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ABSTRACT Accuracy and diversity are considered to be the two deriving factors when it comes to
generating an ensemble classifier. Focusing only on accuracy causes the ensemble classifier to suffer from
‘‘diminishing returns’’ and the ensemble accuracy tends to plateau; whereas focusing only on diversity causes
the ensemble classifier to suffer in accuracy. Therefore, a balance must be maintained between the two for
the ensemble classifier to achieve high classification accuracy. In this paper, we propose a novel diversity
measure known asMisclassification Diversity (MD) and an Incremental Layered Classifier Selection (ILCS)
approach to generate an ensemble classifier. The proposed approach ILCS-MD generates an ensemble
classifier by incrementally selecting classifiers from the base classifier pool based on increasing accuracy
and diversity. The benefits are in two folds 1) the generated ensemble classifier contains only those classifiers
from the pool which can either maximize accuracy whilst maintaining or increasing the diversity, and
2) the generated ensemble classifier selects only a few classifiers from the base classifier pool thus reducing
ensemble component size as well. The proposed approach is evaluated on 55 benchmark datasets taken from
UCI and KEEL dataset repositories. The results are compared with five existing pairwise diversity measures,
and existing state of the art ensemble classifier approaches. A significance test is also conducted to verify
the significance of the results.

INDEX TERMS Ensemble classifiers, neural networks, multiple classifiers learning, diversity measures.

I. INTRODUCTION
Ensemble classifiers also known as ‘‘multi-classifier sys-
tems’’ are machine learning classification methods that are
used to get better predictive performance over a single clas-
sifier. An ensemble classifier consists of multiple accurate
and diverse base classifiers to form classification decisions
which enables it outperform single classifiers [1]. Because
of which ensemble classifiers are able to outperform single
classifiers, moreover, a single classifier working well on one
dataset might not workwell on others, and this is known as the
‘‘no free lunch’’ theorem [2]. The main idea behind ensemble
classifiers is that a committee of experts (classifiers) when
suitably combined, that is they come up with a unanimous
decision, the outcome is always better than a decision that is
given by a single member (classifier). The classifiers within
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an ensemble must be diverse that is they must be making
uncorrelated errors otherwise there is no point in combining
classifiers with correlated errors [3].

Diversity and accuracy have been pointed out to be
the two deriving factors when generating an ensemble
classifier [4], [5]. Accuracy is the ability of a classifier to
generate class labels as close to the ground truth as possi-
ble, and diversity is the difference between the classification
abilities of various classifiers in the ensemble. A balance
must be maintained between the two to generate an ensemble
classifier that can perform well on unseen dataset. Although
some authors argue that the main objective of any ensem-
ble classifier is to achieve higher classification accuracy
therefore, focus primarily should be on accuracy. However,
others suggest that maximizing accuracy whilst maximizing
diversity is a better strategy as eventually diverse ensembles
perform better on noisy datasets [6]. Many different diversity
measures have been proposed in [7]. Some strategies using
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which diversity can be incorporated in an ensemble are as fol-
lows: (1) diversity creation by training classifiers on different
input data sub samples for example in bagging, (2) diversity
creation by training classifiers on different input features, for
example in random forest, (3) diversity creation by using
a set of structurally different classifiers that have different
learning capabilities for example Support Vector Machine
(SVM), Artificial Neural Networks (ANN), k-Nearest Neigh-
bour (kNN), Decision Trees (DT), Naïve Bayes (NB) and
Linear Discriminant Analysis (LDA).Some researchers have
also utilized different optimization algorithms for exam-
ple multi-objective optimization or genetic algorithms to
find the best set of classifiers from the base classifier
pool that can maximize both accuracy and diversity in an
ensemble [8]–[12].

In this paper we generate an ensemble classifier by maxi-
mizing diversity and accuracy. We propose a novel pairwise
diversity measure which computes diversity using the mis-
classification labels of two classifiers and a novel incremental
layered classifier selection approach. The original contribu-
tions are as follow:

• A novel pairwise diversity measure is proposed. This
diversity measure is used to determine whether a classi-
fier should be selected from the pool to form the ensem-
ble or not.

