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ABSTRACT This paper investigates the finite-time consensus tracking problem for nonstrict feedback
nonlinear multi-agent systems with unknown dynamics and control directions. Firstly, the backstepping
scheme based on command filter and fractional power control law is proposed, which can not only solve the
problem of computational explosion, but also ensure that the state of each agent can follow the leader’s output
within a finite time. Then, the error compensation signals are designed to compensate the error caused by
filtering. The unknown nonlinear dynamics are approximated by the fuzzy logic system. The state variables
problem in the non-strict feedback system is well solved through the scaling of inequalities. By introducing
the Nussbaum function, the intermediate input signal and control input signal based on adaptive control law
are designed respectively, and the problem of unknown control directions is solved. Simulations are given
to show the effectiveness of the presented method.

INDEX TERMS Finite-time control, nonstirct feedback multi-agent systems, unknown control directions,
Nussbaum type function.

I. INTRODUCTION
Recently, the consensus control problem of multi-agent sys-
tems (MASs) has received many concerns since the extensive
engineering applications for multi-unmanned boats, multi-
unmanned aircrafts, multi-sensor network and so on [1]–[4].
Consensus problems include MASs with leaderless-
following case and leader-following case. The leader-
following system can strengthen the communication between
individuals, improve the anti-interference ability, save energy
and so forth. Therefore, many people are committed to
study such problem, such as in [5] a leader-following struc-
ture of the consensus algorithm is designed; in [6]–[13],
the single-intergrator, double-intergrator and high-order non-
linear dynamics for MASs are considered, respectively.

The nonlinear dynamic in theMASs, especially the higher-
order nonlinear characteristics is a challenging situation.
As a mature method, the backstepping control can solve
this problem well [14], [15]. But in backstepping process,
the explosion of complexity problem will occur. Therefore,
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backstepping technology combined with some advanced con-
trol techniques have been given. For example the dynamic
surface control (DSC), by using the first-order filter can
solve the expansion of the differential term and make the
controller design simple. [16] puts forward a DSC approach
for MIMO nonlinear systems under immeasurable states;
in [17] and [18], the distributed DSC design approach is
proposed to design the controllers, and the DCS on the
containment control problem with dynamic leaders is further
considered. But how to compensate the filtering error is
not proposed in them. The command filtered backstepping
control is also an effective scheme [19]–[22], in which the
error compensation signal is constructed to eliminate errors
generated by filtering. So that the higher control quality
and desired tracking performance can be obtained. For the
unknown nonlinear dynamics, the adaptive neural network
(NN) [23], [24] or fuzzy logical system (FLS) [25], [26] is
usually introduced to approximate it. However, the closed-
loop systems under the above design schemes are all asymp-
totic stable. Compared with finite-time control, they lack
faster convergence and higher tracking performance. So the
finite-time control method are proposed to improve the
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convergence rate and achieve the fast stability of MASs.
In [27], the authors study the finite-time control for second-
order multi-agent systems with antagonistic interactions.
In [28], the authors consider the finite-time backstepping
control for nonlinear MASs, and the finite-time formation
for spacecrafts subject to external disturbances is addressed
in [29].

It is worth emphasizing that all the control schemes men-
tioned above are not aimed at non-strict feedback systems.
They are only apply to strict or semi-strict feedback systems.
Therefore, there will be some limitations in practical engi-
neering applications. In order to solve the problem of non-
strict feedback, some different schemes have been proposed
continuously. In [30], [31] they usually use the method of
variable separation to deal with the non-strict feedback struc-
ture, and in [32] the author studies the trajectory tracking
problem for nonstrict-feedback systems. But the variable-
separation method has a disadvantage that the stability analy-
sis is complex in general. So other simpler approaches should
be further studied for stability analysis. Up to now, to our best
knowledge, the problem of finite-time consensus tracking
for nonstrict feedback nonlinear MASs is remain unsolved,
which need to be further study. Further, in the control systems,
the signs of control gains are called control directions that
are required to be known a priori. But in some practical
control systems, such as uncalibrated visual servo system,
autopilot design of uncertain ships and unmanned sailboat
heading control, their control directions are often unknown.
Therefore, the design of control signals becomes difficult in
the process of backstepping, and the adaptive problem is also
difficult to solve. It is gratifying to note that the Nussbaum
gain can solve the unknown control directions (UCDs) well.
After this, the authors in [33] present a robust adaptive control
approach for uncertain nonlinear systems with completely
unknown control coefficients. In [34] and [35], the authors
consider the cooperative output regulation problems for non-
linear multi-agent systems with unknown control directions.
Although the design of controllers for signal nonlinear sys-
tems or nonlinear MASs with UCDs are all very concerned
problems, the work for nonstrict feedback nonlinear MASs is
little.

