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ABSTRACT Wireless Sensor Networks (WSNs) have been deeply studied by many researchers and been
widely used in many fields. Since a large amount of energy for WSNs is used for sensing and transmitting,
researchers come up with many methods to reduce the number of sensed and transmitted data packets.
Compressive Data Gathering (CDG) is a well-known method to gather WSNs data, but it does not realize
sparse sensing as it needs to sense all data and compress them. The efficiency of Low-rank and TV
regularizations for recovering WSNs data has been demonstrated, however, they are not combined to enable
utilization of data correlation throughout the network. To recover the data accurately and to reduce the energy
consumption in WSNs, we propose a Compressive Sparse Data Gathering (CSDG) scheme including a
Compressive Sparse Sampling (CSS) method and a data recovery algorithm based on low-rank and Total
Variation (TV) regularizations fully exploiting the sparsity and low-rank characteristics of WSNs data. The
alternating direction method of multipliers and the steepest descent method are used to solve the problem.
Simulations show that the CSDG method outperforms the state-of-the-art methods in terms of the recovery
accuracy. Moreover, with fairly low sparse sampling ratio and high compression ratio, CSDG method can
still recover the original signal with little error. As the number of sensed data and transmitted data is reduced
greatly with sparse sampling and compression, the energy consumption of WSNs is lessen and the lifetime
is prolonged.

INDEX TERMS Wireless sensor networks, data gathering, optimization methods, total variation, low-rank.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) are wireless networks
composed of a large number of stationary or mobile nodes.
Broadly speaking, the nodes can be divided into sensor nodes
and sink nodes. The sensor nodes are self-organized and in the
multi-hop manner to collaboratively sense, acquire, process
and transmit the perceived information in the area that the net-
work coverages. Ultimately, the sink receives the information
and apply the information in practice [1]. WSNs have been
deeply studied by many researchers and been widely used
in agriculture and environmental protection fields to monitor
environmental parameters [2], [3].

The sensor nodes are usually powered by a battery and
they need to monitor the environment for a long time, so that
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the control of energy consumption is of great importance for
WSNs. Since a large amount of energy for WSNs is used for
sensing and transmitting [4], researchers come up with many
methods to reduce the number of sensed and transmitted
data packets. Making full use of the general characteristic of
WSNs data is amain research orientation and has been proved
to be effective.

Many methods consider the sparsity feature of WSNs
data. Compressive Data Gathering (CDG) [5] is the most
well-known method to apply Compressive Sensing (CS) the-
ory [6] to WSNs because the representation coefficients of
data are usually sparse under some specific bases. How-
ever, the recovery accuracy of CDG fails to promise high
level. Recently, a Sequential Compressed Sensing with Pro-
gressive Signal Reconstruction method (Seq-Prog-CS) [7]
has been proposed, demonstrating that the recovering accu-
racy can be guaranteed from a sequence of periodically
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delivered CS measurements. Later, the method utilizing both
the low-rank and temporal sparsity feature was proposed,
named as Compressive Data Gathering with Low-Rank
constraints (CDGLR) [8]. CDGLR method introduced the
historic data, efficiently improving the recovery accuracy.
Discovering the gradient sparsity of WSNs data, The Com-
pressive Multi-timeslots Data Gathering method with Total
Variation Regularization (CMDGTV) [9] is proposed, using
the Total Variation (TV) regularization. With CMDGTV
method, people can recover WSNs data with high accuracy
without need to look for a suitable sparse representation basis.

CDG has shown its effectiveness to reduce energy con-
sumption and to recover data accurately in WSNs, however,
the number of samples is not actually reduced because sensor
nodes need to sample all data and then compress them when
using CDGmethod in most related works [5], [8]–[10]. Later
according to the research progress of the Matrix Comple-
tion (MC) theory [11], researchers exploited the low-rank
characteristic of sensor data and applied the MC theory to
WSNs [4]. In MC, the low-rank data matrix can be recovered
accurately from entries sampled uniformly at random [11],
which means only a portion of data are needed to be sensed
and transmitted to the sink, realizing a real sense of sparse
sensing.