• A novel incremental classifier selection approach is
proposed to generate an ensemble classifier using the
proposed diversity measure.

• A comparative analysis of ensembles with different
diversity measures is conducted.

The rest of the paper is organized as follows. Section II
entails the current state-of-the-art ensemble classifier tech-
niques. Section III discusses the proposed diversity mea-
sure and approach for generating an ensemble classifier.
Section IV gives details about the datasets, experimental
setup, experiments, results and analysis of results. Section V
summarizes our findings and lays out future directions.

II. BACKGROUND
Ensemble classifiers have seen a lot of research in last two
decades, primarily because ensemble classifiers are able to
classify real world noisy datasets. Ensemble classifiers work
better than single classifier models because they benefit from
the ‘‘perturb and combine’’ strategy [13]. Some of the ear-
liest milestones and hallmark work in ensemble classifiers
were Bagging and Boosting [4], [14]. Bagging works by
creating random subspaces from input data known as bags
and trains base classifiers on different bags and combines
them. Since base classifiers are trained on different data
samples this incorporates diversity in the ensemble. Boosting
works by successively training base classifiers on sam-
ples that are not classified correctly. Another state-of-the-
art ensemble classifier proposed in [15] is Random Forest
(RaF). RaFworks by training base classifiers (DT) on random
input features from the data and then suitably combines them.

RaF has been very successful in classifying noisy real world
datasets and variations of RaF over the years have been
proposed by researchers. Ensemble classifier approaches can
be divided into four main categories, 1) approaches that
exploit the input sample space as in Bagging and Boost-
ing, 2) approaches that exploit the feature space as in RaF,
3) hybrid approaches that exploit both feature and sample
space, and 4) approaches that utilize different classifier com-
bining strategies.

Besides bagging some authors have utilized clustering to
generate a random subspace. Input data is used to generate
sparse data clusters with unique and repeating records, these
strategies are discussed in [16]–[21]. In [22] researchers pro-
posed a progressive semi supervised ensemble learning to
generate an ensemble classifier. In the proposed approach
authors first generate a random subspace from input data then
progressively enlarge the training set by incorporating an evo-
lutionary sample selection process. In [23] authors employed
a subspace and clustering methodologies to generate a sub-
space which has a balanced number of classes in different
subspaces. Although many subspace learning strategies have
been proposed in [24]–[26], very few approaches exist that
utilize ensemble learning to maximize the final classification
accuracy. Additionally, although the strategies discussed that
have successfully utilized clustering to generate random sub-
space to train base classifiers, however, since datasets have
randomness in them a clear distinction of how many clusters
should be generated to create a diverse input space which in
turn will generate an ensemble classifier that can achieve the
highest classification accuracy is required.

For the second category of ensemble classifier approaches
many variations of RaF are proposed in research. For example
in [27] researchers proposed an Oblique DT with RaF to
generate ensemble classifier. In a comprehensive benchmark
study of 161 classifiers on UCI repository [28] datasets,
it was concluded that a variation of RaF known as paral-
lel RaF outperformed most of the classifiers. Similarly in
another recent benchmark study of ensemble classifiers [29],
it was concluded that Multi-Proximal RaF (MPRaF) which
is a variation of RaF outperformed most of the ensemble
classifiers and researchers suggested that it should be made
the yard stick for future ensemble classifier comparisons.
Rotation Forest (RoF) [14], [30] also uses DT to construct
ensembles however RoF differs from RaF because it extracts
features based on a rotation matrix and also all of the features
are utilized in order to find the significant feature(s). More
RaF based strategies are discussed in [31]–[33]. Although
RaF approaches perform well on unseen datasets, the hyper-
plane constructed is piece wise orthogonal and the ensem-
ble decision boundary turns out to be ‘‘stage like’’ [29].
Other strategies that can be employed to find the best set
of features for generating ensemble classifiers are Principle
Component Analysis (PCA) [34], LDA [35], and Neighbour-
hood Component Analysis (NCA) [36]. Many researchers
generated ensemble classifiers by finding or selecting the
significant or optimal set of features to generate ensemble
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classifiers for further details readers can refer to [37]–[43].
Extracting features before classification can help in dimen-
sionality reduction but that puts two constraints on the ensem-
ble i) the overall performance of the ensemble depends on
how well the feature selection has been performed, and
ii) lower number of features before classification means less
information for classifiers thus the ensemblemight haveweak
learners.