This paper will consider the above discussion, study the
adaptive finite-time consensus tracking problems for non-
strict feedback nonlinear MASs with UCDs, and design a
controller of the MASs under a general directed graph. The
main contributions and advantages of this article are summa-
rized in the following two points.

1) Compared to [17]–[19], [21], a fuzzy approximation
based finite-time command filtering backstepping technol-
ogy is design to solve the explosion of complexity problem,
and guarantee the closed-loop system converge quickly and
ensure better tracking accuracy. The filtering error compen-
sation scheme is designed, which can further improve the
control quality.

2) In [15], [19], [21], [28], they study the systems with
strict or semi-strict feedback structure, a non-strict feedback

nonlinear MAS is investigated in this paper. The state vari-
ables problem in the non-strict feedback system is well solved
through the scaling of inequalities based on the basis function
vector of FLS. Moreover, the UCDs of the MASs are solved
by using the Nussbaum type function, which is more adopt to
engineering applications.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. GRAPH THEORY
In this paper, the weighted directed graph G = (V, E) is
used to describe the communications about N agents, where
E ⊆ V × V represents the edges and V = {1, 2, . . . ,N }
represents the nodes, respectively.Ni = {j|(j, i) ∈ E} describe
the neighbors of node i. If similar to this form of continuous
edge sequence {(i, n), (n, k), . . . , (m, j)}, we say from node i
to note j exists a direct path. A =

[
aij
]
∈ RN×N is the

weighted adjacency matrix where aii = 0 for ∀i, and aij > 0
when (j, i) ∈ E , aij = 0 when (j, i) /∈ E . the Laplacian
matrix is L = D − A, where D = diag{d1, d2, . . . , dN } with
di =

∑N
j=1 aij. If there exists a node that has a directed path

from it to other nodes, then it is a root node. If a spanning tree
is existed in G, then the root node exists.
We use an extended graph Ḡ = (V̄, Ē) to describe

the communications between a leader agent 0 and the
N following agents, the adjacency matrix is described as
B = diag{b1, b2, . . . , bN }, in which bi > 0 means from
nodes 0 to i has an edge, otherwise, bi = 0.

B. SYSTEM DESCRIPTION
Under the directed graph Ḡ, we discuss the communications
between N following agents and one leader. And the equa-
tions about the ith follower of the MASs are given

ẋi,q = fi,q(xi)+ gi,q(x̄i,q)xi,q+1
ẋi,ni = fi,ni (xi)+ gi,ni (xi)Kiui
yi = xi,1, q = 1, 2, . . . , ni − 1 (1)

in which xi is the state vector and i ∈ V , xi = [xi,1,
xi,2, . . . , xi,ni ]

T
∈ Rni with x̄i,q = [xi,1, xi,2, . . . , xi,q]T .

yi ∈ R is the output signal and ui ∈ R is the input signal.
In theMAS, fi,q(·) is smooth nonlinear function but unknown.
gi,q(·) is a smooth bounded and known function, which
o1 < |gi,q(·)| < o2, and o1, o2 are known positive con-
stants. The gain Ki is transfer coefficient and the sign of it
is unknown. The leader’s signal r(t) ∈ R is known and the
functions r(t), ṙ(t) are assumed to be bounded and smooth.
Remark 1: fi,q(·) is the unknown smooth nonlinear func-

tion and it need all states of the system (1), so that it is non-
strict feedback case. Many practical systems can be described
as or transformed into (1). For example, the electromechani-
cal system in [20] and the one-linkmanipulator system in [31]
and so on.

C. SOME LEMMAS AND ASSUMPTIONS
Assumption 1: Ḡ contains a spanning tree and the root

node is the leader node.
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Note that Assumption 1 guarantees that all eigenvalues of
the matrix H = L + B have positive real parts [28].
Lemma 1 [28]: If the numbers σ1 > 0, σ2 > 0, and

γ ∈ (0, 1), and the Lyapunov function satisfies V̇ +
σ1V (x) + σ2V γ (x) ≤ 0, then the system is finite-
time stable, and the setting time is T ≤ t0 +
[1/(σ1(1− γ ))] ln

[(
σ1V 1−γ (t0)+ σ2

)
/σ2

]
.