Since the application of MC theory in WSNs, many
algorithms for solving the MC problem are adapted to the
WSNs. In the beginning, people used the alternative least
squares (ALS) method to solve the data recovery problem
exploiting the spatial correlation of WSNs data, which is
called the Efficient Data Collection Approach (EDCA) [4].
Later the Spatio-Temporal Compressive Data Collection
(STCDG) [12] was proposed adding the short-term stability
features to improve the accuracy. These methods assume the
rank of the data is fixed and known, which is unlikely to
hold in the practical system. He et al. combined the matrix
completion with sparsity constraints, proposing the Data
Recovery method with joint Matrix Completion and Sparsity
Constraints (DRMCSC) [13], and used the alternating mini-
mization to solve the problem.

Although the data recovery methods based on MC theory
reduce the number of sensed data of sensor nodes, it does
not mean they reduce the number of transmitted data packets
compared with the methods based on CS theory. Because
thesemethods did not show higher recovery accuracywith the
same sampling ratio. Moreover, many methods based on MC
theory reduce energy consumption with nodes in the sleep
mode, which has a strict requirement for the communication
limits of sensor nodes. Actually, the data gathering method
based on MC theory is not opposite to the method based
on the CS theory. But they can not be combined easily and
require a higher requirement for the corresponding sampling
method, transmitting method and recovery algorithm.

TV regularization has been used for recoveringWSNs data
effectively [9], however, the method only utilizes informa-
tion from local neighborhoods, neglecting useful information
from remote data. In this paper, we propose a Compressive

Sparse Data Gathering (CSDG) scheme to recover the data
accurately and to reduce the energy consumption in a WSN,
which monitors slowly time-changing environment parame-
ters for a long time such as the temperature, the humidity
and the light. The scheme includes a Compressive Sparse
Sampling (CSS) method and a data recovery algorithm based
on low-rank and TV regularizations (LRTV). The main con-
tributions of this paper are summarized as follows:

• We propose a compressive sparse data gathering scheme
for WSNs including a compressive sparse sampling
method and a data recovery algorithm based on low-rank
and TV regularizations to recover the data without
loss of generality accurately and to reduce the energy
consumption.

• We design a compressive sparse sampling method fully
exploiting the sparsity and time-relevant characteristics
of WSNs data. In this method, only part of data are
sensed and then compressed and transmitted to the sink.
Sparse sampling and compression reduce the number
of sensed data and transmitted data greatly so that the
energy consumption of WSNs is lessen. It is notable that
this sampling method is generally applicable and can be
used with other recovery algorithms easily.

• We construct the model with low-rank and TV regu-
larizations that integrates both local and global infor-
mation for recovering signal from the samples. This is
achieved by, in addition to TV, low-rank regularization
that enables utilization of information throughout the
network. The alternating direction method of multipliers
and the steepest descent method are used to solve the
problem.

• With a real-world data set, we evaluate the proposed
compressive sparse data gathering method and the
state-of-the-art data gathering methods. The simulation
results show that the proposedmethod outperforms other
methods in terms of the reconstruction accuracy. More-
over, the CSDG method with lower sparse sampling
ratios still performs well.

The rest of this paper is organized as follows. Section II
presents the basic CDG scheme. The proposed CSDGmethod
is described in Section III. It includes the compressive sparse
samplingmethod, the problem formulation and the algorithm.
Section IV presents the experiments results of the proposed
methods compared with the state-of-the-art methods in the
term of reconstruction accuracy and the proposed method
with different sparse sampling ratios. Last but not least,
Section VI concludes the paper and looks to research direc-
tion in the future.