The third category of ensemble approaches exploits both
the feature space and the input space to generate ensemble
classifiers. For example, in [44] authors proposed a hybrid
ensemble approach and suggested that they are effectivewhen
dealing with small datasets with many features, and steps
should be taken to augment the training set in order to train
classifiers with sufficient learning base. Although application
of hybrid ensemble approaches have been discussed with
small datasets with large number of features however a dif-
ferent strategy needs to be adopted for large datasets with
few features, because the input subspace is already suffi-
ciently large and there is no requirement to augment it any
further. Similarly, in [45] authors proposed a hybrid ensemble
approach that utilizes stochastic search and clustering-based
pruning to generate an ensemble. A multitude of base classi-
fiers is trained with different parameters, so a pool of diverse
classifiers is generated. Classifier clusters are then generated
using the classification performance of classifiers. In this
way classifiers performing similarly are clustered together.
Finally, a single link clustering is applied to obtain the final
partition of classifiers which are then utilized to generate the
ensemble. Further hybrid ensemble learning approaches are
discussed in [46]–[48].

The fourth category of ensemble approaches incorpo-
rates different strategies for classifier selection. For example
in [49] researchers used genetic algorithms to generate an
ensemble classifier for unbalanced datasets; in [50], [51]
researchers used multi-objective Particle Swarm Optimiza-
tion (PSO) to generate an ensemble classifier. In [52], [53]
researchers used PSO as a model selection tool to select
the best set of classifiers to generate an ensemble classi-
fier. Further ensemble classifier approaches that incorpo-
rate multi-objective optimization, evolutionary algorithms,
genetic algorithms, etc. are discussed in [54]–[62]. In [63]
researchers proposed a clustering-based strategy to select a
diverse set of classifiers from the pool of classifiers that is
generated through bagging. In most of the discussed classifier
selection based approaches the application of optimization
is to select the best set of classifiers by optimizing for
generalization performance; however if a rule based [64]
machine learning method can be incorporated into the ensem-
ble generation framework then the need for optimization can
be eliminated. Therefore, in this paper a novel incremental
layered classifier selection approach is proposed that utilizes
the proposed diversity measure to generate an ensemble clas-
sifier. The proposed ensemble classifier exploits both the
feature space and input subspace by selecting the best set of
input features that can increase the learning capabilities of

classifiers and generates a diverse and rich input subspace by
clustering input data.

III. PROPOSED APPROACH
Diversity is considered an important factor when it comes
to generating an ensemble classifier, as diverse classifiers
when combined suitably together generate accurate ensem-
bles. If we combine classifiers that have correlated errors
then the ensemble classifier generated with n classifiers and
an ensemble classifier generated with only 2 classifiers will
have no difference. In order to achieve the benefit of hav-
ing more than one classifier in an ensemble we must have
diverse classifiers. Over the years many pairwise diversity
measures have been proposed and many researchers have
proposed different approaches to generate ensemble classi-
fiers by balancing accuracy and diversity. In this paper we
propose a pairwise diversity measure and use it in relation
to clustering to generate the proposed ensemble classifier.
The proposed approach is compared with different pairwise
diversity measures to test the efficacy and other ensemble
classifier approaches as well. We first discuss the proposed
diversity measure in the next subsection.

A. PROPOSED DIVERSITY MEASURE
The proposed diversity measure is defined below. Let us
define a dataset as X = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}
where x ∈ Rd is a d-dimensional feature vector and
yε{1, 2, . . . , c is its corresponding class label having n num-
ber of samples and c classes.

Let ith ensemble be denoted as εi = {1,2 ,9 and jth ensemble
be denoted as εj =

{
1,2 ,9 ,12

}
, where n is a classifier from

the pool. The purpose of introducing diversity measure here
is to find how diverse two classifiers are and whether adding
a new classifier in the ensemble causes any difference in the
prediction capabilities of the ensemble; if it does then that
classifier can be added to the ensemble otherwise adding it to
the ensemble is not beneficial. In order to compute diversity
firstly all classifiers from both the ensembles are utilized to
classify the input feature vector of the datasets. Results are
stored in two data matrices as shown below.

