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ABSTRACT Due to the fast-growing rate of information sources, many organizations and individuals are
overwhelmed with vast amounts of data. The rate of data growth is very alarming, and it is already going
beyond the Exabyte limit. Hence, there is an obvious need for fast and accurate big data classification tools.
Machine Learning (ML) based solutions are very useful and reliable data classification tools, however,
they cannot effectively handle large-scale datasets. This paper therefore proposes two intelligent instance
selection techniques for optimizing the training and classification speed of ML algorithms, with a specific
focus on Support Vector Machine (SVM). Furthermore, this paper considers two different approaches to
instance selection namely: filter-based and wrapper-based. Different sets of experiments are performed on
20 small-scale datasets and 10 large- ormedium-scale datasets. The results show that the proposed techniques
improved SVM training speed in 100% (30 out of 30) of the datasets used for evaluation and simultaneously
improved SVM predictive accuracy in some cases. Furthermore, statistical analysis test is carried out and the
results reveal that the training speed of the proposed techniques is statistically significantly faster than the
training speed of standard SVMand some other existing instance selection techniques. In real life application,
such as video surveillance and intrusion detection systems, that require a classifier to be trained quickly for
speedy classification of new target concepts, the filter-based techniques provide the best solutions; while the
wrapper-based techniques are better suited for applications such as email filters, that are very sensitive to
slight changes in predictive accuracy.

INDEX TERMS Machine learning, SVM speed optimization, support vector machine, instance selection.

LIST OF ABBREVIATION
Abbreviation Meaning
ACO Ant Colony Optimization
CBD Concept Boundary Detection
FN False Negative
FPA Flower Pollination Algorithm
FPISA Flower Pollination Instance Selection

Algorithm
MCIS Multi-Class Instance Selection
ML Machine Learning
NI Nature Inspired
SSA Social Spider Algorithm
SSISA Social Spider Instance Selection

Algorithm
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SVM Support Vector Machine
UCI University of California Irvine

LIST OF ALGORITHM NOTATION
Abbreviation Meaning
APA Average prediction accuracy
FT User-defined Fitness Threshold
G(x) Fitness Function
GB Global Best
GBV Global Best Vibration from entire popula-

tion
LF Levy Flight.
MaxG Maximum Generation
Min Minimum number of selected instances
N size of the entire training dataset
NF Number of folds for SVM cross validation
NRuns Number of runs for SVM cross validation
NS Number of Selected Instances
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P Population size
Pm User defined probability for changing spider

mask.
PS Probability Switch
Tot Total number of times, each spider changes

its target vibration
TS Training Subset
TV Target Vibration
VI Vibration Intensity

I. BACKGROUND
Since the invention of integrated circuits and computer chips,
the world has experienced a global spread of information
through the internet. Currently, people everywhere are sur-
rounded by large volumes of information from different
sources, including pictures, videos, emails and websites.
Moreover, because such information has become essential
for decision-making, there is an obvious need for fast and
efficient information extraction tools for improved decision
making. Machine Learning (ML) algorithms are very useful
tools for such information extraction. They can extract rele-
vant patterns from data, analyse these patterns and turn them
into meaningful information for decision-making. However,
ML algorithms cannot effectively handle large scale datasets;
their classification speed decreases with increase in dataset
size. Many speed optimization methods have been proposed
in literature. The diverse approaches in their design include
instance selection, feature selection and parameter optimiza-
tion. The instance selection approach aims to optimize speed
by removing irrelevant and superfluous instances from a
dataset. Feature selection is aimed at optimizing speed by
removing extraneous features from a dataset. With param-
eter optimization, the approach aims to optimize speed by
selecting optimal parameters from a list of parameter val-
ues. Among these three techniques, the instance selection
approach is regarded as one of the best techniques [1].

Instance selection techniques are used to minimize the
training time of ML algorithms (such as support vector
machine, SVM) by discarding superfluous and harmful
instances from a training dataset. Superfluous instances are
instances that make a negligible contribution to the clas-
sification accuracy of a classifier, while harmful instances
are instances that lead to increased false positive and false
negative rates [2]. Superfluous and harmful instances con-
tribute little to SVM prediction process [2]; hence, discarding
them does not have a negative impact on the SVM train-
ing result [3]. Many instance selection methods exist in the
body of literature, with most of them being designed using
a k Nearest Neighbour (kNN) classifier [1]. Some methods
were designed using k-d trees [4], clustering [5], [6], tabu
search [7] and sequential search [8]. Some studies have
also designed novel instance selection techniques based on
the nature inspired (NI) algorithms such as the evolution-
ary algorithm (EA) [9], [10], memetic algorithm [11], ant
colony optimization (ACO) [12] and the artificial immune

system (AIS) algorithm [13]. However, to the best of the
authors’ knowledge, no study has explored the use of the
flower pollination algorithm (FPA) and social spider algo-
rithm (SSA) for instance selection and speed optimization.

This paper proposes two intelligent instance selection tech-
niques for optimizing the training speed, classification speed
and generalization performance of ML algorithms, with a
specific focus on SVM. The two proposed techniques are
inspired by FPA and SSA, respectively. Moreover, this study
considers two different approaches to instance selection:
filter-based and wrapper-based approach. The main differ-
ence between the filter-based and wrapper-based approaches
lies in their speed and method of selection. The filter-based
techniques are designed to select instances based on a
user-defined fitness function, while the wrapper-based tech-
niques are designed to select instances based on the predictive
accuracy of a classifier. Experimental results show that the
proposed filter-based techniques perform faster than their
wrapper-based counterparts, because, the fitness function
computation in the filter-based techniques is faster than the
fitness function computation in wrapper-based techniques.
However, the wrapper-based techniques produce better clas-
sification accuracy than do the filter-based techniques. This
is because the wrapper-based techniques use anML classifier
in their fitness function computation.