Lemma 2 [35]: If the continuous function ℵ(·) : R→ R
satisfies

lim
n→∞

sup
1
n

∫ n

0
ℵ(ν)dν = +∞

lim
n→∞

inf
1
n

∫ n

0
ℵ(ν)dν = −∞ (2)

then it is a Nussbaum type function. ν2 cos(ν) and
eν

2
cos(π/(2ν)) are the common Nussbaum type functions.
Lemma 3 [33]:LetV (t), ζ (t) defined in the interval [0, tf )

and they are all smooth functions and ∀t ∈ [0, tf ), V (t) ≥ 0,
and the function ℵ(ζ ) is even smooth Nussbaum-type func-
tion. If there is the following inequality:

V (t) ≤ c0 + e−c1t
∫ t

0
[g(τ )ℵ(ζ )+ 1] ζ̇ec1τdτ (3)

in which c0 is a suitable constants, c1 is positive constant, and
the time-varying parameter g(τ ) takes values in the [l−, l+]
with 0 /∈ I and the interval is unknown. Then on [0, tf ),
the functions V (t) and

∫ t
0 g(τ )ℵ(ζ )ζ̇dτ must be bounded.

Lemma 4 [20]: If the continuous function f (x) is defined
on a compact set9. Then the FLSW T S(x) meets the follow-
ing inequality

sup
x∈ψ
|f (x)−W T S(x)| ≤ ψ (4)

where the any scalar ψ > 0 and W = [w1,w2, . . . ,wQ]T is
the ideal weight vector, S(x) = [s1(x), s2(x), . . . , sQ(x)]T/∑Q

i=1 si(x) is the basis function vector, and si(x) =

exp[(−(x − γi)T (x − γi))/(τ 2i )] is the Gaussian function,
respectively. where γi = [γi,1, γi,2, . . . , γi,n] for i =
1, 2, . . .N is the center vector, and the width is τi.

III. MAIN RESULTS
Define the following tracking errors for the ith agent:

εi,1 =

N∑
j=1

aij(yi − yj)+ bi(yi − r)

εi,q = xi,q − πi,q, q = 2, · · · , ni (5)

where πi,q+1(t) = ϕi,q,1(t) and ϕi,q,1(t) is defined as follows.
Lemma 5 [28]: The following second-order command

filter

ϕ̇i,q,1 = χi,q,1

χi,q,1 = −ri,q,1
∣∣ϕi,q,1 − αi,q∣∣ 12 sign (ϕi,q,1 − αi,q)

+ϕi,q,2

ϕ̇i,q,2 = −ri,q,2sign
(
ϕi,q,2 − χi,q,1

)
(6)

can guarantee ϕi,q,1 = αi,q and χi,q,1 = α̇i,q are satisfied in
finite time by choosing proper ri,q,1 and ri,q,2.
Remark 2: The parameters ri,q,1 and ri,q,2 of command

filter (6) should be chosen large enough, and ri,q,2 should
be firstly selected. Then by inputting the virtual signal αi,q,
we can get πi,q+1 and π̇i,q+1.
Remark 3: In the process of backstepping, the command

filter (6) is used to get all intermediate functions and their
derivatives by inputting αi,q of each step, it can also filter the
virtual signals precisely and get its derivatives and guarantee
the conditions ϕi,q,1 = αi,q and χi,q,1 = α̇i,q are satisfied
in finite time. The application of command filter can well
solve the problem of computational explosion in traditional
backstepping control design in [14], [15].

Now, through the command filtered backstepping scheme
based on fractional power control law, the virtual control
signals αi,q, αi,ni are designed as follows:

αi,1 =
1

(di + bi)gi,1

(
−

1
2
vi,1 − ki,1εi,1 −

vi,1θ̂i
2φ2i,1S

T
i,1Si,1

− %i,1v
γ

i,1 +

N∑
j=1

ai,jgj,1xj,2 + biṙ
)

αi,2 =
1
gi,2

(
−

1
2
vi,2 − ki,2εi,2 −

vi,2θ̂i
2φ2i,2S

T
i,2Si,2

− %i,2v
γ

i,2 + π̇i,2 − (di + bi)gi,1εi,1

)
αi,q =

1
gi,q

(
−

1
2
vi,q − ki,qεi,q −

vi,qθ̂i
2φ2i,qS

T
i,qSi,q

− %i,qv
γ
i,q + π̇i,q − gi,q−1εi,q−1

)
ui = αi,ni =

ℵ(ζi)
gi,ni

(
1
2
vi,ni + ki,niεi,ni +

vi,ni θ̂i
2φ2i,niS

T
i,niSi,ni

+ %i,niv
γ
i,ni − π̇i,ni + gi,ni−1εi,ni−1

)
(7)

where 1
2 < γ =

γ1
γ2
< 1, γ1, γ2 are positive odd integers, ki,q,

%i,q are all positive constants, ℵ(ζi) is a smooth Nussbaum-
type function and the updating process of ζi is designed as

