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ABSTRACT Since underground environments, such as urban subways, tunnels, underground pipe corridors,
and mine roadways, etc., are complex and changeable, the software functions of the sensor nodes in
underground spaces must be updated regularly to satisfy the requirements of the monitoring center. Software
updates cannot be traditionally conducted due to the large number of nodes, the wide distribution range and
the poor underground environment; they can only be made using wireless reprogramming. Current repro-
gramming protocols are all designed for topologically unconstrained networks and are inefficient in routing
constrained underground belt-area wireless sensor networks (BAWSNs). We propose a new reprogramming
mechanism for reducing the energy and time consumption of the data downstream transmission process
in BAWSNs. For network energy optimization, we identified the highest energy efficiency transmission
radius. For network base-station location time optimization, an approximate (1+ ε) algorithm that is based
on gradient cyclic descent is proposed, which is of complexity O

(
kn2
)
. The simulation results demonstrate

that, compared with classical algorithms, the BAWSNs approximation algorithm can locate the optimal base
station accurately with low time consumption.

INDEX TERMS Belt-area wireless sensor networks, base station selection, p-center problem, optimization
algorithm.

I. INTRODUCTION
With the accumulation of urban population, urban resource
and environmental problems have become increasingly
severe. Underground spaces, such as urban subways, tun-
nels, underground pipe corridors, and mine roadways,
etc., are important for addressing the problems of urban
resources and the environmental crisis, and are an important
resource for sustainable development. In June 2016, the Min-
istry of Housing and Urban-Rural Development issued the
‘‘Thirteenth Five-Year Plan for Urban Underground Space
Development,’’ with the objectives of completing the plan-
ning and approval of underground space development
by 2020 in more than half of China’s cities and establish-
ing a more complete management system for underground
space planning [1]. Underground spaces suffer from various
problems, such as being of complex structure, being rela-
tively closed, and hosting many types of accidents, including
random accidents. Considering gas leakage under a mine,
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underground oil or gas pipeline leakage, tunnel roof deforma-
tion or other high-risk accidents, it is necessary to identify the
fault point and to locate it in the shortest time possible; hence,
it is essential to conduct all-weather, uninterrupted monitor-
ing and warning of underground spaces. A wireless sensor
network [2] is a type of multi-hop wireless self-organizing
network that is composed of many sensor nodes and several
base stations. Due to its flexibility in deployment and its
rapid sensing of environmental parameters, a wireless sensor
network can be used for real-time monitoring of underground
space environments. Underground space scenes have a belt
area distribution feature; namely, the belt area refers to a long-
distance belt-shaped closed area. Such areas refer to longer,
narrower areas that can reach tens of kilometers in length
and often only tens of meters in width. Therefore, a wireless
communication network composed of aWSN that is deployed
in a special belt-like area of an underground space [3] is
considered, as illustrated in Fig. 1.

However, the underground environment is complex
and variable, and the software of each node must be
updated and maintained regularly to satisfy the monitoring
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FIGURE 1. Belt-area wireless network reprogramming diagram.

requirements of the ground monitoring center. The belt-area
wireless sensor networks (BAWSNs) cannot be traditionally
artificially updated due to the large number of nodes, the wide
distribution range and the poor underground environment.
Software updates can only bemade usingwireless reprogram-
ming. This gives rise to the need for ‘‘over-the-air’’ network
reprogramming for updating sensor nodes in place. In some
scenarios, all nodes of the network must be updated in the
reprogramming process, such as system updating of sensors,
and the transmission direction of reprogramming codes is
from the base station to each sensor node. The most efficient
approach is to use relay nodes to broadcast codes to the nodes
that are within their transmission radii, some of which will be
selected as new relay nodes. The process will continue until
all nodes can be covered [4]. Many wireless reprogramming
protocols share design challenges. Here, we consider the
three most important challenges [5]:

(1) Completion time: The reprogramming completion time
affects services that use WSNs. When we reprogram the net-
work, we must suspend the services until the code update has
been completed. Thus, wemust minimize the reprogramming
completion time.