The filter-based techniques are suitable for applications,
such as video surveillance and intrusion detection systems
that require a classifier to be trained very quickly for speedy
classification of new target concepts [3]. Moreover, these
applications require the classifier to be trained on large train-
ing sets. Examples of such applications include video surveil-
lance and intrusion detection. For this kind of applications,
SVM training time can be excessively high, which renders
SVM ineffectual. Furthermore, even in applications where
training can be performed offline (such as email detection
systems), if the size of the training data or number of classes
is large, then SVM computational complexity will be intol-
erable [3]. The wrapper-based techniques are better suited
for applications where sensitivity to slight changes in pre-
dictive accuracy is more important than classification speed,
such as is needed for email spam or phishing classifiers.
For instance, even one important email being misclassified
could have huge economic implications due to lost business
opportunities. The technical contributions of this paper are as
follows:

A. NATURE-INSPIRED INSTANCE SELECTION TECHNIQUES
This paper presents two novel nature-inspired instance selec-
tion techniques (social spider instance selection algorithm,
SSISA, and flower pollination instance selection algorithm,
FPISA) for improving the training speed, storage capac-
ity, computational complexity, and generalization perfor-
mance of ML algorithms, with a specific focus on SVM.
Moreover, this paper presents two variants for each of
the proposed technique: the wrapper-based and filter-based
variants.
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B. FILTER- AND WRAPPER-BASED FITNESS FUNCTION
This paper presents two novel fitness functions suitable for
nature-inspired instance selection techniques. The first fitness
function is suitable for the filter-based variants of the pro-
posed techniques, while the second fitness function is suitable
for the wrapper-based variants.

The rest of the paper is organized as follows: Section II
provides a review on some existing speed optimization tech-
niques. Thereafter, Section III provides specific details on
the proposed techniques and Section IV provides information
on the experimental setup and datasets used for their evalu-
ation. In addition, Section IV provides detailed information
on the experimental and statistical results produced by the
proposed filter-based and wrapper-based techniques. Finally,
conclusions and future research directions are provided
in Section V.

II. RELATED WORK
SVM is a renowned and highly efficient ML classification
algorithm, proposed in 1995, by Cortes and Vapnik [14].
In data classification, SVM is an excellent choice because of
its outstanding performance and good generalization capa-
bility [15]. However, SVM is still outperformed by many
classifiers when applied to large-scale datasets [15] because
the SVM has high computational complexity, which scales
up linearly with the number of support vectors [16]. That is,
large datasets produce many support vectors [16]. To offset
this problem, two common speed optimization approaches
may be adopted; these are the algorithmic and data processing
approaches [3]. The algorithmic approach aims to speed up
the SVM by using algorithms that increases the speed of the
quadratic programming (QP) solver [3]. The data processing
approach aims to increase speed of SVM by reducing the
dataset dimension [3]. To this end, some studies have focused
on feature selection, while others have focused on parameter
optimization and instance selection. This section presents a
review on some existing instance selection techniques.

Albelwi and Mahmood [17] proposed an instance selec-
tion technique for big datasets. The technique is a modified
version of an existing instance selection technique called
random mutation hill climbing (RMHC). The authors used
the technique in combination with deep convolutional neural
networks and tested the resultant model on large datasets.
When the authors compared the new technique with stan-
dard RMHC, the results showed that it performed faster than
RMHC. In [18], Blachnik evaluated the performance of an
ensemble of instance selection algorithms, which they then
combined with the aim of improving the quality of dataset
size reduction. The algorithms combined were the edited
nearest neighbour (ENN) and condensed nearest neigh-
bour (CNN). Moreover, to ensure diversity in sub-models,
the authors applied the ensemble to datasets with different
feature subsets. Results from the study show the possibility
of obtaining trade-offs between classification accuracy and
data compression. Lee and Mangasarian [19] introduced a
new technique called reduced SVM, with the aim of reducing

the classification speed of SVM by generating a non-linear
separating surface suitable for big data classification. The
non-linear separating surface was generated by firstly decom-
posing the entire dataset (to be classified) into smaller linear
sub-problems. Afterwards, one of the sub-problems was ran-
domly selected and used to produce the separating surface.
Lei and Govindaraju [20] proposed a new method for SVM
speed optimization. Their method consists of two algorithms;
namely, principal component analysis (PCA) and recursive
feature elimination (RFE). The first algorithm (i.e. PCA)
was used to reduce the dataset dimension, while the second
algorithm (i.e. RFE) was used to select relevant features.
The selection of relevant features reduced the number of
irrelevant and non-discriminative features. The technique was
evaluated, and result revealed that it improved the speed
of SVM. Garcıet al. [21] introduced an EA-based instance
selection technique, which they designed to obtain general-
ized instances from imbalanced datasets. The efficacy of the
technique was evaluated on several imbalanced datasets and
it produced improved results compared to other techniques.

Angiulli and Astorino [22] presented a speed optimiza-
tion algorithm, based on an existing data reduction tech-
nique called Fast Condensed Nearest Neighbour (FCNN),
which had been originally published by the authors in [23].
FCNN was combined with SVM, with the aim of improving
SVM classification speed. The algorithm was evaluated on
three big datasets, and it produced improved result. Tsai and
Cheng [24] introduced an instance selection technique for
bankruptcy prediction. In that study, the authors hybridized
a clustering algorithm with four classifiers; namely, decision
trees, SVM, artificial neural networks (ANNs) and logistic
regression. The hybridized techniques were evaluated on four
datasets and results showed that SVM outperforms three of
the other algorithms, decision tree, ANN and logistic regres-
sion. Panda et al. [3] proposed a filter-based technique for
speeding up SVM, called concept boundary detection (CBD).
The technique is divided into two stages, namely the concept
independent and concept-specific sampling stages. In the first
stage, the CBD algorithm identifies K nearest neighbours
for each instance (using the k-NN algorithm) and removes
instances that are not support vectors. Then in the second
stage, the algorithm uses a scoring function (also designed in
the study) to select boundary instances. Panda et al. [3] noted
that the function allocates more weight to instances close
to the boundary between the positive and negative classes.
This is because boundary instances contribute more to the
generalization performance of SVM models. The technique
was evaluated, and it yielded good improvement in SVM
speed.

Furthermore, in a different study, Chen et al. [25] proposed
a filter-based data reduction technique for selecting bound-
ary instances, called multi-class instance selection (MCIS).
In the study, firstly, Chen et al. used a clustering algorithm to
select cluster centers of positive class instances. Furthermore,
they used the cluster centers to select boundary instances.
Chen et al. based the design of their MCIS algorithm on
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two theories. The first theory states that negative instances
close to cluster centers of a positive class are also close
to the boundary. Secondly, positive instances far from the
cluster centers of a positive class are close to the boundary.
Therefore, positive instances that are close to a boundary
and negative instances that are far from a boundary do not
contribute meaningfully to the generalization performance of
a classifier. By contrast, positive instances that are far from a
boundary and negative instances that are close to a boundary
contribute more to the prediction accuracy of a classifier.
Chen et al. evaluated their MCIS on some datasets, and it pro-
duced improved results. In another study, Anwar et al. [12]
introduced an extended version of an existing wrapper-
based instance selection technique called ADR-miner, with
an emphasis on improving the prediction accuracy of a clas-
sifier. The algorithm is divided into two stages and it uses
two different classifiers at each stage. In the first stage, the
ADR-Miner uses the ant colony optimization (ACO) algo-
rithm and a classifier to select the best reduced subset. Specif-
ically, the algorithm use ACO to select different subsets and
then uses the classifier to evaluate the quality of each subset.
In the second stage, the best reduced subset is used to build the
final prediction model. As mentioned above, ADR-miner is
designed to use a different classifier at each stage; that is one
classifier is used to evaluate the quality of each dataset and
then another classifier is used to build the final classification
model. The technique was evaluated on 37 datasets and it
produced improved prediction accuracy.