II. OVERVIEW OF CDG
CDGmethod presents the first complete design to apply com-
pressed sensing theory to sensor data gathering for large-scale
wireless sensor networks. Instead of traditional transmitting
each sensed value, sensor nodes transmits a sum of products
of sensed values and measurements vectors in CDG method
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FIGURE 1. Compressive data gathering in a multi-hop route.

so that the global scale communication cost is reduced and
load is balanced.

Fig. 1 shows the basic idea of CDG method, where xi
denotes the value sensed by the node i and φi denotes the ith
column vector of measurement matrix 8. As Fig. 1 shown,
the sink finally gets the sums of φixi, so the CDG process can
be easily formulated as

b = Φx, (1)

where b ∈ RM is the measurements the sink gets, x ∈ RN is
the sensed value vector and Φ ∈ RM×N is the measurement
matrix, which is usually a random Gaussian matrix.

After the sink obtains the measurements, it recovers x from
the measurements b. According to the CS theory, this can be
formulated as a l1 minimization problem if x is sparse under
a basis, which is as follows:

min
s
‖s‖l1 s.t. b = Φx, x = Ψ s, (2)

where Ψ is the sparse basis and s is the sparse representation
coefficient. AsΨ is known, the original data x can be obtained
easily after s is gotten. The solution of Eq. (2) is deeply
studied and can be obtained fast and accurately by many
algorithms [14], [15].

However, in CDG, each sensor node needs to transmit M
data packets in each round of data gathering. That is, the total
number of data transmissions for a network of N sensor
nodes isM ×N , which still incurs high communication cost.
To address this problem, hybrid CDG (H-CDG) approaches
are proposed in [16]–[18]. In the hybrid methods, the nodes
close to the leaf nodes transmit the original data without
using the CS technique, while the nodes close to the sink
transmit data to sink using the CS method. In [19], a sparsest
random scheduling scheme is proposed for CDG (SRS-CDG)
in WSNs to further reduce the transmission cost by treating
each sensor reading as one CS measurement, where the mea-
surement matrix is a sparsest one. It is notable that other CDG
related methods can also be used in the proposed scheme.
In the later section, the basic CDG method is used for better
understanding.

III. THE PROPOSED METHOD
We consider a slowly time-changingWSN systemwith a sink
andN sensor nodes, whereN sensor nodes transmit their data
to the sink. The data are sent to the sink periodically and a
cycle includes C time slot t . The sensor node i senses data at
time slot t so that it senses C data values during a cycle. The
sensed original data without loss of generality can form the
matrix XF ∈ RN×C , where the row and column number cor-
responds to the node ID and time slot number, respectively.

FIGURE 2. The proposed CSDG method (a) Compressive sparse sampling.
(b) Data recovery.

Each time slot is with same time interval and is usually several
to dozens of seconds.

To recover XF accurately and to reduce energy consump-
tion in WSNs, we propose a compressive sparse data gather-
ing method. With the CSDG method, only a portion of data
in XF are sensed forming the sensing data with 0 values XS .
And then the 0 values are deleted according to the highly
temporal-correlated characteristic of WSNs data. Finally the
matrixX without 0 are compressed and transmitted to the sink
using the CDG method. After receiving the measurements B,
the sink recovers X with the proposed optimization algorithm
at first, and then recovers the original data. The scheme of the
proposed method is shown in Fig. 2.

In this section, we will describe the proposed CSDG
method from three aspects, the proposed Compressive Sparse
Sampling (CSS) method, the scheme of data recovery process
and the proposed optimization method in detail.

A. COMPRESSIVE SPARSE SAMPLING (CSS) METHOD
A cycle of the periodic CSSmethod is explained here to show
the proposed CSS method as all cycles are the same. In the
CSS method, The data transmitting process is only carried
out once in a cycle and each cycle includes a decision period,
C time slots and a transmitting period. The sparse sensing
ratio and the compression ratio are defined as ps and pc,
respectively.

The CSS method can be simply divided into two parts,
the sparse sampling and the compressive data gathering. The
sparse sampling is completed during the decision period and
the followingC time slots, and during the transmitting period,
the compressive data gathering is completed.