εi =


y′1c1 yc21 yc31
y′c11 y′c22 y′c32
...

...
...

y′c1n y′c2n y′c3n

 (1)

εj =


y′c11 y′c21 y′c91 y′′21
y′c12 y′c22 y′c92 y′2′22
...

...
...

...

y′c1n y′2n y′c9n y′c2n

 (2)

Then a column wise mathematical mode of the data
matrices is taken to get the predictions of each ensemble
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(majority voting) as given below:

εi =


y
′

1
y
′

2
...

y
′

n

 , εj =


y′1
y′2
...

y′n

 (3)

After getting the final predictions of each ensemble, a col-
umn wise matrix of misclassified samples is generated for
each ensemble. This matrix contains 1 for any misclassi-
fied label and 0 otherwise. For example, if dataset X has
only 6 samples (for the sake of simplicity) and ensemble i
and ensemble j misclassified the following labels yoi =<
yo2, y

o
3, y

o
6 > and yoj =< yo1, y

o
3, y

o
6 > then their misclassifi-

cation matrices can be written as follows:

yoi =


0
1
1
0
0
1

 , yoj =


1
0
1
0
0
1

 (4)

The diversity MDn is calculated using the following
equation:

MDn =

∑
∀i,j∈Z |i 6=j I

′
{
yoi 6= yoj

}
∣∣∣yoi ∪ yoj ∣∣∣ (5)

where yoi is the misclassified label of ith ensemble εi on
a validation dataset Z have x features and y class labels,
the denominator

∣∣∣yoi ∪ yoj ∣∣∣ gives the count of total number of
errors caused by both the ensembles, and I ′ is an indicator
function of misclassified labels between two ensembles given
as:

I
′
(
yoi , y

o
j

)
=

{
0, yoi = yoj
1, yoi 6= yoj

∀i, j ∈ landi 6= j (6)

The output of the indicator function I for ensemble misclas-
sification matrices in (4) can be written as follows:

I ′
(
yoi , y

o
j

)
=


1
1
0
0
0

 (7)

The diversity using (5) can be calculated as follows. The
numerator

∑
∀i,j∈Z |i 6=j I

′
{
yoi 6= yoj

}
becomes 2 and denom-

inator
∣∣∣yoi ∪ yoj ∣∣∣ becomes 4. Therefore, the diversity Dn is

2/4 or 0.5, since there are only 2 different misclassified labels
out of a total of 4. The diversity is 1 if the two ensembles
in comparison made totally different errors and 0 otherwise.
The proposed diversity helps in identifying those classifiers
which bring new learning capabilities to the ensemble and
helps in removing redundant classifiers. The steps involved

to calculate the proposed diversity between two classifiers 1,
and1 are as follows:

Step1. Calculate the classification output for all feature
vectors using classifiers 1 and 2.

Step2. Calculate misclassified labels of 1, and 2 by com-
paring classification output with ground truth and
store result in matrix y1 and y2 respectively.

Step3. Take a logical XOR of both column matrixes y1
and y2; and store the new column matrix as I

Step4. Take sum of all elements of column matrix I to get
a scaler quantity which is I ′

Step5. Take union of y1 and y2, and compute mode.
Step6. Divide I by the mode of the union of y1 and y2

B. ENSEMBLE CLASSIFIER GENERATION FRAMEWORK
The proposed approach starts off by identifying the signif-
icant input features of the training data. Any insignificant
feature(s) is discarded and the reduced feature set training
data is utilized to generate a random subspace by generating
data clusters incrementally. The number of clusters generated
is a factor of the number of samples in the dataset. On all gen-
erated data clusters a set of structurally different and diverse
base classifiers are trained. All trained classifiers are added to
the base classifier pool and through a process of incremental
classifier selection and an ensemble classifier is generated.
A classifier is added to the ensemble in a layer if it is able to
classify any misclassified input feature in the previous layer.
The process of an incremental layered classifier selection is
repeated until every single classifier in the base classifier
pool has been compared and selected/discarded accordingly.
Figure 1 shows the flowchart of the proposed approach and
each component is described in the subsequent subsections.