Of the publications surveyed, a few explored using FPA
or SSA for either feature selection or other optimization
problems rather than for instance selection. To elaborate,
the authors in [26], [27] introduced FPA-based techniques
for feature selection. They evaluated the techniques on
classification and regression datasets, showed satisfactory
results. In another study, AbdEl-Fattah et al. [28] introduced
a hybrid approach for feature selection. They designed a
wrapper-based technique using FPA and the clonal selec-
tion algorithm (CSA). In addition, they used the optimum
path forest (OPF) classifier to evaluate the objective function
of the technique and it produced good results. In addition,
Zawbaa et al. [29] introduced a multi-objective fitness func-
tion that combines the capabilities of both wrapper-based and
filter-based fitness functions. The fitness function uses the
FPA to search for optimal features. The technique was tested
on eight datasets, and it produced competitive results. SSAs
have also been used to solve different real world problems of
economic load dispatch problems [30], [31], clustering [32],
base station switching problem [33], etc. However, it has
not be fully used to solve the feature selection or instance
selection problems. Most of the spider-inspired data reduc-
tion techniques in the literature have used the Social Spider
Optimization Algorithm (SSOA) [34]–[36] and not SSA.

As shown in the survey, bio-inspired algorithms can be
used to solve optimization problems, such as instance selec-
tion, feature selection, and parameter optimization. However,
to the best of our knowledge, no study used SSA or FPA

to handle instance selection or SVM speed optimization.
FPA and SSA are efficient bio-inspired algorithms. FPA is
unique in addressing long-distance pollination and flower
consistency. Long-distance pollination makes FPA capable of
escaping a local search space and exploring a larger search
space. In addition, flower consistency gives FPA the capacity
to choose similar solutions more frequently and thus guaran-
tee fast convergence. The interaction between long-distance
pollination and flower consistency, and the selection of the
best solution makes FPA very attractive and efficient [37].
Besides, FPA has the capacity to adaptively search a large
space with many local optima [27]. On the other hand, SSA
has a unique searching pattern and foraging model [38].
Moreover, SSA can search for optimal solutions in some
complex optimization problems, and it has an underlying
social foraging strategy. All these unique features make FPA
and SSA very applicable for solving real world optimization
problems involving instance selection. This paper therefore
introduces SSA-based and FPA-based intelligent instance
selection techniques for optimizing the training speed, clas-
sification speed, storage capacity and generalization perfor-
mance of ML algorithms, with a particular focus on SVM.

FIGURE 1. Pictorial description of the hybrid Nature-Inspired instance
selection techniques for SVM speed optimization.
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III. PROPOSED TECHNIQUES
This paper proposes two filter-based and two wrapper-based
instance selection techniques for the optimization of SVM
training speed and predictive accuracy. The primary objective
of the proposed filter-based techniques is to improve SVM
training speed, while the primary objective of the proposed
wrapper-based techniques is to improve SVM predictive
accuracy. The proposed techniques aim to select a classifica-
tion model that will produce the best predictive accuracy. The
pictorial description of the hybrid Nature-Inspired instance
selection techniques for SVM speed optimization is shown in
Figure 1. More details about the techniques are provided in
Sections III.A and III.B respectively.

A. FLOWER POLLINATION-INSPIRED TECHNIQUE
One of the instance selection techniques proposed in
this study is inspired by the flower pollination algorithm
(FPA) [37]. More details of the technique are presented next.

1) FLOWER POLLINATION INSTANCE
SELECTION ALGORITHM
Our flower pollination instance selection algorithm (FPISA)
is inspired by the process of pollinating flowering plants.
Each flower (or solution) consists of N number of instances,
where N is user-defined. Pseudocode for the FPISA is shown
in Algorithm 1. The FPISA begins by initializing each pollen
solution (line 3) and defining a probability that controls the
switch between global and local pollination (line 7). More-
over, all the initialized solutions are evaluated, and the best
solution is retained (line 15). Then the FPISA continues
searching the solution space by performing global or local
pollination. Local pollen solutions are generated (using Equa-
tion (1)) [37], if a user-defined probability switch is less than
a randomly generated number (lines 19 to 23). Otherwise,
global pollen solutions are generated using Equation (2) [37].
Next, the new solutions are evaluated, and the global best
solution is updated if a better solution has been found. This
process is repeated until a user-defined maximum is reached.
The algorithm is also terminated if it converges on a solution
(lines 28 to 30). After termination, the solution selected by
the best flower is used to build the SVM model (line 39).
Prior to training, if the solution size is less than a user-defined
threshold, further instances, which have not been previously
selected, are selected from the training subset and added to
the solution space. This is to ensure that the total number of
training instances is not less than the minimum pre-defined
value (lines 34 to 36). Also, for the FPISA, the rounding
function is used to convert continuous values to binary values
and the parameters recommended in the report by Yang [37]
are used in the experiments.

x t+1i = x ti+ ∈
(
x tj − x

t
k

)
, (1)

where x tj refers to pollen j at iteration t , x
t
k refers to pollen k at

iteration t. They refer to pollen grains from different flowers.

∈ is a constant, drawn from the range [0, 1].

x t+1i = x ti + L
(
x ti − g∗

)
, (2)

where X ti refers to vector xi at different iteration t, and g∗
refers to the current best solution in iteration t. Also, L refers
to Levy flight, which can be drawn from a levy distribution
given in equation (3) [37].

L ∼
λ0 (λ) sin

(
πλ
/
2
)

π

1
S1+λ

, (s� s0 > 0), (3)

0 (λ) is a standard gamma function, valid for huge steps,
s > 0.

FPAwas designed to handle continuous problem, however,
in this research, the rounding-off approach, shown in equa-
tion (4) is used to convert each flower position to a binary
value.

Xt
i =

{
1 if Vt

i > 0.5,
0 otherwise,

(4)

where x ti and v
t
i refers to different flower position and velocity

at different iterations. t refers to dimension.

