear indicating that each Web appli-
cation is observed only 2.112 times on average. As shown
in the histogram, the URLs observed less than five times
account for the majority, which implies the characteristics of
Web users who navigate to diverse applications without any
restriction whereas their usage patterns are only limited to the
finite set of installed applications in mobile environments.
Fig. 3 (b) shows the frequencies of clicked objects as the
number of appearances. Note that the scales of y-axes are dif-
ferent from the other subplot. For click events, 84,417 unique
objects are observedwhere the average is 2.544 times for each
object. Compared to the result of navigation events, the aver-
age observation number is slightly high, but the distribution is
still skewed toward the objects observed less than five times.
It means that the opposite cases are observed simultaneously
where users click several popular objects a lot or they interact
with various objects rarely. Such numerous prediction targets
emphasize the necessity of a precise design of the prediction
model for Web applications.

V. WEB NAVIGATION PREDICTION
This section describes the core components of WebProfiler
to predict the application likely to be navigated next. Indi-
vidual steps for preprocessing collected data to be suitable
for training are presented first and then the robustness of
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a representative deep learning model for navigation predic-
tion is examined. To remedy the shortcomings on prediction
performance, two additional techniques are devised: URL
grouping and Web embedding.

A. PREPROCESSING
To prevent from corrupting data patterns and misleading
results, we developed sequence processing and filtering tech-
niques in our Python preprocessing implementation. First,
the collected user interaction data is loaded from the database
and the events with non Web-specific URLs (e.g., browser-
specific custom pages) are eliminated. The data is then clus-
tered by UID and rearranged by timestamp. Adjacent events
with timestamps apart more than the pre-defined maximum
time gap (10 minutes in this work) are separated as distinct
sequences. If the time gap between adjacent events becomes
too large, the context is not maintained anymore and they
should be distinguished as different samples for training.
After slicing the sequences to fit in the input size of our
prediction model, we filtered out minor data based on UID,
navigated URL, and clicked object string to reduce noise
on the dataset. Five UIDs with too small data to train are
excluded, navigated URLs are restricted to the items ranked
in the top 200, and clicked objects observed less than two
times are represented as a dedicated identifier. All the criteria
used for filtering are decided empirically. Other advanced
techniques are applied as well, which will be explained later
in this section.

After generating sequences, we transformed the user inter-
action data into a suitable form for training. All the events
observed in the dataset (i.e., URLs for navigation and object
strings for click) are used to construct the overall event dic-
tionary. Since the prediction model only deals with numeric
values as input, we assigned a unique integer identifier for
each event. Also, these integer values are divided by the
maximum identifier before training to make them fall within
a range between 0 and 1 because the performance of a
machine learning algorithm is highly dependent on input
scales. We generated a training set, a validation set, and a
test set by randomly permutating the samples in the entire
dataset, where each set accounts for 70%, 15%, and 15%,
respectively.

B. GRU-BASED PREDICTION MODEL
We adopted GRU as a baseline of our navigation prediction
model, one variant of the popular deep neural network archi-
tectures used for analyzing time series data, called RNN.
Unlike a feedforward neural network where the activations
flow only in one direction, an RNN has connections pointing
both forward and backward. Such backward flow enables a
recurrent neuron to receive not only an input vector, but also
the output vector from the previous time step. It works as a
form of memory because the output of a recurrent neuron
at a certain time step t is a function of all the inputs at
previous time steps and that is why RNN is suitable for
time series data. To resolve issues faced by the legacy RNN,

TABLE 1. Test set precision at top k with the GRU-based prediction
model as a baseline.