1) SIGNIFICANT INPUT FEATURE SELECTION
The proposed approach first reduces the input feature space
by selecting only the significant set of features that can
maximize the overall classification accuracy of the ensemble.
A NCA is performed on training dataset T to compute feature
weights w of all input features and any feature having weight
less than a relative loss is discarded.

The goal of NCA is to maximize the following objective
function:

argmax(
∑n

i=1
P(y′i|xi)) (8)

where P(y′i|xi) is the probability of correctly classifying y
given sample x.
The flowchart of the feature selection process is given

in Figure 2.

2) RANDOM SUBSPACE GENERATION
Instead of generating a random subspace by creating random
subsets of training data as in bagging the proposed approach
generates a random subspace by creating data clusters that
consists of unique data samples. A total of D = K (K + 1)/2
data clusters are generated and K = n where n is the number
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FIGURE 1. Flowchart of the proposed ensemble classifier generation
framework.

of samples in the dataset. Generated clusters can be denoted
as �I and the set of total generated clusters is given as
� = {�1, �2, . . . ., �D}. Dataset can be partitioned into k
clusters incrementally, where k = 1, 2, ..K . If in a particular
iteration, k clusters are generated then clustering is achieved
by minimizing the sum of the squared Euclidian distance of
each observation with the cluster centroid and is given as:

argmin
n∑
i=1

∑
∀j∈k

(
d
(
xi, cj

))
(9)

where x is a feature vector and c is a cluster centroid and
d (x, c) denotes the squared euclidean distance given as:

d (x, c) = (x − c)2 (10)

3) BASE CLASSIFIER POOL GENERATION
In the proposed approach a set of structurally different and
diverse base classifiers C = {C1,C2, . . . ,CN

} are trained
on all generated data clusters (where C1

= ANN and
C2
= SVM , etc.). Since the total generated data clusters

are D and for each data cluster a set of N classifiers is

FIGURE 2. Significant input feature selection.

trained then after training on all generated data clusters the
number of classifiers in the base classifier pool (BCP) is
Z = D×N . Each classifier has different learning capabilities
as they use different architecture and learning algorithms and
therefore introduces classifier diversity. Some classifiers are
better trained than others as the data clusters have random
set of records and depending on their learning capabilities
classifiers are able to classify the unseen test set differently,
therefore, classifiers should be selected from the BCP to gen-
erate an ensemble classifier that can achieve the highest clas-
sification accuracy on test set. The selection of best classifiers
from the base classifier pool is described in the subsection to
follow.

4) INCREMENTAL LAYERED CLASSIFIER SELECTION
In the proposed approach an ensemble classifier is gener-
ated by incrementally adding a classifier to the ensemble
in each layer by means of the proposed diversity measure.
Validation data set V is utilized and classification decisions
of all classifiers from the BCP are obtained. In layer 1 a
classifier is chosen randomly from the BCP and added to the
ensemble. In layer 2 a second classifier from BCP is chosen
and decisions of both classifiers from layer 1 and layer 2 are
combined. Any decision fusion technique can be used but for
simplicity we have used majority voting. Ensemble diversity
is calculated using equation (5) and accuracy is computed as
follows:

Accn =
n∑
i=1

I
{
y
′

i = yi
}
∀y
′

, y ∈ n (11)

where I
(
y
′

i, yi
)
=

{
0,&y

′

i 6= yi
1, y

′

i = yi
(12)
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FIGURE 3. Incremental layered classifier selection.

and y is predicted class label of the ensemble obtained after
combining decisions of all the classifiers in the ensemble εn

and y is the actual class label.
If diversity Di is higher than Di−1 and the ensemble εi

has at least the same accuracy as ensemble εi−1 then the
ensemble εi is considered that has the new classifier from
BCP in it and ensemble εi−1 is discarded. If however Di

and Di+1 are same, then accuracy is compared and new
ensemble is considered if the ensemble generated after adding
the classifier achieves higher classification accuracy than
the ensemble without adding the classifier, if not then the
classifier is discarded. This process is repeated until every
single classifier in the BCP has been compared. The process
of ILCS is given in Figure 3 and steps for ILCS are given
in Algorithm 1.