B. SOCIAL SPIDER-INSPIRED TECHNIQUE
The social spider algorithm (SSA) is a recent NI-based swarm
intelligence algorithm, proposed by James and Li [38]. In this
paper, a social spider-based instance selection technique
(called SSISA) is designed for improving SVM predictive
accuracy and training speed. This section presents a descrip-
tion of the social spider-based technique.

1) SOCIAL SPIDER INSTANCE SELECTION ALGORITHM
Our social spider instance selection algorithm (SSISA)
is inspired by the foraging behaviour of social spiders.
As shown in Algorithm 2, the SSISA begins by initializing
all parameters and generating an initial solution of N spiders,
where each spider consists of d instances (lines 4 and 8).
The vibration intensity for each spider is also initialized
(line 7). In addition, the fitness score for each spider is
calculated and the spider with the best fitness value is stored
(line 9). Then new solutions are generated by moving each
spider to different positions on the web (lines 11 to 35).
Each spider movement causes a vibration, as calculated in
Equation (5) [38]. Typically, spiders capture prey based on
propagated vibrations, and they attack the prey direction
(or source of vibration) if the vibration is within a defined
frequency range [38], [39]. In SSISA, if the vibration gen-
erated by the current solution is greater than a pre-defined
target vibration, then the target vibration is updated with the
best vibration. In addition, a random number is generated,
and the instance mask is updated if the random number is
greater than a pre-defined threshold (line 20 to 22). Further,
the position of each spider is generated (line 24) and the
fitness value for the newly generated solutions are computed,
and the current best solution is compared to the global best
solution (line 31). If it is better, it is retained, otherwise it is
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Algorithm 1 Flower Pollination Instance Selection Algorithm
Input:MaxG,N ,NRuns,Min,FT
Output: GB

1 TrainingSubset← RandomSelect(TrainingDataset) /∗randomly select training subset from trainingDataset∗/
2 FPISA (TrainingSubset) /∗Start instance selection using training subset∗/
3 Initialize Parameters /∗initialize all the algorithm parameters∗/
4 Define G(x) for flowers /∗define fitness function for both filter and wrapper-based FPISA∗/
5 Define PS, PS ∈ [0, 1] /∗define probability switch for flowers∗/
6 for a = 1 to N
7 Initialize solution for spidera /

∗initialize the solution for all flowers in the solution space∗/
8 end for
9 Evaluate G(x), and select CB /∗Evaluate the objective function for all solutions & select the current best∗/
10 GB← CB /∗Retain the current best solution∗/
11 while (p < MaxG) /∗Start searching for new pollen solutions ∗/
12 for k = 1 to N
13 R← RandomNumber() /∗generate random number R, whereR ∈ [0, 1]∗/
14 if R > PS /∗if this is true, perform global pollination∗/
15 for l = 1 toDim /∗define levy flight factor for global pollinators∗/
16 Randomly generate LF vector for each dimension
17 end l
18 Perform global pollination using x t+1i = x ti + LF

(
x ti − g∗

)
,

19 else /∗perform local pollination∗/
20 R← RandomNumber() /∗generate random number R, whereR ∈ [0, 1]∗/
21 Randomly select two solutions, x tj , x

t
k from population

22 Perform local pollination using x t+1i = x ti+ ∈
(
x tj − x

t
k

)
23 end if
24 Convert solutions to binary using equation (4)
25 end k
26 Evaluate G(x) /∗evaluate the fitness value for all the new solutions∗/
27 GB← CB /∗Update the global best with the current best solution∗/
28 if GB > FT
29 end while/∗Stop algorithm if global best is greater than a pre-defined fitness threshold∗/
30 end if
31 p++
32 end while
33 NS ← GB
34 if NS < Min /∗Add more instances if the number of instances is less than a user-defined threshold∗/
35 AddInstances(GB) /∗Add (Min-NS) instances to the instances selected by the global best∗/
36 end if
37 Output GB /∗Output the global best solution∗/
38 end
39 Perform Parameter Optimization and TrainSVM(GB) /∗Train SVM on the instances selected by FPISA∗/

discarded. The process is performed repeatedly until a stop
criterion is reached. Finally, after the algorithm terminates,
the instances selected by the best spider solution are used to
train SVM and the predictive accuracy is displayed. Before
training, the number of instances selected by the best solution
are checked to ensure that they are not less than the minimum
threshold (lines 36 to 38). Pseudocode for SSISA is shown
in Algorithm 2. SSA is designed to work in a continuous
space, hence SSISA uses the sigmoid function (defined in

Equation (6)) to convert continuous values to binary form.

I (Ps,Ps, t) = log
(

1
f (Ps)− C

+ 1
)
, (5)

where Ps, refers to spider position at time t, I (Ps,Ps, t)
refers to intensity of vibration generated by spider at source
position, f (Ps) refers to fitness of spider at time t, and C is a
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Algorithm 2 Social Spider Instance Selection Algorithm
Input: NF,MaxG,N ,NRuns,Pm,FT
Output: GB

1 TrainingSubset← RandomSelect(TrainingDataset) /∗randomly select training subset from TrainingDataset∗/
2 SSISA (TrainingSubset) /∗start instance selection∗/
3 Define G(x)for spiders /∗pass the selected training subset to FPISA for processing∗/
4 Initialize Parameters /∗initialize all the algorithm parameters∗/
5 for a = 1 to N
6 Initialize solution for spidera /

∗initialize the solution for all spiders in the solution space∗/
7 Initialize vibration (TV ) for spidera /

∗generate initial vibration for each spider∗/
8 end for
9 EvaluateG(x), /∗evaluate the fitness of the initial solution∗/
10 GB← CB /∗if current best is greater than global best, update the global best solution∗/
11 while (p < MaxG) /∗start search for more solution∗/
12 for k = 1 to N
13 Calculate VI generated by all spiders and select GBV /∗select the best bat vibration∗/
14 if GBV > TV k /∗if the best vibration is greater than a user defined target vibration∗/
15 TV k = GBV /∗update the target vibration∗/
16 end if
17 Update Totk /∗keep track of frequency of vibration change∗/
18 for a = 1 to D
19 Generate Random Number, R where R ∈ [0, 1)
20 If R1 > P
21 Update dimensiona for spiderk /

∗update dimension mask ∗/
22 end if
23 end a
24 Generate new position for spiderk
25 Do Random Walk, and handle violated boundary constraints
26 Convert spiderk to binary using sigmoid
27 end k
28 Evaluate G(x) for new solutiona and generate vibration for spidera
29 Convert spidera to binary using sigmoid function
30 Evaluate G(x) for new solutions, and update GB accordingly
31 if GB > FT
32 end while/∗Stop algorithm if global best is greater than a pre-defined fitness threshold∗/
33 end if
34 p++
35 end while
36 if NS < Min
37 update GB by adding (Min - NS) instances to GB
38 end if
39 Output GB
40 end SSISA
41 Perform Parameter Optimization and Train SVM model on instances selected by GB

constant value, where all f (Ps) > C .