(2) Energy efficiency: Sensor nodes are typically battery-
powered and the sensor node battery provides the energy
that is used in reprogramming. This battery also supplies
energy for computing, communication, and sensing func-
tions. Therefore, reprogramming must be energy-efficient.

(3) Reliability: Reprogramming requires the new code to
be delivered throughout the entire network, and the delivered
code must be executed correctly on the sensor nodes.

Therefore, it is necessary to design a new transmission
mechanism for reducing the energy and time consumptions
in the data downstream transmission process in a belt-area
network scenario.

All available protocols, which include XNP [6],
MOAP [8], Deluge [9], MNP [10], ACDP [11], and
ACODI [12], for wireless reprogramming focus on trans-
mission routing for energy efficiency. They utilize a very
low-cost link estimation method that dynamically adjusts the
size of the payload to increase the energy efficiency, thereby

minimizing the energy consumption. These reprogramming
routing protocols are all directed by a two-dimensional
unconstrained network, which becomes inefficient in routing
constrained belt-area wireless sensor networks. Reprogram-
ming is a type of downlink data communication method.
Under routing restrictions, the location selection of the
base station, which is the initial point of reprogramming
code transmission, has an important impact on the energy
and time consumptions of the entire code update process.
Therefore, selecting the optimal base-station position is of
substantial importance for reducing the time and energy
costs of the entire reprogramming process. Unfortunately,
in the field of network energy optimization site selection,
most studies [14]–[19] consider the application scenarios
of two-dimensional unconstrained topology networks. Few
studies have been conducted on the base-station location
in the wireless network topology with the network topol-
ogy limited belt-area wireless network and data downlink
propagation.

In the BAWSNs information transmission process, due to
the narrowness of the monitoring area and the limited trans-
mission distance of the nodes, the data must be forwarded
by intermediate nodes to the base station. The increased
number of data forwarding hops leads to an increase in the
transmission delay. In the two-dimensional unconstrained
network topology, the shortest communication path can be
selected via routing to reduce the network data forwarding
delay. However, the spatial belt-shaped topology of the under-
ground space causes the transmission direction of the node to
completely rely on the extension direction of the belt-area;
therefore, routing must follow the underground space topol-
ogy and it is impossible to optimize the data forwarding hop
count from the routing aspect. At this point, the deployment
of the base station as a data aggregation center has a crucial
impact on the data forwarding delay of the entire network.
The objective of this paper is to select the optimal base-
station location such that the image code is transmitted from
the base station to the nodes with the most energy-efficient
transmission radius and the time for updating the software of
all nodes is the shortest. We propose a gradient-based (1+ε)-
approximate optimal multi-base-station selection algorithm,
namely, the optimal multi-base-station selection (OMSS)
algorithm, in which the shortest data forwarding delay is the
optimization target for the uniform linear network topology
of BAWSNs. This study consists of the following steps:

(1) First, a time-efficient multi-base-station p-location
model is presented. Next, the model is simplified. Under
the BAWSNs special network structure, the location prob-
lem is transformed into the longest non-cyclic path problem.
The NP-completeness of the time-efficient multi-base-station
location model is indicated.

(2) Then, an exact algorithm for the problem index time
and the gradient-based (1+ ε) strategy and algorithmic steps
for an approximately optimal algorithm of the BAWSNs are
presented. The complexities of the two algorithms are ana-
lyzed in detail.
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(3) Finally, the time performances of the two algorithms
are evaluated via simulation experiments. According to the
results of the simulation experiments and direct testing,
the OMSS algorithm can accurately locate the optimal posi-
tion in a shorter time in the BAWSNs linear topology than the
original p-center location algorithm.

The remainder of the paper is organized as follows:
Section II discusses the shortcomings of the classical algo-
rithms for the p-center problem. Section III established
the p-center location model for multi-base-station selection.
Section IV proves the NP-hardness of the belt-area network
location problem and proposes an approximate algorithm
that is based on gradient cyclic descent. In section V, the
OSSM algorithm is simulated, and the differences between
theOSSMalgorithm and other classical algorithms are identi-
fied; additionally, the differences between OSMM, SAA and
CIK algorithm are discussed, and the evaluation results are
presented. Section VI presents the conclusions of the paper.