Because the data of WSNs are highly temporal-correlated,
only part of the data along the dimension of time are sensed
to realize the sparse sensing. The number of sensed data of
each sensor node in a cycle is T = [C×ps], where [S] means
S rounds to integer number.

In the decision period of the cycle, each sensor node i
randomly selects T integer numbers in the set {1, 2, . . . ,C},
forming the subset defined as Ii. The set Ii decides at which
time slot the sensor node i senses data in the cycle. In the
cycle, the sensor node i only senses data at the selected time
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slots while is in the sleep mode during the other time slots to
reduce the energy consumption. According to this, a sparse
sensing matrix Q ∈ RN×C can be constructed as follows:

Qij =

{
1 ji ∈ Ii
0 otherwise,

(3)

where ji means the column number of ith row. In practice, Qi,
the ith row vector of Q is saved in the ith sensor node and will
be covered in the following cycle.

The sparse sensing process can be simply expressed as

XS = Q ◦ XF , (4)

where ◦ represents the Hadamard product of two matrices.
Namely, (XS )ij = Qij × (XF )ij. Because the data of WSNs is
highly temporal-correlated and numbers of zero values of all
rows in XS are the same, zero values can be deleted and the
smaller-size data matrix without zeros values X is obtained,
where X ∈ RN×T . The operator C(·) is used to delete the zero
values and compress the size, which is defined as follows:

X = C(XS ), (5)

where X ∈ RN×T , XS ∈ RN×C and T = [C × ps].
When entering the transmitting period, the CDG method

is used to compress the data X and to transmit the measure-
ments B. Besides the measurements B, the Qi is also needed
to be transmitted to the sink by sensor node i. As there is only
1 and 0 value inQi,Qi can be easily transmitted with a few of
bits accompanying the measurements. It is notable that CSS
method can be completed with but not limited to the basic
CDG method, other related CDG method can also be used
here to improve the transmitting efficiency.

Because the WSN is slowly time-changing and each time
slot is short, the characteristic of data can be remained to
a great extent with CSS method. The compressed matrix X
can represent the original full data XF to a certain degree
so that XF can also be recovered accurately if X can be
reconstructed accurately. Under the acceptable reconstruction
accuracy, the CSS method can reduce the number of samples
and the transmitting data, which certainly reduces the energy
consumption.

B. DATA RECOVERY SCHEME
To recover the original sensing data, XF ∈ RN×C , without
loss of generality, the recovery process can be divided into
two steps. As Fig. 2b shown, X ∈ RN×T is recovered from
measurements B at first. Later, X is filled according to the low
rank characteristic of WSNs data and the XF is obtained. The
corresponding formulations are described as follows.

1) RECOVERING X
According to the CSS method, X is compressed and trans-
mitted to the sink using the CDGmethod. Each time slot, this
process is formulated as Eq. (2). After a cycle, this process
can be easily formulated with a same measurement matrix Φ

B = ΦX , (6)

where B is the measurements obtained after a cycle and B ∈
RM×T . It is notable that the sensing matrix Φ is independent
on time changing so that the occupied memory ofΦ in sensor
nodes is small [9]. To recover X from the measurements,
it usually minimizes the following cost function:

X̂ = argmin
X
‖B−ΦX‖2. (7)

This is a data fidelity term for penalizing the difference
between the obtained measurements B and the measurements
from the original dataX using ameasurementmatrixΦ. Since
this is an ill-posed inverse problem, regularization terms are
added to stabilize the solution. The cost function is thus
rewritten as:

X̂ = argmin
X
‖B−ΦX‖2 + λ<(X ), (8)

where <(X ) is the regularization term often defined based
on prior knowledge. The parameter λ is used to balance
the contributions of the fidelity term and the regularization
term. Eq. (8) can be solved by many methods. In this paper,
a method with Low-rank and TV regularizations is proposed
and explained later.