C. ENSEMBLE PREDICTION
To evaluate the performance of the generated ensemble clas-
sifier it is tested on the unseen dataset. The process of testing
is given in Figure 4. First all of the classifiers selected in
ILCS are utilized to classify the feature vector x of test set and

FIGURE 4. Testing process of ensemble classifier after ILCS.

all predictions y′ are combined together via majority voting.
The process of ensemble prediction is given in Figure 4

IV. EXPERIMENTATION
In this section we test the efficacy of the ensemble ILCS-MD
that is generated using the proposed MD and ILCS. The
55 real world benchmark datasets taken from UCI [28]
and KEEL [65] dataset repository are used for testing.
ILCS-MD is also compared with five existing pairwise diver-
sity measures given in [7] namely disagreement measure
(DM), Q test (QT), double fault (DF), inverse correlation
coefficient (IC), and interrater-k- (IK). The classification per-
formance of the proposed approach is also compared with
existing state-of-the-art ensemble approaches.

Table 1 provides summary of 55 real world datasets from
KEEL and UCI repository. Number of samples, number of
features, and number of class labels of each dataset is given
in Table 1. It can be noted from Table 1 that a mix of datasets
are chosen so that the proposed ensemble classifier can be
tested thoroughly. Most of the datasets are challenging and
are used in a large number of studies previously and therefore
it enables us to compare the results of the proposed ensemble
classifier with existing state-of-the-art ensemble classifier
approaches.

In order to evaluate the quality of the proposed ensem-
ble classifier we calculated classification accuracy on the
predicted class labels of the unseen test set. The classifica-
tion accuracy is calculated using equation (11). A 10-fold
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TABLE 1. Summary of real world datasets from the UCI and KEEL dataset repository.

cross validation is adopted in experimentation to reduce the
effect of randomness in the results. The proposed approach
is implemented in Matlab [66] (version 2017 R1). Set of
base classifiers ANN, SVM, kNN, DT, LDA, and NB with
default parameters are used for training purposes. K -means
clustering is used for data clustering with default parameters
besides the following:

• Max iterations = 2400
• Distance measurement = Squared euclidean

For feature selection default implementation of NCA in Mat-
lab was used with the following parameters:

• Solver = stochastic gradient descent
• Fit method = exact
• Standardization = true

A. COMPARISON WITH DIFFERENT PAIRWISE DIVERSITY
MEASURE
We have compared the proposed MD with five other
pairwise diversity measures that are QTest, DF, DM, IC,
and IK. In order to compute the respective diversity

TABLE 2. Dissimilarity matrix.

measure the dissimilarity matrix is calculated which is given
in Table 2.

Using the dissimilarity matrix the pairwise diversity mea-
sures are calculated as follows:

QTest
(
Di,Dj

)
=

N 11N 00
− N 01N 10

N 11N 00 + N 01N 10 (13)

DM
(
Di,Dj

)
=

N 01
+ N 10

N 11+N 10
+ N 01 + N 00

(14)
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FIGURE 5. Effect of selecting classifiers on the basis of accuracy and proposed diversity measure in ILCS-MD.

Algorithm 1 Incremental Layered Classifier Selectio
Input: Base classifier pool BCP, Validation set V
Output: Ensemble classifier
Do:

1. Classify feature vector x of the validation set using
all classifiers from the BCP.

2. Randomly select a classifier from BCP in layer 1.
3. Select another classifier from BCP, create ensem-

ble εn and compute Accn and Dn

4. if Dn ≥ Dn−1 and Accn ≥ Accn−1 then
a. Accept ensemble εn

b. Remove classifier C i from BCP
5. else

a. Discard ensemble εn

b. Remove classifier C i from BCP
6. Repeat 3 to 4 ∀ ∈ Z .