II. RELATED WORK
A. WIRELESS REPROGRAMMING
In wireless reprogramming, updating a traditional wireless
sensor network is very common, e.g., updating parame-
ters, upgrading software, and fixing security vulnerabilities.
XNP [6] is the first data dissemination protocol for
TinyOS [7]; however, it only provides the single-hop network
solution, and all nodes must be in the communication range
of the source node. In addition, data dissemination uses only
the flooding mechanism and does not support incremental
updating of the program image. MOAP [8] extends the code
delivery to multi-hop networks. It disseminates data via a
hop-by-hop approach with local broadcasting and sliding
window recovery. However, one of the core assumptions of
the MOAP design is that the time delay is the least important
resource; thus, time is used to represent energy. Deluge [9] is
the de facto network reprogramming protocol that is based on
TinyOS, which employs ADV-REQ-DATA three-way mes-
sage exchanges to ensure its eventual consistency, and it
disseminates codes via an epidemic routing algorithm. The
multi-hop network reprogramming (MNP) protocol [10] is
an improved version of Deluge. The routing strategy is to
use the node with the most connected nodes to update at the
same communication radius as the forwarding node, thereby
improving the energy utilization efficiency. The adaptive
code dissemination protocol (ACDP) is an adaptive code dis-
tribution protocol [11]. The main strategy is to maximize the
network life cycle by selecting the nodewith themost residual
energy as the routing forwarding node. The adaptive code
dissemination based on link quality (ACODI) protocol [12] is
a link-quality-based adaptive code distribution. It provides a
very low cost link estimationmethod that dynamically adjusts
the size of the payload to increase the energy efficiency,
thereby minimizing the energy consumption. In a recent pub-
lication on reprogramming, Teng and Liu [13] argue that
recruiting many vehicles to disseminate the update code for
roadside smart devices (RSDs) via vehicle-to-sensing device

communications technology is an effective method. They
proposed a cost-efficient greedy code mule selection scheme
(CGCSS) for disseminating code to a huge number of RSDs
in a smart city.

All available reprogramming protocols are designed for
wireless sensor networks with unlimited two-dimensional
topologies, which lose their original advantages in topolog-
ically constrained network topologies. This paper proposes
an energy-efficient and time-efficient reprogrammingmethod
for topologically constrained BAWSNs.

B. ENERGY OPTIMIZATION BASE-STATION SELECTION
In the field of network energy optimization site selection,
reference [14] selects the center of gravity of the network as
the optimal location of the base station in thewireless network
with data traffic equalization, and the anycast base-station
selection (ABS) algorithm [15] uses a heuristic method to
solve the network lifetimemaximization base-station location
problem; however, it only obtains an approximate solution.
The optimal base-station placement (OBSP) algorithm [16]
divides the entire network area into sub-areas by controlling
the radius with all the network nodes as centers. Then, it iden-
tifies the optimal sub-area where the base station is located
after selection. In [17], the network is divided into sub-
networks that have the same area, and the optimal location
algorithm of the multi-base-station with the most preferred
location is independently executed in each sub-area area.
Reference [18] proposes a base-station location algorithm
that uses the center of the minimum bounding circle of the
network as the best location. In [19], a lexicographically
stratified programming (LSP) model is proposed for a speci-
fied topology. Based on the complete hierarchical sequence
and the grid search method, the optimal location of the
base station is identified. However, this energy-efficient base-
station location algorithm is designed for two-dimensional
unconstrained networks of data uplink, whereas the above
energy-efficient base-station location algorithm is designed
for two-dimensional unconstrained networks of data uplink
and is not suitable for BAWSNs reprogramming scenarios of
data downlink.