S
(
V t
i
)
=

1

1+ e−V
t
i
, (6)

Each spider position is updated by equation (7):

X ti =

{
1 if rand() ≤ S

(
V t
i

)
,

0 otherwise,
(7)

where rand() is a random number selected from the
range, [0, 1].

C. FITNESS FUNCTION
The fitness function used by the filter- and wrapper-based
techniques is discussed in this section. The fitness functions
are designed for both FPISA and SSISA, and the results
obtained show that they can be used by other nature-inspired
algorithms.
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1) FILTER-BASED FITNESS FUNCTION
The fitness function for the two proposed filter-based tech-
niques is shown in Equation (8). It is designed according to
the criteria of percentage reduction. The fitness function allo-
cates more weight to solutions with good percentage reduc-
tion. Evaluation of the fitness function starts by computing
the total number of instances of each agent (δ) in the solution
space. The evaluation continues by calculating the number
of instances selected by each agent (τ ). For each agent, each
instance position is either 0 or 1, where 1 indicates that an
instance is selected by an agent and 0 indicates otherwise.
Hence, the total number of instances selected by an agent is
computed by totalling all the ‘‘ones’’ in the instance mask of
the agent. Finally, the fitness value is then calculated using
Equation (8).

fitnessi =
(
100 ∗

δ − τ

δ

)
(8)

where δ = total number of instances in an agent and
τ = number of selected instances in an agent.

To avoid a scenario where total number of selected instance
(τ ) is zero, the proposed techniques are designed to enforce
selection of N instances, where N is user defined. Hence,
for example, if B instances are selected by an agent, and
B is less than N , then (N - B) additional instances, which
have not been previously selected, will be selected and
added to the number of instances already selected by the
agent.

2) WRAPPER-BASED FITNESS FUNCTION
The fitness function used for the two proposed wrapper-based
techniques, as defined in Equation (9), is different from the
fitness function for the filter-based techniques. The main goal
of the wrapper-based techniques is to select reduced instances
with optimized predictive accuracy. Therefore, the wrapper-
based fitness function is computed by firstly calculating the
predictive accuracy of all potential solutions in the solution
space. That is, for each candidate solution in the solution
space (i.e. for each reduced subset), a classification model
is built by training the reduced subset on the SVM classifier.
Subsequently, the model is tested by evaluating it on a test
dataset, and the resulting predictive accuracy is utilized as the
fitness score of the solution. The solution with the highest
fitness score is the solution that produce the best predictive
accuracy. Finally, the solution with the highest fitness score
(that is, the solution that produces the best predictive accu-
racy) is selected and used to construct the final classification
model.

fitnessi = αi (9)

where αi is the predictive accuracy for each solution.

IV. EXPERIMENTAL STUDY AND DATASET
The proposed techniques were evaluated on 20 small-scale
datasets and 10 medium or large-scale datasets. All the small-
scale datasets were obtained from the well-known University

of California, Irvine (UCI) dataset repository [40]. The UCI
machine learning (ML) repository consists of many widely
used datasets, provided for experimental evaluation of ML
algorithms. The medium and large-scale datasets were also
obtained from UCI, with the exception of USPS, which can
be obtained from the LIBSVM data repository [41] – the
SVM library used in this study. Furthermore, due to the
high dimensionality of USPS and Isolet, in a similar way
to Chen et al. [25], the number of features in Isolet and
USPS were reduced by principal component analysis (PCA)
to 150 and 80 features, respectively. For each dataset, all
the features were converted to the input format required by
LIBSVM [42].

Given N training instances, using the entire training set
for training is time consuming. Brighton and Mellish [2]
noted that training a classifier on a reduced subset (void of
superfluous or harmful instances) will not significantly affect
the classification accuracy of a classifier. Rather, it can lead
to similar or improved classification accuracy. On this basis,
all the proposed filter-based techniques were designed to use
only a subset of the entire training set for instance selection.
That is, for all experiments, n instances were passed to the
instance selection techniques for processing, where n refers
to the subset size. Besides, for all the experiments, different
subset sizes and number of particles (NP) were evaluated, and
the results for the best subset sizes and NP are reported. The
subset sizes used for the experiments are reported in Table 1.
Unlike the filter-based techniques, the wrapper-based tech-
niques are designed to search the entire training set for
relevant instances. Other parameters used for FPISA and
SSISA are reported in Tables 2 and 3, respectively. For all the
experiments performed on the small-scale datasets, 10-times,
10-fold cross validation was used, while for the large-scale
datasets, each experiment was performed 10 times. Cross
validation was not performed for the large-scale datasets
because, all the datasets were originally divided into training
and test parts, hence performing cross validation was not
necessary.

A. EXPERIMENTAL SETUP
All the experiments performed on the small-scale datasets
were performed on a computer operating on Windows 7,
64 bits. The computer had 8GBRAMand runs on a processor
speed of 3.10 GHz. For the medium or large-scale datasets,
the experiments were performed on a computer with the
following specifications: Windows 10, Core i5, 1.7 GHz,
64 bits operating system and 8.00 GB RAM. The parameters
used for FPA and SSA are reported in Tables 2 and 3; these
are the same parameters as used by James [43] and Yang [44].
In addition, the radial basic function (RBF) kernel was used
for all experiments; it requires selection of two parameters,
C and gamma. Hsu et al. [45] suggested using exponentially
growing sequence of C and gamma. In this study, different
parameter pairs were evaluated for each dataset, and the
best parameter pair (as reported in Table 1) was used for
training.
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TABLE 1. Summary of dataset.

TABLE 2. Parameter used for FPISA.

TABLE 3. Parameter used for SSISA.

B. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents and discusses the experimental results
produced by FPISA, SSISA, and the compared techniques.
Firstly, the results of standard SVM,MCIS [25] and CBD [3],

are discussed. In the first subsection (Section IV.C), the
results of the proposed filter-based techniques using the small
dataset are discussed and compared to the results of the stan-
dard SVM, and two filter-based instance selection techniques
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TABLE 4. Filter-based techniques on small-scale datasets – accuracy & storage.