the long short-term memory (LSTM) architecture was pro-
posed in 1997 [33] and has been gradually improved by
other researchers. An LSTM unit maintains both the short-
term state and long-term state by recognizing an important
input with an input gate, preserving it as long as needed
with a forget gate, and extracting it whenever needed with an
output gate. It is known that LSTM makes training converge
faster and detects well long-term dependencies in data than
RNN. Recently, a simplified version of LSTM, GRU, was
proposed [34] and widely used by many applications, partic-
ularly by those in natural language processing. Compared to
LSTM, it has a single vector for both short-term and long-
term states, a single gate controller controls both the input
gate and the forget gate, and the full state vector is output at
every time step. In WebProfiler, the GRU-based prediction
model was used as it performs roughly the same with other
variants of LSTM, in spite of its simple architecture. To build
our navigation prediction model, we first set the input layer to
accept input sequenceswith variable lengths since the number
of navigation or click events occurred before a navigation
prediction differs in context. We then layered GRU cells to
construct the body of the prediction model and added a fully
connected layer and a softmax layer before the output layer to
transform activated values from the GRU cells into prediction
targets. By refining the baseline GRU model architecture
and tuning the hyperparameters extensively, we achieved the
elaborate design of our GRU-based prediction model tailored
to navigation prediction tasks for Web applications.

We implemented the GRU-based prediction model using
TensorFlow [35] including other deep learning models and
verified the performance of the baseline model as an early
test. Table 1 shows the results of test set precision at top k with
the GRU-based navigation prediction model after training.
Note that the dataset and experimental parameters used for
these preliminary results are identical to those of the main
evaluation part (see Section VI for further details). We mea-
sured the accuracy based on top-k candidates because deter-
mining a set of candidate applications is a pragmatic solution
in terms of accuracy rather than predicting the exact appli-
cation which will be navigated next. Specifically, the top-k
precision means that if the actual next application was found
in the top-k candidate set where only k predicted targets
are included and sorted by their probabilities of occurrences
in descending order, we regarded it as correct. As shown
in the table, the basic GRU-based model predicted the next
application exactly only in 23% and the prediction accuracy
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just achieved 42.3% with a practical candidate set size of
k = 3. The result shown here was evaluated even after all
the hyperparameters were optimized, which implies addi-
tional techniques are essential for a high degree of predic-
tion accuracy and motivates us to devise URL grouping and
Web embedding to improve the prediction performance of
WebProfiler for practical use.

C. URL GROUPING
To improve navigation prediction accuracy, we should con-
sider the various nature of Web browsing. The part of a
Web application’s URL called query string assigns values to
specified parameters. Query string is typically used to process
the contents which vary according to the context ofWeb pages
with a same format. A search engine result page is a typical
example of utilizing query string, where different results of
search queries are displayed on the same page architecture.
Unifying Web pages with similar URLs which only differ
for the query string part as a single prediction target leads
to meaningful navigation prediction because they share most
of their resources such as image, CSS, and JavaScript.

WebProfiler applies URL grouping for the GRU-based
prediction model, where the variants of a single URL are
processed as a unified group. For a navigation event, we elim-
inated the query string part of its target URL and used it
to identify that event. That is, the substring of a URL after
the question mark, if exists, is truncated. Here is a trivial
example of navigations over search engine result pages (i.e.,
result.search.com). Suppose that URL1, URL2, and URL3 are
https://result.search.com?where=blogpost&query=machine
learning, https://result.search.com?where=searchbar&que-
ry=deeplearning&oquery=machinelearning, and https://
result.search.com?where=searchbar&query=gru&oquery=
deeplearning, respectively. A query string in this exam-
ple consists of type of previous page (i.e., where), search
query (i.e., query), and old search query (i.e., oquery). The
instances specified by the query string here are common
features analyzed by search engines to examine the relevance
between Web pages. For these three pages with different
URLs, the dominant factor for page load time is the size of
multimedia resources which are requested to the server and
downloaded identically. With URL grouping, these URLs
are handled as a unified group and a browser can prefetch
the multimedia resources in advance, if the predicted target
belongs to this group. Similarly, for a click event, the URL of
its parent window or (i)frame is truncated as well and then the
string for the clicked HTML element follows intactly. This
simple processing technique can increase the performance
of Web navigation prediction drastically by reducing the
prediction target space of navigated URLs (see Section VI
for detailed description).