DF
(
Di,Dj

)
=

N 00

N 11+N 10
+ N 01 + N 00

(15)

IK
(
Di,Dj

)
=

2× (N 11N 00
− N 10N 01)

(N 11
+N 10)

(
N 01 + N 00

)
+ (N 11

+ N 01)(N 10 + N 00)
(16)

IC
(
Di,Dj

)
= 1− Cp

(
Di,Dj

)
(17)

TABLE 3. Average accuracy of ILCS on 55 benchmark datasets using MD,
IC, IK, QT, DF, and DM diversity measures.

where Cp
(
Di,Dj

)
iscalculatedasfollows :

Cp
(
Di,Dj

)
=

 N 11N 00
− N 10N 01√

(N 11
+N 10)

(
N 01 + N 00

)
(N 11
+ N 01)(N 10+N 00)


(18)

To calculate diversity between two ensemble classifiers the
dissimilarity matrix is computed after classifying the feature
vector of the training set. Using the predicted labels and the
ground truth, the dissimilarity matrix values from Table 2 are
calculated.

Average classification accuracies over 55 datasets achieved
by ILCS-MD, ILCS-IC, ILCS-IK, ILCS-QT, ILCS-DF,
and ILCS-DM are given in Table 3. It can be noted
from Table 3 that ILCS-MD performed 21.12%, 21.27%,
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TABLE 4. Training accuracy, training diversity, testing accuracy, and standard deviation of proposed ensemble approach on 55 UCI and KEEL repository
datasets.

21.30%, 3.17%, and 1.39% better than ILCS-IC, ILCS-IK,
ILCS-QT, ILCS-DF, and ILCS-DM respectively. DF and DM
performed relatively better than other diversity measures with
DM achieving the second highest average classification accu-
racy and DF the third, however, a significant performance
boost was achieved in comparison to IC, IK and QT.

B. EFFECT OF USING ILCS – MD
Figure 5 shows the effect of incrementally selecting clas-
sifiers in layers in ILCS-MD. For the sake of simplicity
8 datasets were chosen on the basis of number of records,
number of features, and number of classes. We can see from
Figure 5 that in ILCS-MD there is a positive linear relation
between accuracy and proposed diversity, also, the num-
ber of layers increment only if both accuracy and diversity
increase or if one increases and other remains the same.
In some cases, however, if both are same but adding a clas-
sifier enables the ensemble to classify a misclassified sample
then that classifier is added therefore, causing an increment
of a layer. The training accuracy, training diversity, testing
accuracy, and standard deviation of the proposed approach
on 55 datasets are given in Table 4.

C. COMPARISON WITH SINGLE CLASSIFIER MODELS
We have compared ILCS-MD with traditional single classi-
fier approaches which include DISCR, SVM, kNN, DB, DT,

TABLE 5. Average accuracy of the proposed approach in comparison with
single classifier approaches.

and ANN. Default implementation of these approaches were
used in Matlab with default parameters. For comparison
10-fold cross validation was conducted and average accura-
cies were calculated. The average accuracy over 55 datasets
is given in Table 5. We can see that ILCS-MD achieves the
highest average classification accuracy. ILCS-MD performs
4.59% better than DISCR, 3.42% better than SVM, 4.54%
better than kNN, 8.27% better than NB, 5.36% better than
DT, and 47.67% better than ANN.

D. COMPARISON WITH OTHER STATE OF THE ART
ENSEMBLE CLASSIFIER APPROACHES
We have compared ILCS-MD with existing ensemble clas-
sifier approaches including RaF, boosting, WMV [67],
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TABLE 6. Comparative analysis of ILCS-MD with MPRaF-T, highest accuracies given in bold.

TABLE 7. Comparative analysis of ILCS-MD with WMV, highest classification accuracies given in bold.

PSEMISEL [22], and MPRaF-T [27]. For RaF, and boosting
the default implementation in Matlab was used using the
‘‘bag’’ and ‘‘LpBoost’’ parameter for fitcensemble method;
‘‘LpBoost’’was chosen for comparison because we have both
multi-class and binary datasets in our experiments. As for
other ensemble classifier approaches their results were taken
directly from their respective papers. Due to different datasets
used in experiments we have given comparative analysis

in Table 6, Table 7 and Table 7. Of 35 common datasets ILCS-
MD out performed MPRaF-T on 27 datasets. ILCS-MD
performed on average 3.04% better than MPRaF-T.