(CBD and MCIS). Standard SVM refers to SVM without
data reduction. MCIS and CBD are existing filter-based
instance selection techniques used here primarily for com-
parison. Then in Section IV.D, the results of the proposed
wrapper-based techniques for the small dataset are pre-
sented and compared to the standard SVM and a wrapper-
based instance selection technique (ADRMiner [12]). This
is followed by the proposed techniques being evalu-
ated on medium and large datasets, with results being
reported in Section IV.E. Finally, the result is summa-
rized in Section IV.F and statistical analysis is reported in
Section IV.G.

As shown in Table 1, for each dataset, the following
information are reported: name of dataset (Dataset), size of
dataset (Size), number of attributes (#Attributes), number of
classes (#Classes), number of ham instances (#Ham), num-
ber of training and testing samples (#Tra/#Tes) per dataset,
k values and subset size used for the CBD algorithm (Sub-
Size(CBD)) and the subset size used for the filter- and
wrapper-based FPISA and SSISA (SubSize(filter)). Subset
size represents the number of training instances selected
by the algorithms, while K refers to the number of nearest
neighbours used by CBD algorithm for training. In addi-
tion, for each dataset, the grid algorithm is used to perform
parameter optimization, and the C and gamma pair that pro-
duced the best result for each dataset is used for training.
The best C and gamma pair for each dataset is reported

in Table 1. As shown, the proposed techniques were evalu-
ated using the following criteria: average prediction accuracy
(APA), storage reduction percentage (Storage), algorithm
time (alg-time), and training time (tr-time). The storage
reduction percentage is the ratio of instances selected (in
percentage) by each algorithm. Moreover, the proposed tech-
niques are compared to two filter-based instance selection
techniques (CBD [21] and MCIS [25]) and one wrapper-
based technique (ADR-Miner [12]). Different subset sizes
and K values were tested for CBD algorithm, and the values
that produced the best results are reported in this study.

Attenuation rate, probability change and assigning proba-
bility are user-defined parameters. Attenuation rate controls
the reduction rate of a spider vibration intensity over distance.
Probability change describes the probability of changing a
spider mask. Assigning probability controls the probability of
assigning zero or one to each bit of a spider mask. The three
aforementioned parameters are all user-defined. Attenuation
rate is defined in (0, ∞). Probability change and assigning
probability are both defined in (0, 1).

C. EXPERIMENT 1: FILTER-BASED TECHNIQUES ON
SMALL-SCALE DATASETS
Tables 4 and 5 show the average prediction accuracy, storage
percentage, training time (in seconds) and algorithm time
(in seconds) achieved by FPISA, SSISA, standard SVM,
CBD and MCIS. As shown in Table 5, Figures 2 and 3,
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TABLE 5. Filter-based proposed techniques on small-scale datasets – average time (in seconds).

FIGURE 2. Filter-based techniques on small-scale datasets – average prediction accuracy.

the proposed filter-based techniques consistently improved
the training speed of SVM in all the datasets (20 out of 20)
used for evaluation, without significantly affecting SVM pre-
diction accuracy. Specifically, FPISA and SSISA improved
the training speed of SVM by an average of 76% and 75%,
respectively. The training speed improvement is calculated
using

(
(α − β)

/
α
)
∗100, where α and β refers to the training

speed produced by the standard and hybrid models, respec-
tively. Furthermore, the two filter-based techniques achieved
an average data reduction of 37%, implying that only 37% of

the dataset is required to achieve improved speed-accuracy
trade-off. Moreover, FPISA and SSISA require very lit-
tle time to perform data reduction. As shown in Table 5,
the two algorithms require an average of less than 1 second
to select relevant instances from small datasets. This shows
the improved speed and storage reduction capacity of FPISA
and SSISA.

The proposed techniques are further compared to CBD
and MCIS. As shown in Table 4, in terms of prediction
accuracy, FPISA and SSISA outperformed CBD in 11 out
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FIGURE 3. Filter-based techniques on small-scale datasets – average training time (in seconds).

of 20 datasets. Also, in terms of storage reduction, FPISA
and SSISA outperformed CBD in 17 out of 20 datasets.
Besides, in terms of prediction accuracy, FPISA and SSISA
outperformed MCIS in 15 out of 20 datasets and simultane-
ously produced better storage reduction percentage in 10 out
of 20 datasets. In addition, as shown in Table 5, FPISA and
SSISA achieved better algorithm speed compared to CBD
and achieved algorithm speed comparable with that of MCIS.
Overall, the filter-based FPSIA and SSISA achieved better
results compared to CBD and MCIS, showing that the two
hybrid algorithms are competitive and better alternatives to
the standard ones.

D. EXPERIMENT 2: WRAPPER-BASED TECHNIQUES
ON SMALL-SCALE DATASETS
The wrapper-based FPISA and SSISA were validated on
20 small-scale datasets. As mentioned above, unlike the
filter-based techniques, which search through a subset of the
dataset, the wrapper-based techniques are designed to search
through the entire training dataset for relevant instances.
Tables 6 and 7, and Figures 4 and 5 show the predictive
accuracy, training speed and storage reduction percentage
produced by FPISA, SSISA, standard SVM, CBD andMCIS.
As shown in Table 6, the proposed techniques reduced the
storage size of the evaluated datasets by an average of 50%
and, in most cases, simultaneously improved SVM prediction
accuracy. This shows that only 50% of the training dataset
is required to achieve accuracy preservation, as achieved
in most cases by FPISA and SSISA. In addition, FPISA
and SSISA achieved an average training speed of less than
0.4 second and improved the training speed of SVM by an
average of approximately 75% (SSISA) and 77% (FPISA).
This implies that they require very little training time to pro-
duce fast and improved models. In addition, the techniques
are very fast, as they achieved an average algorithm speed of
approximately 18 seconds (SSISA) and 2 seconds (FPISA).
This makes them effective and fast approaches for improving
the speed and predictive performance of SVM.

Furthermore, the wrapper-based techniques were com-
pared to CBD and MCIS. As shown in Table 6, they
produced better prediction accuracy than CBD and MCIS
in 15 out of the 20 datasets. Besides, they also outper-
formedCBD in algorithm speed. In terms of storage reduction
percentage and training speed, all the algorithms pro-
duced similar results; none of them consistently outperform
each other. This shows the efficiency and robustness of the
wrapper-based FPISA and SSISA; they compare well with
filter-based techniques. In addition, the proposed wrapper-
based techniques were compared to an existing state-of-
the-art wrapper-based instance selection technique, called
ADR-Miner [12]. ADR-Miner was designed to use two
classification algorithms for evaluation. One classification
algorithm was used to evaluate the quality of each can-
didate solution and the second classification algorithm is
used to build the final model. To ensure a fair compari-
son, we compare FPISA and SSISA to the algorithm com-
bination that used SVM at both the instance-selection and
model-construction stage. This is because FPISA and SSISA
also used SVM at both stages. In Table 8, for each dataset, the
best predictive accuracy is underlined. It can be seen that the
proposed wrapper-based techniques outperform ADR-Miner
in 7 out of 10 datasets. This shows their superiority in pre-
serving SVM prediction accuracy.