D. WEB EMBEDDING
Word embedding is a machine learning technique widely
used in natural language processing where words or phrases
from a vocabulary are mapped to a lower dimension. Unlike

image and audio processing systems where high-dimensional
datasets exist sufficiently, in the systems treating discrete
atomic symbols (e.g., words in natural language processing),
a prediction model learns very little from individual symbols
in the dataset, which leads to data sparsity. Vector space
models such as word embedding can alleviate this problem
by representing symbols in a continuous vector space. With
word embedding, semantically similar words are embedded
nearby each other.

As an extension of word embedding, we designed Web
embedding where both types of events (i.e., navigation and
click) are mapped to a unified low-dimensional vector space.
Web embedding takes the entire sequences of events in the
dataset as input and assigns a dense vector in 64 dimensions
to each event identifier. Different from the conventional word
embedding where the same types of words or phrases are
processed, in Web embedding, two distinct types of navi-
gation and click events are serialized first in an identical
target space together and then the vectorization to a low-
dimensional space proceeds. For implementation, we adopted
the skip-gram model of Word2vec [36], which consists of
two-layer neural networks trained to reconstruct the contexts
of input symbols. In this work, we set the number of skips
as 2 and the size of skip window as 1 for the skip-gram
model. For example, suppose that the events are given in
the context of {N to URLa, C to OBJx , C to OBJy, C to
OBJz, N to URLb, N to URLc, . . . }, where N and C stands
for navigation and click, respectively, and OBJ denotes the
clicked object identified in the DOM tree. That is, the user
in this example first navigated to the Web application with
URLa, clicked the objects of OBJx , OBJy, and OBJz in order,
and then navigated to the Web application with URLb and
URLc in a row. First, we can generate (context, target) pairs
as {([N to URLa, C to OBJy], C to OBJx), ([C to OBJx , C to
OBJz], C toOBJy), ([C toOBJy, N toURLb], C toOBJz), . . . }.
To generate these pairs, we can consider syntactic contexts
and the context is defined as the left and the right event of a
target event, since the size of skipwindow is set as 1. Since the
skip-grammodel predicts each context symbol from its target
symbol, the dataset becomes {(C to OBJx , N to URLa), (C to
OBJx , C to OBJy), (C to OBJy, C to OBJx), (C to OBJy, C to
OBJz), . . . } of (input, output) pairs. The objective function is
optimized with stochastic gradient descent (SGD) thereafter
and the final embeddings are stored in the form of dictionary.
In the learning phase, each event is converted into a corre-
sponding vector representation by looking up the dictionary
and then fed into the prediction model as input. As shown in
Section VI,Web embedding enhances the performance of our
GRU-based prediction model even better in addition to URL
grouping by locating interaction events that share common
contexts in close proximitywith each other in the dense vector
space.

VI. EVALUATION
In this section, we evaluated the performance of WebProfiler
based on the real user interaction data collected by our event
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TABLE 2. Experimental parameters for evaluation.

tracing tool. First, we optimized the hyperparameters of our
GRU-based prediction model extensively in terms of num-
ber of units and layers, batch size, activation function, and
optimizer. We then examined the effectiveness of click events
other than navigation events and investigated the performance
gains from adopting URL grouping and Web embedding.
Finally, we compared the GRU-based model with other typi-
cal models in machine learning: RNN, LSTM, SVM, logistic
regression (LR), and naive Bayes (NB).