ζ̇ = vi,ni

(
1
2
vi,ni + ki,niεi,ni +

vi,ni θ̂i
2φ2i,niS

T
i,niSi,ni

+ %i,niv
γ
i,ni − π̇i,ni + gi,ni−1εi,ni−1

)
(8)

We further define the compensated tracking error vi,q as

vi,q = εi,q − ϑi,q, q = 1, . . . , ni (9)

and give the following error compensation signals to elimi-
nate the error πi,q+1 − αi,q caused by command filter (6)

ϑ̇i,1 = −ki,1ϑi,1 + (di + bi)gi,1ϑi,2
− ιi,1sign(ϑi,1)+ (di + bi)gi,1(πi,2 − αi,1)
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ϑ̇i,2 = −ki,2ϑi,2 − (di + bi)gi,1ϑi,1 + gi,2(πi,3 − αi,2)

− ιi,2sign(ϑi,2)+ gi,2ϑi,3
ϑ̇i,q = −ki,qϑi,q − gi,q−1ϑi,q−1 + gi,q(πi,q+1 − αi,q)

− ιi,qsign(ϑi,q)+ gi,qϑi,q
ϑ̇i,ni = −ki,niϑi,ni − ιi,nisign(ϑi,ni )− gi,ni−1ϑi,ni−1 (10)

Now we establish the following Lyapunov functions with
ni steps to show the designed controller is effective.

step 1: Firstly, choose the following Lyapunov function

Vi,1 =
1
2
v2i,1 (11)

then V̇i,1 is

V̇i,1 = vi,1(ε̇i,1 − ϑ̇i,1)

= vi,1

(
− ϑ̇i,1 +

N∑
j=1

aij(ẋi,1 − ẋj,1)+ bi(ẋi,1 − ṙ)
)

= vi,1

(
− ϑ̇i,1 + (di + bi)(fi,1(xi)+ gi,1(xi,1)xi,2)

−

N∑
j=1

aij(fj,1(xj)+ gj,1(xj,1)xj,2)− biṙ
)

= vi,1

(
− ϑ̇i,1 + (di + bi)fi,1(xi)−

N∑
j=1

aij
(
fj,1(xj)

+ gj,1(xj,1)xj,2
)
+ (di + bi)gi,1(xi,1)εi,2

+ (di + bi)gi,1(xi,1)(πi,2 − αi,1)

+ (di + bi)gi,1(xi,1)αi,1 − biṙ
)

= vi,1

(
− ϑ̇i,1 + f̄i,1(xi, xj)−

N∑
j=1

aijgj,1(xj,1)xj,2

+ (di + bi)gi,1(xi,1)εi,2
+ (di + bi)gi,1(xi,1)(πi,2 − αi,1)

+ (di + bi)gi,1(xi,1)αi,1 − biṙ
)

(12)

where f̄i,1(xi, xj) = (di + bi)fi,1(xi)−
∑N

j=1 aijfj,1(xj) and it is
unknown, from Lemma 4 it can be approximated by the FLS,
that is

f̄i,1(xi, xj) = W T
i,1Si(xi, xj)+ δi,1 (13)

where xi, xj are state vectors of agent i and j, |δi,1| ≤ ψi,1,
and ψi,1 is a positive constant. Because 0 ≤ STi Si ≤ 1 and
through inequality scaling yields

vi,1 f̄i,1 ≤
v2i,1‖Wi,1‖

2STi Si

2φ2i,1
+
φ2i,1

2
+
ψ2
i,1

2
+
v2i,1
2

≤
v2i,1‖Wi,1‖

2

2φ2i,1S
T
i,1Si,1

+
φ2i,1

2
+
ψ2
i,1

2
+
v2i,1
2

(14)

where φi,1 > 0 is a constant, Si = Si(xi, xj) and Si,1 =
Si,1(xi,1, xj,1). Now, substituting (7), (10) and (14) into (12),

we can get

V̇i,1 ≤ vi,1

(vi,1 (‖Wi,1‖
2
− θ̂i

)
2φ2i,1S

T
i,1Si,1

− ki,1vi,1 + (di + bi)gi,1vi,2 − %i,1v
γ

i,1

+ ιi,1sign(ϑi,1)
)
+
ψ2
i,1

2
+
φ2i,1

2
(15)

step 2: The second Lyapunov function is constructed by

Vi,2 = Vi,1 +
1
2
v2i,2 (16)