E. EXPERIMENT 3: FILTER-AND WRAPPER BASED
TECHNIQUES ON MEDIUM OR
LARGE-SCALE DATASETS
The proposed filter- andwrapper-based techniques were eval-
uated on 10 medium or large-scale datasets; specifically,
the Pendigit, Letter, OptDigits, USPS, Isolet, Mushroom,
Page-blocks, Shuttle, Twitter, and Landstat datasets. All of
these had been previously divided into training and test sets
by their providers, except for the Page-block, Mushroom
and Twitter datasets. These three were divided into training
and test subsets by ourselves, using 80% of the datasets for
training and 20% for testing. Also, due the limited processing
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TABLE 6. Wrapper-based techniques on small-scale datasets – accuracy & storage.

TABLE 7. Wrapper-based techniques on small-scale datasets – average time (in seconds).

speed of the computer used for experiments, we only used
50% of the Twitter training subset for training. Furthermore,
due to the stochastic nature of FPISA and SSISA, for all

the datasets, ten different runs were performed using the
training subset to build the model and the test the subset
so as to evaluate the performance of the model. For each
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FIGURE 4. Wrapper-based techniques on small-scale datasets – average prediction accuracy.

FIGURE 5. Wrapper-based techniques on small-scale datasets – average training time (in seconds).

TABLE 8. Wrapper-based proposed techniques vs ADR-Miner.

experiment, the average prediction accuracy, storage capac-
ity, training speed, and algorithm speed are reported here.
In addition, for each dataset, different experiments were

performed to determine the best parameters (C, gamma,
number of particles and number of generation), and the
parameters that produced the best result was used for all the
experiments.

1) FILTER-BASED TECHNIQUES ON MEDIUM
OR LARGE-SCALE DATASETS
As shown in Table 9, the filter-based SSISA and FPISA
algorithms reduced the storage size of big datasets mean-
ingfully, by an average of 23.39% and 21.28%, respectively,
without significantly affecting the accuracy of their result-
ing models. This shows their efficiency in data reduction
and usefulness for big data processing, as they required less
than 24% of big datasets to achieve competitive results.
Besides, the result reveal that the proposed filter-based tech-
niques achieved better training speed compared to standard
SVM on all 10 of the datasets. Specifically, SSISA and
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TABLE 9. Filter-based techniques on large-scale datasets (average accuracy & storage).

TABLE 10. Filter-based techniques on large-scale datasets - average time (in seconds).

FPISA achieved an average training speed improvement
of 86.42% and 89.61%, respectively. This implies that the
proposed techniques require only 23.39% and 21.28% of
the large-scale datasets to achieve comparable classifica-
tion accuracy and improved training speed. Although, the
standard SVM produced slightly better prediction accuracy
compared to the filter based FPISA and SSISA, the latter
two produced both better training speed and storage reduc-
tion percentage. Moreover, as shown in Table 10, the filter-
based FPISA and SSISA techniques required only a small
amount of time to process and select useful instances from
big datasets, which demonstrates their relevance to big dataset
processing.

The results achieved by FPISA and SSISA were also
compared to those from CBD and MCIS. As shown in
Tables 9 and 10, in all cases, both FPISA and SSISA achieved
better prediction accuracy than CBD and produced compa-
rable storage reduction percentage. Moreover, in all cases,
FPISA achieved better storage reduction percentage than
MCIS and achieved comparable prediction accuracy. Besides
these advantages, FPISA and SSISA also outperform MCIS
in terms of training time and outperform CBD in terms of
algorithm speed.

2) WRAPPER-BASED TECHNIQUES ON MEDIUM
OR LARGE-SCALE DATASETS
Tables 11 and 12 show results for the performance of
the wrapper-based techniques on medium or large-scale
datasets. As shown by the results, the wrapper-based FPISA
and SSISA algorithms achieved average training speeds
of 17.94 seconds and 17.77 seconds, respectively, and thus
improved on SVM training speed by an average of 61.22%
(SSISA) and 63.08% (FPISA). Moreover, the wrapper-based
SSISA and FPISA reduced the storage size of the evaluated
big datasets by averages of 52.57% and 49.52%, respectively.
This shows that they removed an average of 50% of the
irrelevant instances from the datasets without significantly
affecting their quality. Moreover, in most cases, the wrapper-
based FPISA and SSISA achieved prediction accuracy that is
comparable with standard SVM. Overall, the wrapper-based
FPISA and SSISA achieved very good prediction accuracy,
training speed, storage percentage reduction, and algorithm
time.

The performance of the wrapper-based FPISA and SSISA
are further demonstrated by comparing this to the perfor-
mance of CBD and MCIS, as reported in Tables 11 and 12
for prediction accuracy, storage capacity, training speed and
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TABLE 11. Wrapper-based techniques on large-scale datasets (average accuracy & storage).

TABLE 12. Wrapper-based techniques on large-scale datasets - average time (in seconds).

TABLE 13. Average rank from friedman’s non-parametric test for filter-based FPISA.

algorithm time produced by CBD and MCIS. These results
indicate that the wrapper-based FPISA and SSISA outper-
form CBD and MCIS in prediction accuracy. Moreover, they
outperform MCIS in storage reduction percentage.

F. RESULT SUMMARY
In summary, as shown in all the results, for small and big
datasets, both the proposed filter-and wrapper-based SSISA
and FPISA produced competitive results and can be used
as better alternatives. Moreover, they significantly improved
SVM training speed and prediction accuracy. In addition,

the results reveal that the wrapper-based variants of FPISA
and SSSIA are slower than their filter-based variants; how-
ever, they still outperform CBD (a filter-based technique)
in algorithm speed and also produced similar algorithm and
training compared to MCIS. This demonstrates their effi-
ciency and usefulness in big data processing and ML speed
optimization.

Furthermore, comparing SSISA to FPISA, SSISA outper-
forms FPISA in classification accuracy, while FPISA out-
perform SSISA in training speed, storage percentage and
algorithm time. Moreover, comparing the filter-and wrapper-
based techniques, the filter-based techniques performed
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TABLE 14. Average rank from friedman’s non-parametric test for filter-based SSISA.