We determined several training options empirically and
utilized averaged F-measure to measure prediction perfor-
mance. Throughout the evaluation, we used the same dataset
containing the real user interaction data collected by our event
tracing tool as described in Section IV. For deep learning
models, we adopted the He initialization strategy [37] and set
the number of unrolled cells as 10 and the learning rate as
0.01, respectively. Other hyperparameters for deep learning
models are explored intensively in the following subsection.
All the experimental parameters are summarized in Table 2.
The performance of Web navigation prediction is evaluated
using F-measure, the harmonic mean of precision and recall.
To deal with multi-label data, we used the micro-averaging
operation [38], which is usually considered for averaging
accuracy measures in information retrieval tasks.

A. HYPERPARAMETER TUNING
Prior to the evaluation on the proposed methods, we derived
optimal values for the hyperparameters to maximize the per-
formance of the GRU-based prediction model through exten-
sive experiments. During hyperparameter tuning, validation
set is used for evaluation to avoid overfitting, unless oth-
erwise mentioned. Fig. 4 shows the prediction performance
according to the combination of the number of units and

FIGURE 4. Prediction performance as the number of units and layers.

FIGURE 5. Learning curve as the batch size b for both training set
prediction performance (top) and validation set prediction
performance (bottom).

number of layers. As shown in the figure, the F-measure
decreased as the number of units increased above a certain
level. The complexity of a prediction model increases as the
number of units and layers becomes too large, which results
in overfitting where the performance for training set becomes
better while that for validation set decreases failing to learn
general patterns of data. With too simple model, on the other
hand, the F-measure appears to be low, because it cannot
learn hidden characteristics of data properly. We adopted the
4-layer architecture with 128 units, which showed the best
prediction performance among the combinations.

Fig. 5 shows the learning curves for different batch sizes of
b = 25, 50, 100. Since the majority of trainingmethods using
deep learning are performed based on mini-batch iterative
optimization, batch size is one of the important hyperparam-
eters. The result for training set showed that a prediction
model with a smaller batch size made more noisy estimation
in the short term because less samples were considered per
iteration. In the result for validation set, the F-measure con-
verged to a higher value quickly with a smaller batch size
as the number of updates per epoch became large. However,
the computation time for each epoch became longer and
the entire training time increased with a smaller batch size,
causing low availability of parallelism. On the other hand,
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FIGURE 6. Prediction performance as the combination of activation
functions and optimizers.

there is a possibility of inaccurate weight updates with a
large batch size since old gradients are used for training and
gradients fluctuate as the state of parameters for non-convex
functions like loss functions used in deep learning. Therefore,
in this work, we used a batch size of b = 25, which is small
enough to obtain positive effects on both reliable training and
generalized performance even if training is a bit slow.

We examined the prediction performance according to
the combination of activation functions and optimizers as
shown in Fig. 6. In deep learning, a poor choice of acti-
vation function leads to the vanishing/exploding gradients
problems where training fails to converge due to unstable
gradients. We tested rectified linear unit (ReLU), known to
work well for deep neural networks, and its recent variant,
exponential linear unit (ELU) as well as traditional activation
functions of sigmoid and hyperbolic tangent. Optimizer is
another important factor affecting training speed and reli-
ability. In this work, we covered popular optimizers used
for deep learning: gradient descent, Momentum, Nesterov
accelerated gradient (NAG), root mean square propagation
(RMSProp), and adaptive moment estimation (Adam). For
activation functions, ReLU and its variant performed well,
while hyperbolic tangent showed comparable performance as
well. For optimizers, Momentum and NAG provided consis-
tent performance over activation functions. We selected the
combination of ReLU and Momentum, which showed the
best F-measure. For subsequent experiments, we used these
hyperparameter values for evaluation.

B. IMPACT OF CLICK EVENTS ON PREDICTION
Before evaluating the proposed methods, we analyzed how
much click events occurring within an application are helpful
for Web navigation prediction. Fig. 7 shows the performance
gains by adopting click events for prediction over three
types of prediction schemes: the first one is the baseline
model based on GRU, the second one is the model where
URL grouping is added to the baseline, and the last one
is our complete prediction model with both URL grouping
and Web embedding. The performance of each prediction
scheme trained by using only navigation data was measured

FIGURE 7. Performance gain by adopting click events for prediction.