C. TIME OPTIMIZATION BASE-STATION SELECTION
In the field of network base-station location time optimiza-
tion, the data forwarding delay between nodes and base
stations is linearly related to the distance between the nodes
and the base stations. Moreover, the data forwarding delay
of the network depends on the node that is farthest from
the base station. This problem is a typical p-center prob-
lem in facility location strategies. In this field of research,
Hakimi [20] proposed the p-center problem in the network
and Kariv and Hakimi [21] proved that the p-center problem
is an NP-hard problem. Megiddo and Supowit [22] also
proved that the p-center problem that is based on the linear
distance and the Euclidean distance is an NP-complete prob-
lem. Minieka [23] studied the p-center location problem in
the case of p > 1 and Minieka et al. proposed a heuristic
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algorithm for the p-center coverage problem. Based on this,
Gonzalez [24] proposed an approximation algorithm, namely,
the Gon algorithm, which has complexity O(kn). The algo-
rithm mainly adopts a greedy strategy; however, it sacrifices
the location effect by randomly selecting the initial node to
reduce the time complexity. Hochbaum and Shmoys [25]
proposed an approximation algorithm that is based on param-
eter pruning according to the similarity between the p-center
coverage problem and the dominating set problem.
Chen and Chen [26] proposed a binary relaxation iterative
(BRA) algorithm for network subset search that is based on
the research of Minieka et al. A binary search is conducted
by adding a fixed number of nodes to find a corresponding
approximate optimal solution. However, if the network is
large, the search space of the nodes becomes extremely
complicated. To overcome this problem, reference [27] intro-
duces an extensible relaxation-based iterative algorithm that
does not depend on the calculation of the entire matrix, but
rather on the calculation of a submatrix that is typically
much smaller. This sub-matrix is only amplified when it is
deemed necessary, thereby substantially reducing the com-
plexity of the operation. Chen and Chen [28] combined the
relaxation method with the p-center coverage problem of α
neighbors, which is based on the research of Minieka et al.
Drezner et al. [29] proposed a p-center random location
model that is based on hybrid linear programming for solving
the problem of emergency facility location. The most pre-
ferred address algorithm and the multi-facility optimization
algorithm for a single facility have also been proposed.

Other scholars have used heuristic and metaheuristic algo-
rithms to solve p-center location problems, such as the scat-
ter search (SS) algorithm, which was proposed by Pacheco
and Casado [30], and the genetic algorithm, which was
proposed by Pullan [31]. Levin and Ben-Israel [32] pro-
posed a heuristic algorithm for large-scale p-center problems.
Drezner and Drezner [33] presented a heuristic-based greedy
random adaptive algorithm for solving the sequential location
problem of two facilities. Garcia-Diaz et al. [34] proposed a
heuristic algorithm with algorithmic complexity for solving
the p-center facility location problem. Garcia-Diaz et al. [35]
used a structure-driven randomization (SDR) method to solve
the p-center problem. In the heuristic algorithm for the
p-center location problem, Resende, and Ribeiro proposed
a multi-start metaheuristic algorithm that is based on the
greedy randomized adaptive search procedure (GRASP)
algorithm [36]. Callaghan et al. [37] and Mihelic and
Robic [38] proposed a scoring (Scr) algorithm that is based on
the relationship between the p-center problem and the dom-
inating set problem. Albareda-Sambola et al. [39] extended
the p-center problem according to the practical requirements
and established a new hierarchical p-center problem (SpCP)
model. A heuristic method that is based on sample average
approximation (SAA) is proposed for this model.

The protocol that is proposed in this paper differs from
most current reprogramming protocols for two-dimensional
unconstrained networks. We mainly focus on the energy

and time efficient reprogramming multi-base-station selec-
tion problem of BAWSNs with topological constraints. The
novelty of the proposed approach is that it identifies the
most energy-efficient transmission radius for the topologi-
cally constrained strip network, thereby avoiding the large
energy consumption that is caused by the reprogramming
protocols that are discussed above. However, the use of
an energy-efficient transmission radius, which results in an
increase in the number of data forwarding times, will require
more network normal working hours, thereby causing chan-
nel congestion, which will increase the security risks of the
underground space. Another innovation in this paper is that
we reduce the time for network reprogramming by select-
ing the optimal base-station location. We are mainly study-
ing the p-center problem for multi-base-station selection in
BAWSNs-specific scenarios with topological constraints.
According to our theoretical proof and experimental results,
our method is more efficient than other methods in the strip
network scenario.