2) RECOVERING XF
As Q is transmitted to the sink, the positions of elements of
X in XS are known. After recovering X , XS can be easily
obtained with Q. Because of the low-rank characteristic of
WSNs data, the recovery of XF from XS can be simply seen
as a matrix completion problem, which is formulated as

min
X
{rank(XF ), subject to XS = Q ◦ XF } , (9)

where rank(XF ) is the rank of XF . However, this problem is
NP-hard [20]. Thus, people turn to solve its convex approxi-
mation [21] which reads as

min
X
{‖XF‖∗, subject to XS = Q ◦ XF } , (10)

where ‖XF‖∗ is the nuclear norm defined as the sum of all
singular values of XF .

Eq. (10) can be solved by many methods [21]–[23]. In this
paper, a Tikhonov regularization [24] is added and a Fast Sin-
gular Value Thresholding (FSVT) algorithm is used, which is
shown in [25] in detail. It is noteworthy that here this method
will update all the values including those in X recovered by
CDG, which is different from previous ones [21]–[23], [25].

C. OPTIMIZATION METHOD FOR RECOVERING X
The effectiveness of TV regularization and low-rank property
for recovering WSNs data has been demonstrated by various
existing works theoretically and numerically. In this paper,
we consider combining these two tools and the optimization
method with TV+low-rank regularization is as follows:

X̂ = argmin
X

{
‖B−ΦX‖2 + λTV ‖X‖TV + λLR‖X‖LR

}
,

(11)
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where λTV and λLR are the parameters for controlling the
contributions of TV term and low-rank term, respectively.
Their specified definitions are shown as follows.

1) TOTAL-VARIATION REGULARIZATION
Although nonconvex TV models and algorithms have also
been developed [26], [27], this paper just considers the con-
vex methodology. The TV norm of X , ‖X‖TV can either be
the anisotropic TV norm, 1-norm or the isotropic TV norm,
2-norm. Here, the anisotropic TV norm is used defined as
follows [28]:

‖X‖TV1 = ‖DX‖1 =
∑
i,j

([DnX ]i,j + [DtX ]i,j), (12)

where operator D is a collection of two sub operators
D = [DT

n DT
t ]
T , Dn and Dt are the first-order forward

finite-difference operators along the vertical and horizontal
directions of the matrix X , respectively. Here, [X ]i,j denotes
the (i, j)th element of the matrix X . The definitions of each
individual sub operators with periodic boundary conditions
are

DnX = [X (n+ 1, t)− X (n, t) X (1, t)− X (N , t)], (13)

DtX = [X (n, t + 1)− X (n, t) X (n, 1)− X (n,T )], (14)

thus, DnX ∈ RN×T and DtX ∈ RN×T . In conclusion, ‖DX‖1
is the sum of all the elements of two matrices. It is obvious
that the definition of ‖DX‖1 does not agree with traditional
1-norm of a matrix, but here it is used for numerical algo-
rithms later.

2) LOW-RANK REGULARIZATION
Previous studies have shown that data collected from WSNs
are highly spatio-temporal correlated [29], which brings the
low-rank characteristic of the matrix X . As described above,
the nuclear norm can be used to to show the low-rank
characteristic, so the low-rank regularization term can
be ‖X‖∗.

3) JOINT TV AND LOW-RANK REGULARIZATION TERMS
According to the description above, the regularization terms
in the Eq. (11) can be specified and the Eq. (11) can be written
as

X̂ = argmin
X

{
‖B−ΦX‖2 + λTV ‖DX‖1 + λLR‖X‖∗

}
. (15)

To solve the optimization problem, we employ variable split-
ting techniques and rewrite Eq. (15) as follows:

{X̂ , Û , Ŵ } = arg min
X ,U ,W

1
2
‖B−ΦX‖2

+ λTV ‖U‖1 + λLR‖W‖∗,

subject to U = DX , W = X . (16)