FIGURE 8. Performance gain at top-k with URL grouping and web
embedding.

first and then the performance of each scheme was mea-
sured again after re-training based on both navigation and
click data, which was represented as normalized values to
the navigation-only performance. That is, the normalized
performance for each of the navigation plus click results
is represented as a relative value when the corresponding
navigation-only performance is regarded as 1. As shown in
the figure, using click data for training as well as navigation
data improved the prediction performance by 12.0% for the
baseline GRU-based model, 9.2% for the model only with
URL grouping, and 19.8% for our complete prediction model
with both URL grouping and Web embedding, respectively
(13.7% on average). This is because that click data provides
more fine-grained information (i.e., hidden states between
adjacent navigations) to grasp users’ intentions compared to
navigation data and its impact on prediction performance
turns out to be more than expected. Different from the previ-
ous research focusing only on navigation data between Web
pages, it showed that user interaction data occurring within an
application is another important factor to enhance prediction
performance.

C. BENEFITS OF URL GROUPING AND WEB EMBEDDING
We investigated the benefits of URL grouping and Web
embedding, which are devised to cope with the diversity on
Web navigation prediction. Fig. 8 shows the performance
gains at top k over three types of prediction schemes for
test set. With URL grouping, the F-measure increased 39.3%
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FIGURE 9. Prediction performance comparison to other machine learning
models.

on average compared to that of the baseline where the
performance gain was maximized to 85.6% with a small
number of candidates. URL grouping enables WebProfiler
to identify the variants of a Web application as a unified
one and this reduction of target space leads to significant
performance improvements for Web navigation prediction.
Moreover, the prediction performance improved another
10.6% on average when Web embedding was applied in
addition to URL grouping. Because of numerous navigation
targets and clickable objects associated with them, the prob-
lem of data sparsity is severe in Web navigation prediction.
The substantial performance gains of Web embedding stem
from our design of embedding, which maps both type of
events to a unified low-dimensional vector space together.
In summary, adopting both techniques proposed in this work
achieved an average performance gain of 56.6%. As shown in
the figure, using more candidates brought higher prediction
performance, but too many candidates made the prediction
results useless. We determined k = 3 to be the optimal num-
ber of candidates since it showed an acceptable F-measure
of 0.798 (with performance gain of 52.4%) and the slope of
performance improvement became gentle around this point.
The prediction performance observed in this work is suf-
ficient for practical use considering the diversity on Web
navigation prediction, surpassing the performance in mobile
environments. It was also confirmed through the hyperpa-
rameter tuning process that these two techniques reduced the
complexity of our GRU-based model other than prediction
accuracy.

D. COMPARISON TO OTHER MACHINE
LEARNING MODELS
Finally, we compared the prediction performance of GRU
with those of other machine learningmodels. Fig. 9 illustrates
the comparison results of different models including GRU,
RNN, LSTM, SVM, LR, and NB. For RNN and LSTM,
we trained the models using TensorFlow as the GRU-based
model with both URL grouping andWeb embedding enabled.
The radial basis function was used as a kernel function for
SVM, SGD training was adopted for LR, the Gaussian event
model was used for NB, which outperformed other event
models (e.g., Bernoulli, complement, multinomial). For non
deep learning models, previous ten events were utilized as

input with URL grouping enabled. All the F-measure val-
ues were measured as top-3 prediction performance for the
test sets generated by varying the random seeds to permu-
tate samples in the entire dataset. In the presented results,
the variants of RNN (i.e., GRU, RNN, LSTM) performed
well since they predict the targets based on all the inputs
at previous time steps, while the performance of LSTM was
slightly low compared to other two models. Although RNN
showed almost the same accuracy with GRU, it was observed
that the RNN-based model showed unreliable performance
according to the hyperparameter settings. On the other hand,
the performance levels of the prediction models other than
deep learning were poor since they cannot capture the hidden
patterns in Web interaction data properly.