Out of 24 datasets ILCS-MD out performed WMV on
23 datasets. On average ILCS-MD performed 9.78% bet-
ter than WMV on 24 common benchmark datasets. The
results are given in Table 7 with highest classification
accuracies mentioned in bold. Lastly in comparison with
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TABLE 8. Comparative analysis of ilcs-md with psemisel, highest
classification accuracies given in bold.

TABLE 9. Comparative analysis of ILCS-MD with idafsen, highest
classification accuracies given in bold.

PSEMISEL, ILCS-MD performed 15.75% better and out-
performed PSEMISEL on 8 common benchmark datasets.

TABLE 10. Comparative analysis of ILCS-MD with ebagts, highest
classification accuracies given in bold.

We have also compared ILCS-MD with two pruning-based
ensemble classifier approaches namely EBAGTS [68], and
IDAFSEN [69]. The classification accuracies are taken
directly from their respective papers and the results are given
in Table 9, and Table 10. On average the proposed approach
achieved a classification accuracy of 88.80% and IDAFSEN
achieved a classification accuracy of 86.50%, achieving a
performance gain of 2.3%. In comparison with EBAGTS,
the proposed approach achieved an average of 94.61% and
EBAGTS achieved an average of 87.77% resulting in the
proposed approach achieving an average performance gains
of 6.84%.

E. SIGNIFICANCE TESTING
In order to identify the significant difference among the
results of different single classifier approaches, ILCS with

TABLE 11. Comparative analysis of ILCS-MD with Boosting, and Random Forest, highest classification accuracies given in bold.
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TABLE 12. Wilcoxon signed rank test of proposed approach with single
classifier approaches, other diversity measures and other ensemble
approaches.

different diversity measures, and other ensemble classifier
approaches we conducted non parametric tests [70] with a
significance alpha value of 0.05 i.e. 95% significance. The
results are given in Table 12. The tests are conducted to
validate the results further and identify whether the alter-
nate hypothesis i.e. the improvement in generalization per-
formance is not by chance, can be accepted or not. The null
hypothesis can be rejected with 95% confidence at p-values
less than 0.05.

It can be noted from Table 12 that ILCS-MD performed
significantly better than other classifier approaches besides
ILCS-DF and IDAFSEN. Although the proposed approach
performed 2.67% better than ILCS-DF and 2.3% better
than IDAFSEN, however, the results are not statistically
significant.

V. CONCLUSION
We introduced a novel pairwise diversity measure and
a novel incremental layered classifier selection approach
which selects classifiers in each layer based on the new
diversity measure to generate an ensemble classifier. The
propsed approach has been evaluated on 55 benchmark
datasets from UCI and KEEL dataset respository. As shown
in Table 3, the performance of ILCS with the proposed diver-
sity measure is higher than other diversity measures, and,
according to Table 6, 7, 8, and 9 the proposed ensemble
has outperformed other state-of-the-art ensemble classifiers.
A significance test has shown that results are statisticaly
significant.

The results and analysis presented in this paper have shown
that i) selecting classifiers from the base classifier pool on
the basis of diversity and classification accuracy has a pos-
itive effect on the overall ensemble classification accuracy,
ii) adding more classifiers to the ensemble classifier does not

necessasirly increase the performance of the ensemble, and a
more suitable classifier selection processmust be adopted, iii)
diversity measure on the basis of misclassified labels works
better than other pairwise diversity measures and iv) a robust
classifier selection process has benefits in two folds; firstly,
only those classifierswhich can positively effect the ensemble
classifier are selected, secondly, instead of having a very large
ensemble component size, a small number of classifiers can
achieve the same if not higher classification accuracy.

In future we will conduct further analysis of the effect of
selecting classifiers on the basis of diversity and accuracy on
reduction of ensemble component size, and ensemble classi-
ficaiton accuracy. We will also test the proposed approach on
more real-world and benchmark datasets.
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