The augmented Lagrangian function of (16) is as follows
by introducing two Lagrangian multipliers Z and Y

{X̂ , Û , Ŵ , Ẑ , Ŷ }

= arg min
X ,U ,W ,Z ,Y

{
1
2
‖B−ΦX‖2

+ λTV ‖U‖1+ < Z ,U − DX > +
µ

2
‖U − DX‖22

+ λLR‖W‖∗+ < Y ,W − X > +
β

2
‖W − X‖22

}
, (17)

The idea of augmented Lagrangian method is to find a critical
point of Eq. (17), which is also the solution of original prob-
lem Eq. (15). To this end, the alternating direction method
of multipliers (ADMM) [30] is used to solve the following
subproblems iteratively:

Xk+1 = argmin
X

{
1
2
‖B−ΦX‖2

+ < Zk ,Uk − DX > +
µ

2
‖Uk − DX‖22

+ < Yk ,Wk − X > +
β

2
‖Wk − X‖22

}
, (18)

Uk+1 = argmin
U

{
λTV ‖U‖1+ < Zk ,U − DXk+1 >

+
µ

2
‖U − DXk+1‖22

}
, (19)

Wk+1 = argmin
W

{
λLR‖W‖∗+ < Yk ,W − Xk+1 >

+
β

2
‖W − Xk+1‖22

}
, (20)

Zk+1 = Zk − µ(Uk+1 − DXk+1), (21)

Yk+1 = Yk − β(Uk+1 − Xk+1). (22)

For the X -sub problem, Eq. (18), clearly it is a minimization
of a quadratic function and can be solved by letting the
gradient of the function be 0. Its gradient is

dk (X ) = ΦT (ΦX − B)− DTZ + µDT (DX − U )

−Y T + β(X −W ) (23)

resulting the solution

(ΦTΦ + µDTD+ β)X = ΦTB+DTZ+µDTU+Y T+β.

(24)

Fast Fourier Transform (FFT) method can be used to solve
Eq. (24). Here, the one-step steepest descent method is used
to solve Eq. (18) with BB-like method [31] to choose the step
size, which is derived by the BBmethod proposed by Barzilai
and Borwein [32]. To solve the U -subproblem, Eq. (19) can
be written as

Uk+1 = argmin
U

{
λTV ‖U‖1 +

µ

2
‖U − (DXk+1 −

1
µ
Zk ) ‖2F

−
1
2µ
‖Zk‖2F

}
.(25)
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BecauseDX generates two matricesDnX andDtX , the corre-
sponding solutionsUn andUt of Eq. (25) through a shrinkage
formula are as follows:

Ut = (|DtXk+1 −
1
µ
Zt | −

λTV

µ
)+, (26)

Un = (|DnXk+1 −
1
µ
Zt | −

λTV

µ
)+, (27)

where t+ is the positive part of t , namely, t+ = max(0, t).
In words, this simply applies a soft-thresholding rule [33].
To solve the W subproblem, Eq. (20) can be written as

Wk+1 = argmin
W
{λLR‖W‖∗ +

β

2
‖W − (Xk+1 −

1
β
Yk ) ‖2F

−
1
2β
‖Yk‖2F . (28)

It is easily seen that Eq. (28) can be solved by a singular value
shrinkage operator [21]:

Wk+1 = S λLR
β

(Xk+1 −
1
β
Yk ). (29)

The shrinkage operator Sτ (X ) means to apply a soft-
thresholding rule to the singular values of X . Consider the
singular value decomposition of the matrix X ∈ RN×T of
rank r , then the Sτ (X ) can be defined as follows:

X = U6V ∗, 6 = diag({σi}1≤i≤r ),

Sτ (X ) := USτ (6)V ∗, Sτ (6) = diag({(σi − τ )+}), (30)

where U ∈ RN×r and V ∈ RT×r with orthonormal
columns and σi and τ are positive. In practical implemen-
tation, the algorithm was initialized with null matrices Z0
and Y0. Then X = Φ−1B with Z0 and Y0 is used to obtain
U0 andW0. The algorithm is terminated when ‖Xk+1−Xk‖F
is smaller than a predefined tolerance parameter, or k exceeds
a maximum number of iterations.