VII. DISCUSSION
The event tracing tool of WebProfiler can be improved
by collecting more detailed user interaction data. In addi-
tion to synchronous navigation events, the navigations trig-
gered by JavaScript-based asynchronous requests such as
Ajax or those in single page applications using JavaScript
libraries such as React can be included for data collection.
As many Web applications utilize asynchronous designs to
accomplish interactive Web, collecting such asynchronous
will enable us to understand dynamic user interaction in
depth. Distinguishing events from multiple windows or tabs
can be beneficial to capture context precisely as well. The
current implementation of our event tracing tool collects all
the events from anywindow or tab in a unifiedmanner. If such
multi-source data is identified by individual flows, we can
figure out a user’s intention more clearly. Also, collected
user interaction data occurring within an application can be
extended beyond single click. Various types of interaction
events other than simple click will be helpful for better nav-
igation prediction including keyboard typing, mouse scroll,
double click, drag, and zoom-in/zoom-out.

Client-side data collection solutions including the event
tracing tool of WebProfiler might cause extra network usage
to send collected data to a dedicated server. Such additional
trafficwould consume a certain portion of network bandwidth
and it might have negative effect on users’ Web browsing
experience. Moreover, in mobile environments where users
pay for their network usage according to the amounts of cel-
lular traffic they use, it would result in poor user satisfaction
at a different aspect. For further improvement, the potential
impact of additional network usage should be analyzed care-
fully and a way of incentivizing users to participate in data
collection should be devised as well.

We can enhance our object identification method and pre-
diction model design further. With our object identification
method for click events, there is a possibility of identifying
different objects as a same one, if they have identical IDs
and classes over all their elements and only the contents of
leaf nodes differ. It might be helpful for learning common
properties by clustering them as an identical object on one
hand and imply the potential of improvement for more precise
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event identification on the other. The current predictionmodel
ignores the time intervals between input events considering
only the order of those events for training. If the prediction
model is designed to utilize inter-event time or dwell time in
Web applications, various intentions of users can be inferred
from event sequences. In addition, we can provide personal-
ized prediction results if the model is trained further with the
data generated by each user.

The freshness of the navigation prediction model should
be maintained when utilizing WebProfiler in real application
usage. Usage pattern for Web applications changes over time
even for a same user. Therefore, to utilize the propose predic-
tion method in practice, new trends should be reflected con-
sistently by re-training the prediction model with fresh data.
In addition to the prediction model, the corpus of events used
for Web embedding should be updated regularly to catch the
common context between events properly. For more general
usage, reinforcement learning can be a promising solution
where a model is trained by interacting with environments
continuously.

VIII. CONCLUSION
In this paper, we proposed a profiling framework for Web
applications called WebProfiler, which collects user interac-
tion data without any restriction and predicts Web naviga-
tion accurately for general applications. We developed and
deployed an event tracing tool which collects real user inter-
action data with low measurement overhead using JavaScript
event handlers and identifies clicked objects reliably through
a DOM tree based approach. To improve the GRU-based nav-
igation prediction performance, we designed two advanced
techniques for training, URL grouping and Web embedding.
The experimental results based on the real user interac-
tion data demonstrated that click events occurring within
an application played a significant role in navigation pre-
diction, which improved the overall performance by 13.7%
on average. This insight will encourage succeeding research
on in-application user interaction data. In addition, WebPro-
filer achieved an average F-measure of 0.798 for top three
candidates where the performance gain from URL grouping
and Web embedding accounted for 52.4%. The prediction
performance of WebProfiler is sufficient for practical use
considering its accuracy and feasibility. Our future work aims
to develop an online prefetching mechanism based on the
navigation prediction model with other types of interaction
events.
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