So we can get

V̇i,2 = V̇i,1 + vi,2v̇i,2 = V̇i,1 + vi,2(−ϑ̇i,2 + ẋi,2 − π̇i,2)

= V̇i,1 + vi,2

(
− ϑ̇i,2 + fi,2(xi)+ gi,2(x̄i,2)xi,3 − π̇i,2

)
= V̇i,1 + vi,2

(
− ϑ̇i,2 + fi,2(xi)+ gi,2(x̄i,2)εi,3

+ gi,2(x̄i,2)αi,2 + gi,2(x̄i,2)(πi,3 − αi,2)− π̇i,2

)
(17)

From the FLS, there exists a W T
i,2Si(xi) so that

fi,2(xi) = W T
i,2S

T
i (xi)+ δi,2 (18)

where |δi,2| ≤ ψi,2, and ψi,2 > 0 is a positive constant.
Similarly we use the inequality technique like in (14) and
substitute (7), (10) into (17) yields

V̇i,2 ≤
2∑

q=1

[
−ki,qv2i,q + vi,qιi,qsign(ϑi,q)− %i,qv

γ+1
i,q

]

+

2∑
q=1

(
1
2
φ2i,q +

1
2
ψ2
i,q

)
+ gi,2vi,2vi,3

+

2∑
q=1

v2i,q(
∥∥Wi,q

∥∥2 − θ̂i)
2φ2i,qS

T
i,qSi,q

(19)

where Si,q = Si,q(x̄i,q).
step q: The Lyapunov function equation of step q is con-

structed

Vi,q = Vi,q−1 +
1
2
v2i,q, q = 3, . . . ni − 1 (20)

Then we get

V̇i,q = V̇i,q−1 + vi,qv̇i,q = V̇i,q−1 + vi,q(−ϑ̇i,q + ẋi,q − π̇i,q)

= V̇i,q−1 + vi,q(−ϑ̇i,q + fi,q(xi)+gi,q(x̄i,q)xi,q+1 − π̇i,q)

(21)

Similarly, the given constant ψi,q > 0, from the FLS, there
exists W T

i,qSi(xi) so that

fi,q(xi) = W T
i,qS

T
i (xi)+ δi,q (22)
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where |δi,q| ≤ ψi,q ,and Si,q = Si,q(x̄i,q) .Through
the inequality technique, we can get the following
results:

vi,qfi,q(xi) ≤
v2i,q
∥∥Wi,q

∥∥2
2φ2i,qS

T
i,qSi,q

+
1
2
φ2i,q +

1
2
ψ2
i,q +

1
2
v2i,q (23)

Then combine (7), (10), (23) and (21) we have

V̇i,q ≤
q∑

p=1

[
−ki,pv2i,p + vi,pιi,psign(ϑi,p)− %i,pv

γ+1
i,p

]

+

q∑
p=1

(
φ2i,p

2
+
ψ2
i,p

2

)

+

q∑
p=1

v2i,p(
∥∥Wi,p

∥∥2 − θ̂i)
2φ2i,pS

T
i,pSi,p

+ gi,qvi,qvi,q+1 (24)

where Si,p = Si,p(x̄i,p).
step ni: The Lyapunov function equation of step ni is

constructed as

Vi,ni = Vi,ni−1 +
1
2
v2i,ni (25)

and

V̇i,ni = V̇i,ni−1 + vi,ni v̇i,ni
= V̇i,ni−1 + vi,ni (ẋi,ni − ϑ̇i,ni − π̇i,ni )

= V̇i,ni−1 + vi,ni (fi,ni (xi)+ gi,niKiui
− ϑ̇i,ni − π̇i,ni )+ ζ̇i − ζ̇i (26)

Similarly, there exists a W T
i,niSi(xi) so that

fi,ni (xi) = W T
i,niS

T
i (xi)+ δi,ni (27)

where |δi,ni | ≤ ψi,ni , and ψi,ni is a positive constant and
where Si,ni = Si,ni (x̄i,ni ). We can get the following results:

vi,ni fi,ni (xi)≤
v2i,ni

∥∥Wi,ni

∥∥2
2φ2i,niS

T
i,niSi,ni

+
1
2
φ2i,ni+

1
2
ψ2
i,ni+

1
2
v2i,ni (28)

So substitutes (7), (8), (10) and (28) into (26) we can get the
results

V̇i,ni ≤
ni∑
q=1

[
−ki,qv2i,q + vi,qιi,qsign(ϑi,q)− %i,qv

γ+1
i,q

]