IV. SIMULATION
A real-world data set generated recently is used to evaluate
the performance of data recovery methods accurately. [34].
The data-set is the sensing mote data from the Data Sensing
Lab [34], named as the Strata New York 2012 held at the
New York Hilton Midtown generated on October, 2012 in
New York, NY. The brief map indicating the position of
each sensor mote is shown in Figure 3. The hexagons with
numbers inside in Fig. 3 represent the sensor nodes with their
number ID.

From the sensor nodes of the Data Sensing Lab, the sensed
temperature and humidity data are selected. There are 40 sen-
sors and 1724 time slots forming the matrix X ∈ R40×1724.
However, with the disturbance when sensing and trans-
mitting, there are some missing data in the two matrices.
To obtain the complete data for evaluating the performance of
the methods, the data during the time slots from 71 to 110 are
selected. The four nodes do not sense any data during the
40 time slots, so the complete data X ∈ R36×40 are obtained
when the zero values are deleted.

FIGURE 3. The positions of sensors from data sensing lab.

The Normalized Mean Absolute Error (NMAE) is used
to measure the accuracy of the reconstructed data which is
defined as:

NMAE =

∑
|X̂ij − Xij|
|Xij|

, (31)

where X̂ is the recovered data. The NMAE is used in many
previous data gathering works for WSNs [8], [12], [13], [25]
and is suitable to evaluate the performance of data collection
methods. Experiments over different compression ratios pc
were carried out and pc is set as pc = 1, 2, . . . 10. The
compression ratios determine the size of the column of the
measurements, where M = b Npc c. The sensing matrix Φ is
a normally distributed random matrix. Each experiment is
tested 200 times to calculate the average values.

The proposed CSDG method is compared with CDG [5],
Seq-Prog-CS [7], CDGLR [8] and CMDGTV [9] methods
over different compression ratios. For the CSDG, CMDGTV
and CDGLRmethod, the size of the collected data varies with
different time slots T , forming the original data matrix XN×T .
The sparse sampling ratio ps is set as 1 so that the proposed
LRTV method is evaluated.

Fig.4 shows the recovery accuracy of the humidity data
from the Data Sensing Lab. As can be seen in Fig. 4,
the CSDG method with different T yields noticeable bet-
ter recovery accuracy than other methods. With increasing
compression ratios, the NMAE values of all the methods
increase and are not stable, but the advantage of CSDG
method expands. It is notable that the recovery accuracy
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FIGURE 4. NMAE over different compression ratios for humidity data.

FIGURE 5. Recovery time over different compression ratios for humidity
data.

of the CSDGmethod decreases as T increases, in our opinion,
this is because values of different time slots are similar and
there are no missing values so that the values of term DtX
are very close. It becomes more difficult to recover X with
the total variation regularization, which has been clarified in
paper [9]. In paper [9], it also shows that the performance
of recovery method with TV regularization with T = 20 is
better than that with T = 1 for a real-world data set. The
data set includes the humidity and temperature information
from Intel Berkeley Research Lab, which has many missing
values so that the TV regularization makes sense. Although
the recovery accuracy does not improve with T increasing,
the sparse sampling method can be used with large T so
that the number of transmitted data will decrease, which
greatly reduce the overall energy consumption in WSNs.

As the proposed method adds a step to fill the sparse
sensing data, the recovery time needs to be considered. The
corresponding recovery time of methods for humidity data
is shown in Fig. 5. The time of the CSDG method is the
most when T = 20 while is close to the CMDGTV method

FIGURE 6. NMAE over different compression ratios for temperature data.