TABLE 15. Average rank from friedman’s non-parametric test for wrapper-based FPISA.

TABLE 16. Average rank from friedman’s non-parametric test for wrapper-based SSISA.

better than the wrapper-based techniques in training speed,
storage reduction percentage, and algorithm speed, while the
wrapper-based techniques outperform the filter-based tech-
niques in prediction accuracy.

G. STATISTICAL ANALYSIS
In this study, two different statistical tests; namely, Friedman
non-parametric and Wilcoxon signed rank tests, are con-
ducted with the aim of showing that the training speeds of
FPISA and SSISA are statistically significantly better than
the training speed of standard SVM. We deliberately con-
ducted the statistical analysis on large-scale datasets because,
SVM training complexity increases as the problem size and
number of classes increases [25]. Therefore, the training
speed improvement would be more obvious in datasets with
many instances. SVM training time complexity is O(n2),
where n refers to the number of training instances [46].
First, a Friedman non-parametric analysis test for multiple
comparison was carried out on three large-scale datasets
(Twitter, Letter and Shuttle), and the test show that a change
in dataset size, or dimensionality, significantly alters SVM
training speed. As shown in Tables 13 to 16, all the p-values
are less than the 0.05. Furthermore, the Wilcoxon signed
ranks test revealed that the training speed of SVM was sig-
nificantly improved compared to the training speed achieved
by the filter- and wrapper-based FPISA and SSISA. For

example, as shown in Table 10, the analysis on the Twitter
dataset reveals that SVM training speed was significantly
improved when using SSISA and FPISA (5.43 seconds and
4.24 seconds, respectively) compared to 332.04 seconds
needed for SVM. The test showed that the p-values for all the
comparisons are less than the adjusted p value (p < 0.0083).
Therefore, it can be concluded (with 95%-degree confidence
level) that the filter- and wrapper-based FPISA and SSISA
techniques significantly improved the training speed of SVM.

Moreover, as shown in the results presented in
Tables 13 and 14, the filter-based FPISA and SSISA are
significantly faster (in terms of training speed) than MCIS,
but not CBD. However, FPISA and SSISA outperformed
CBD in prediction accuracy and algorithm time. For example,
as shown in Tables 9 and 10, it took CBD about 2172.68 sec-
onds to select 2.3% instances from the Shuttle dataset, while
it took FPISA 50.1 seconds to select 4.4% instances from
the same dataset. This shows that FPISA requires less time
to perform data reduction on large datasets than does CBD,
which implies that FPISA is faster than CBD. Furthermore,
as shown in Tables 15 and 16, MCIS and CBD achieved
better training speeds than did the wrapper-based FPISA
and SSISA. This is because MCIS and CBD are filter-based
techniques, which are generally faster than wrapper-based
techniques. However, the result show that the wrapper-based
FPISA and SSISA still outperformed CBD, in algorithm
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speed and prediction accuracy. They also outperform MCIS
in prediction accuracy and storage reduction capacity. This
shows that the wrapper-based techniques are more efficient
in preserving prediction accuracy and reducing big datasets,
which makes them competitive and preferable.

To summarise the above evaluations, it has been shown in
all the results presented in Tables 4 to 16 that the proposed
techniques are very good SVM speed optimizers and instance
selection techniques, which demonstrates the usefulness of
these NI-algorithms in instance selection and speed optimiza-
tion. Such NI-algorithms can be used in combination with
standard SVM and other ML algorithms to produce efficient
and fast classification models. In real life applications, such
as video surveillance and intrusion detection systems, that
require a classifier to be trained very quickly for speedy clas-
sification of new target concepts, the filter-based techniques
provide the best solutions. By contrast, the wrapper-based
techniques are better suited for applications, such as email
filters, that are very sensitive to slight changes in predictive
accuracy.

V. CONCLUSION
In the world of growing information overload and complex-
ities in decision-making, ML-based solutions are becoming
very useful tools for many businesses. ML algorithms are
known for their robustness [47], accurate data mining and
classification proficiency [47], [48]. They are also known
for dynamic problem solving [47]. SVM is a well-known
ML algorithm that has been widely used to tackle many
real-world problems, with good results. However, SVM suf-
fers from high computational complexity, which is become
most noticeable with massive datasets. This research there-
fore proposes two intelligent speed optimization techniques
(called FPISA and SSISA), for improving SVM training
speed, computational complexity, and generalization perfor-
mance, without significantly affecting the SVM prediction
accuracy. Accordingly, this study introduces two variants of
each technique; filter-based and wrapper-based variants.

Different set of experiments were performed to evaluate
the efficacy of the proposed techniques on 30 datasets. The
first set of experiments was performed on 20 small-scale
datasets, while the last set of experiments was performed
on 10 medium- or large-scale datasets. Furthermore, the per-
formance of the proposed techniques was compared to that
of the standard SVM and three existing instance selection
techniques.

Experimental results show that, in all cases, the filter-based
techniques considerably improved SVM training speed, and
simultaneously achieved comparable prediction accuracy for
both small and medium- or large-scaled datasets. Further-
more, the results show that, in some cases, the wrapper-based
techniques improved SVM training speed and simulta-
neously improved SVM predictive accuracy. In addition,
the experimental results show that the proposed techniques
produced excellent storage reduction and speed-accuracy
trade-offs. Furthermore, two different statistical tests were

conducted with the aim of evaluating the training speed
difference between the proposed techniques and standard
SVM. As shown in the test results, it can be concluded
with a 95% confidence level, that the proposed techniques
are significantly faster (in terms of training speed) than
the standard SVM and some existing instance-selection
techniques.

In addition, SSISA produced better prediction accuracy
compared to FPISA, while FPISA performed better than
SSISA in training speed, storage reduction percentage and
algorithm speed. In addition, the filter-based techniques out-
perform the wrapper-based techniques in training speed, stor-
age reduction percentage and algorithm speed, while the
wrapper-based techniques outperform their filter-based coun-
terpart in prediction accuracy.

Overall, the results achieved by FPISA and SSISA estab-
lished them to be global search algorithms with a promising
approach for SVM speed optimization (and other ML algo-
rithms). The results also show that they are very useful and
efficient for both small and big data processing.

Future research could focus on designing improved and
faster hybrid techniques, by trying other bio-inspired algo-
rithms. In addition, the methods considered in this study
are iterative in structure, so future research could there-
fore explore the possible implementation of non-iterative
approaches. Future research could also consider exploring
other ML algorithms.
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