+

ni∑
q=1

(
φ2i,q

2
+
ψ2
i,q

2

)
+

ni∑
q=1

v2i,q(
∥∥Wi,q

∥∥2 − θ̂i)
2φ2i,qS

T
i,qSi,q

+ (Kiℵ(ζi)+ 1)ζ̇i (29)

According to Yang’s inequality we can get

ιi,qvi,qsign(ϑi,q) ≤
1
2
ιi,q
[
sign(ϑi,q)

]2
+

1
2
ιi,qv2i,q

≤
1
2
ιi,q +

1
2
ιi,qv2i,q (30)

Further, substitutes (30) into (29) we can get

V̇i,ni ≤ −
ni∑
q=1

(
ki,q −

1
2
ι1,q

)
v2i,q −

ni∑
q=1

%i,qv
γ+1
i,q

+

ni∑
q=1

(
1
2
ψ2
i,q +

1
2
ιi,q +

1
2
φ2i,q

)

+

ni∑
q=1

v2i,q(
∥∥Wi,q

∥∥2 − θ̂i)
2φ2i,qS

T
i,qSi,q

+ (Kiℵ(ζi)+ 1) ζ̇i (31)

We denote θi = max{‖Wi,1‖
2, ‖Wi,2‖

2, . . . , ‖Wi,ni‖
2
}, and

the adaptive updating law about θ̂i is designed as

˙̂
θ i = −2λiµiθ̂i +

ni∑
q=1

λiv2i,q
2φ2i,qS

T
i,qSi,q

(32)

where the constants λi, µi are all positive.
We further define

V =
N∑
i=1

Vi,ni +
N∑
i=1

1
2λi

θ̃2i (33)

where θ̃i = θi − θ̂i, so we can get

V̇ ≤ −
N∑
i=1

ni∑
q=1

(
ki,q −

1
2
ιi,q

)
v2i,q −

N∑
i=1

ni∑
q=1

%i,qv
γ+1
i,q

+

N∑
i=1

ni∑
q=1

(
1
2
ψ2
i,q +

1
2
ιi,q +

1
2
φ2i,q

)
+

N∑
i=1

2µiθ̃iθ̂i

+

N∑
i=1

(Kiℵ(ζi)+ 1) ζ̇i (34)

where µiθ̃iθ̂i ≤ −
[
(µi(2ci − 1))

/
2ci
]
θ̃2i + (µici

/
2)θ2i , and

ci > (1
/
2). So we have

V̇ ≤ −
N∑
i=1

ni∑
q=1

(
ki,q −

1
2
ιi,q

)
v2i,q −

N∑
i=1

ni∑
q=1

%i,qv
γ+1
i,q

+

N∑
i=1

ni∑
q=1

(
1
2
ιi,q +

1
2
φ2i,q +

1
2
ψ2
i,q

)

−

N∑
i=1

(
ςi

λi
θ̃2i )

γ+1
2
+

N∑
i=1

(
ςi

λi
θ̃2i )

γ+1
2
− 2

N∑
i=1

ςi

λi
θ̃2i

+

N∑
i=1

µiciθ2i +
N∑
i=1

(Kiℵ(ζi)+ 1) ζ̇i (35)

in which ςi = λi
[
(µi(2ci − 1))

/
2ci
]
, if (ςi/λi)θ̃2i ≥ 1,

so that [(ςi/λi)θ̃2i ]
(γ+1)/2

− (ςi/λi)θ̃2i + µiciθ
2
i ≤ µiciθ2i ,

if (ςi/λi)θ̃2i < 1, we have [(ςi/λi)θ̃2i ]
(γ+1)/2

− (ςi/λi)θ̃2i +
µiciθ2i < 1+ µiciθ2i . Applying these to push and we can get

V̇ ≤ −σ1V − σ2V
γ+1
2 + η +

N∑
i=1

(Kiℵ(ζi)+ 1) ζ̇i (36)
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where σ1 = min {2ki,q − ιi,q, 2ςi}, σ2 = min {%i,q ·
2(γ+1)/2, (2ςi)(γ+1)/2} and η =

∑N
i=1

∑ni
q=1(ιi,q/2+φ

2
i,q/2+

ψ2
i,q/2)+ N +

∑N
i=1 µiciθ

2
i . (36) implies that V̇ ≤ −σ1V +

η +
N∑
i=1
(Kiℵ(ζi)+ 1) ζ̇i, and from Lemma 3 we know∑N

i=1 (Kiℵ(ζi)+ 1) ζ̇i is bounded in [0, tf ), and ηmax =

maxt∈[0,tf ]
∑N

i=1 (Kiℵ(ζi)+ 1) ζ̇i, η̄ = η + ηmax. So the
inequality (36) can be rewritten as

V̇ ≤ −σ1V − σ2V
γ+1
2 + η̄ (37)