FIGURE 7. Recovery time over different compression ratios for
temperature data.

when T = 1. It is easily explainable that the two algorithms
of the proposed scheme, the ADMM algorithm and the SVT
algorithm contribute to the time when T = 20. However. it
is only when the compression ratio is 1 or 2, the recovery
time of CSDG is especially large compared with that of
other methods. Low compression ratio can not reduce the
energy consumption and is not the main focus. In overall,
the recovery time is acceptable with high recovery accuracy.

The recovery accuracy and recovery time for the temper-
ature data from the Data Sensing Lab are shown in Fig. 6
and Fig. 7, separately. They show the similar performance to
those for the humidity data. The CSDG method with T =
1 still shows the best recovery accuracy while the relative
performance among other methods is a little different. CDG
performs better than Seq-Prog-CS and CDGLR when T = 1.
CDGLR method enhances greatly when T = 20.

To evaluate the recovery accuracy of CSDG when the
sparse sampling method is used, the experiments with dif-
ferent sparse sampling ratios ps are carried out and ps is set
as ps = { 15 ,

2
5 ,

3
5 ,

4
5 ,

5
5 }. The larger ps means that more data
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FIGURE 8. NMAE over different compression ratios with different sparse
sampling ratios for humidity data.

FIGURE 9. NMAE over different compression ratios with different sparse
sampling ratios for temperature data.

are sensed. ps = 1 means that all data are sensed and only the
LRTV algorithm is used to recovery the original data. The
results for humidity data and the temperature data are shown
in Fig. 8 and Fig. 9 respectively.

As seen in Fig. 8, the recovery accuracy improves when ps
increases in general except when ps = 1. The CSDG (ps = 1)
becomes unstable with increasing compression ratios and its
recovery error even exceeds that of CSDG (ps = 2

5 ) over
most compression ratios. Except for CSDG (ps = 1), The
CSDG (ps = 1

5 ) method shows a gap of recovery accuracy
with CSDG (ps = { 25 ,

3
5 ,

4
5 }). However, the recovery accuracy

of CSDG method with different ps values are similar when
ps = { 25 ,

3
5 ,

4
5 }. In other words, CSDG method with relative

low sparse sampling ratio can still maintain better recovery
accuracy, which reduce the number of sensing data and trans-
mitted data greatly.

Fig. 9 shows a similar result to Fig. 8. It verifies that
the CSDG method performs well with different data sets.
In Fig. 9, the recovery results of CSDGmethod with different

sparse sampling ratios are very close to each other when ps =
{
2
5 ,

3
5 ,

4
5 ,

5
5 }. When compression ratio is larger than 4, then

results are unstable and cannot tell which sparse sampling
ratio is the best.

In summary, the proposed CSDG outperforms CDG, Seq-
Prog-CS, CDGLR and CMDGTV in terms of reconstruction
accuracy. Moreover, with fairly low sparse sampling ratio
and high compression ratio, CSDG can still recover original
signal with little error so that the number of sensed data and
transmitted data can be reduced greatly.

V. CONCLUSION
In this paper, a new data gathering scheme is proposed called
the Compressive Sparse Data Gathering method, which fully
exploits the sparsity and low-rank characteristics of WSNs
data. In this method, sensor nodes only sense part of data,
and then compress data and transmit data to the sink based
on CS. A recovery algorithm is developed based on low-rank
and TV regularizations. The ADMMmethod and the steepest
descent method is used to solve the problem. Simulations
show that the CSDG method outperforms the state-of-the-
art methods in terms of the recovery accuracy. Moreover,
with fairly low sparse sampling ratio and high compression
ratio, CSDG method can still recover the original signal with
little error. As the number of sensed data and transmitted data
is reduced greatly with sparse sampling and compression,
the energy consumption of WSNs is lessen and the lifetime is
prolonged.

In the future, as different kinds of WSNs data are relevant,
the tensor completion with TV regularization will be consid-
ered to be applied for Heterogeneous WSNs to further reduce
the sampling ratio and compression ratio.
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