Then there has a constant υ ∈ (0, 1) so that (38) can bewritten
as

V̇ ≤ −υσ1V − (1− υ)σ1V − σ2V
γ+1
2 + η̄ (38)

or

V̇ ≤ −σ1V − υσ2V
γ+1
2 − (1− υ)σ2V

γ+1
2 + η̄ (39)

We can get V̇ ≤ −υσ1 V − σ2V (γ+1)/2 when V >[
η̄
/
(1− υ)σ1

]
. According to Lemma 1 the decrease of V will

put vi,q, θ̃i into the region

(vi,q, θ̃i) ∈
{
V ≤

η̄

(1− υ)σ1

}
(40)

in finite time T1,1 ≤ [1/(υσ1(1 − (γ + 1)/2))] ln[(υσ1
V 1−(γ+1)/2(0) + σ2)/σ2]. From (39) we have V̇ ≤ −σ1V −
υσ2V (γ+1)/2 if V (γ+1)/2 >

[
η̄
/
(1− v)σ2

]
, similarly,

we know that vi,q, θ̃i will be driven into the region

(vi,q, θ̃i) ∈

{
V ≤

[
η̄

(1− v)σ2

] 2
γ+1
}

(41)

in finite time T1,2 ≤ [1/σ1(1 − (γ + 1)/2)] ln[(σ1
V 1−(γ+1)/2(0)+ υσ2)/υσ2]. So that we know vi,q will arrive∣∣vi,q∣∣ ≤ min{

√
2[η̄
/
((1− υ)σ1)],

√
2[η̄
/
((1− v)σ2)]

2/(γ+1)
}

in finite time T1 = max{T1,1,T1,2}. In order to prove that εi
is bounded, we need also to prove that ϑi is bounded in finite
time since εi = vi + ϑi. Now we choose

V̄ =
1
2

N∑
i=1

ni∑
q=1

ϑ2
i,q (42)

Then, one have

˙̄V =
N∑
i=1

(
(di + bi)gi,1ϑi,1(πi,2 − αi,1)− ki,1ϑ2

i,1

+ (di + bi)gi,1ϑi,1ϑi,2 − ϑi,1ιi,1sign(ϑi,1)

− ki,2ϑ2
i,2 + gi,2ϑi,2(πi,3 − αi,2)+ gi,2ϑi,2ϑi,3

− (di + bi)gi,1ϑi,1ϑi,2 − ϑi,2ιi,2sign(ϑi,2)

+ . . .+gi,qϑi,q(πi,q+1−αi,q)+gi,qϑi,qϑi,q+1−ki,qϑ2
i,q

− gi,q−1ϑi,q−1ϑi,q − ϑi,qιi,qsign(ϑi,q)

+ . . .− ki,niϑ
2
i,ni − gi,ni−1ϑi,ni−1ϑi,ni

−ϑi,ni ιi,nisign(ϑi,ni )
)

= −

N∑
i=1

ni∑
q=1

ki,qϑ2
i,q −

N∑
i=1

ni∑
q=1

ϑi,qιi,qsign(ϑi,q)

+

N∑
i=1

ni−1∑
q=2

gi,qϑi,q(πi,q+1 − αi,q)

+

N∑
i=1

(di + bi)gi,1ϑi,1(πi,2 − αi,1) (43)

Form lemma 5, we have
∣∣πi,q+1 − αi,q∣∣ = 0 is satisfied in

finite time T2, so we rewrite (43) as

˙̄V ≤ −
N∑
i=1

ni∑
q=1

ki,qϑ2
i,q −

N∑
i=1

ni∑
q=1

ιi,q
∣∣ϑi,q∣∣

≤ −k0V̄ − l0V̄
1
2 (44)

where ι0 =
√
2min{ιi,q}, k0 = 2min{ki,q}, then we

have limt→T3ϑi,q = 0 for T3 ≤ T2 + [1/(k0(1 − 1/2))]
ln[(k0V̄ 1−1/2(T2)+ ι0)/ι0].

Finally, we will get for t ≥ T4 = max{T1,T3},

|εi,1| ≤ min{
√
2η̄/[(1− υ)σ1],

√
2[η̄/((1− v)σ2)]2/(γ+1)}.

Denote ϒ1 =
[
ε1,1, ε2,1, . . . , εN ,1

]T and 81 =

[y1 − r, y2 − r, . . . , yN − r]T , 81 = (H ⊗ IN×N )−1ϒ1.
Then we can get |yi − r| ≤ [

√
N min{

√
2[η̄((1− υ)σ1)],√

2η̄/[(1− υ)σ2]2/(γ+1)}/ρmin(H )], where theminimum sin-
gular value of H is represented by ρmin(H ).
Theorem 1: Consider the MASs (1) satisfies

Assumption 1, and r(t) represents the leader signal. Using
the finite time command filters (6), design the virtual control
functions (7) and the error compensation signals (10), then
the control law is chosen ui = αi,ni and combine with the
adaptive law (33) can guarantee that the consensus tracking
error of the closed-loop system can converge to a sufficiently
small neighborhood of the origin in finite time.
Remark 4: We can see that the steady-state error is deter-

mined by the parameters σ1 and σ2, which are defined in (36).
And the control parameters 2ki,q > %i,q should be satisfied.
so that if we choose larger control parameters ki,q, %i,q and
smaller ιi,q, γ we will get bigger σ1 and σ2. Then we will
obtain the smaller steady-state error. But the small ιi,q will
affect the convergence rate of the error compensation signals.

IV. NUMERICAL RESULTS
In this part, we will through a specific simulation example
and comparison of different control schemes to illustrate the
effectiveness of the current method. As in Fig.1, consider the
system has three followers and one leader, and the followers
models are chosen by

f1,1 = cos(x1,1x1,2), g1,1 = 1,
f1,2 = x1,1x1,2, g1,2 = 1
f2,1 = sin(0.5x2,1x2,2), g2,1 = 1,
f2,2 = x2,1x2,2e−0.3x2,2 , g2,2 = 1
f3,1 = cos(−0.5x3,1x3,2), g3,1 = 1,
f3,2 = x3,1x3,2, g3,2 = 1. (45)
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FIGURE 1. The leader and three followers.

in which x1(0) = [1.5,−0.5]T is the initial state of agent 1,
the agent 2 is x2(0) = [−0.7, 0.3]T , and agent 3 is x3(0) =

[1.4,−0.4]T . The Laplacian matrix is L =

 0 0 0
−1 1 0
−1 0 1

,
the leader adjacency matrix B =

 1 0 0
0 0 0
0 0 0

, and the output

of the leader is given by r(t) = sin(0.5t). Control parameters
of the system are set as ki,q = 10, ιi,q = 8, %i,q = 20, γ =
(3/5), ri,q,1 = 450, λi = 1, µi = 1, ri,q,2 = 2000, φi,q = 1.
The unknown control gain Ki = −1 and the Nussbaum type
function is chosen as ζ 2cos(ζ ). In the FLS, the number of
the fuzzy rules is 10, and the basis function whose centers
are distributed in [−3, 3] × · · · × [−3, 3], and the width
τ = 4. The responses of xi,1, i = 1, 2, 3 and r are shown

FIGURE 2. The responses of xi,1, i = 1,2,3, and r .

FIGURE 3. The responses of π1,2 and α1,1.

in Fig.2, we can see that the closed-loop system has realized
consensus tracking within a finite time although the control
directions is unknown and the system is a non-strict feedback.
Fig.3-Fig.5 reflect the virtual control signal αi,1 and the
intermediate virtual signal πi,2 designed in this paper. The
overall tracking error OTE = ‖[ε1,1, ε2,1, ε3,1]T ‖ is used
to compare the consensus tracking performances with the
command filtered backstepping subject to different control
parameters. Fig. 6 shows the different OTEs under the dis-
tributed finite-time command filtered backstepping control
scheme and distributed command filtered backstepping con-
trol scheme, respectively. It is obvious that the better tracking

FIGURE 4. The responses of π2,2 and α2,1.

FIGURE 5. The responses of π3,2 and α3,1.

FIGURE 6. The OTEs of different control approaches.
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performance and faster convergence rate are achieved under
our proposed algorithm.

V. CONCLUSION
In this paper, the consensus tracking problem for nonstrict
feedback MASs with nonlinear dynamics and unknown con-
trol directions has been solved by the presentedmethod. In the
designedmethod, the command filtered backstepping scheme
based on fractional power control law is proposed, in which
the error compensation signals, intermediate input signals
and control input signals combined with adaptive control law
are all constructed, the filtering errors are eliminated and
the states of each agent can fast track the leader’s output in
finite time. In addition, the state variables problem in the non-
strict feedback system and unknown control directions are
well solved by introducing Nussbaum function and through
the scaling of inequalities. Further, if the state of each agent
cannot be completely measured, the state observer will be
studied in the future. And the switching topology can also
be considered by using the presented method.
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