III. SYSTEM MODEL
A. SYSTEM MODEL
The entire BAWSNs is represented byG(V ,E), wherein V =
{v1, v2, · · · , vN } represents a set of nodes and E represents
the set of edges. K represents the number of base stations
selected from the nodes throughout the OTA process, and
the set of base stations is denoted by B = {b1, b2, · · · , bK }.
Gi denotes a sub-graph composed of a node and a path tra-
versed by the base station bi throughout the OTA transmission
process, and Vi denotes a node set covered by the base station
bi as a base station in the entire reprogramming process, and

the final goal is to achieve
K
∪
i=1

Vi = V .

B. ENERGY CONSUMPTION MODEL AND OPTIMAL
TRANSMISSION RADIUS SELECTION
In terms of energy consumption, the minimum transmission
energy required per bit of the sensor node is proportional
to the square of the distance between the nodes. The power
consumption model is shown in Equation 1:

εi,j = εampd2vi,vj (1)

where εamp represents the power gain (in J/bit/m2) and
dvi,vj represents the distance between nodes vi and vj.
In the wireless network, the node energy determines the

service life of the whole network. Therefore, this paper stud-
ies energy consumption as the first optimization goal, and the
energy consumption in the downlink transmission process is
different from the uplink. Since the amount of data in the
downlink is fixed by K (in bit), the energy consumption E
of each data transmission is as shown in Equation 2:

E = Kεampd2vi,vj (2)

According to Equation 2, since the data amount K and the
power gain Eamp are constant, the transmission distance C
determines the transmission energy consumption of the real
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FIGURE 2. Belt-area node coverage schematic diagram.

network. The problem of optimizing the transmission energy
consumption of the entire network is transformed to the prob-
lem of selecting the optimal forwarding radius. To study this
problem, the following definitions are used:
Definition 1: Assuming α is the energy efficiency param-

eter in the wireless network data transmission process. If the
node transmits with radius dcov, the number of nodes that
the transmission radius can cover is NcoV, then the energy
consumed per bit of a node is α, which is expressed as:

α =
εampd2cov
Ncov

(3)

The smaller α is, the less energy is consumed per bit of
transmission, and the higher the energy utilization efficiency.

A very small number of nodes at the belt intersection
are removed in the BAWSNs, and the remaining nodes are
evenly distributed in the belt-area. Assuming that the distance
between adjacent nodes is d . The coverage of nodes by a node
with a specified transmission radius is illustrated in Fig. 2.

As shown by the node coverage of the strip region in Fig. 2,
the transmission radius dcov and the number of nodes it covers
Ncov are related as follows:

Ncov = 2
⌊
dcov
d

⌋
(4)

The total amount of code updated during the network
update process is K , α is the energy consumed per bit per
node, then the total energy consumed by the entire network
update process is:

E total = KNα (5)

The number of updated codesK and the number of network
nodes N are both constant, and the minimum energy of the
entire network update process can be obtained as long as the
energy value α value is minimized.

The relationship between the transmission radius dcov and
the number of nodes Ncov it covers, given by the main body

FIGURE 3. Data transmission delay diagram.

equation (4), can be transformed as follows:

α =
εampd2cov
Ncov

=
1
2
εampd2cov

⌊
d
dcov

⌋

≤
1
2
εampd2cov

d
dcov

≤
1
2
εanpddcov (6)

It can be seen from the above equation that Eamp and d are
constants, and the size of the energy efficiency parameter α
depends on the selection of the transmission radius dcov, and
the minimum value of the radius is d . Based on the above
relationship, this conclusion can be get: if the belt monitoring
area nodes are evenly distributed, the total energy that is
consumed for transmitting the entire network update using
the transmission radius d is minimal.

The entire BAWSNs is represented by G(V ,E), wherein
V = {v1, v2, · · · , vN } represents a set of nodes and
E represents the set of edges. We select K nodes from
the set of nodes, V to be built and denote them as B =
{b1, b2, · · · , bK }. Assuming that the maximum reliable trans-
mission radius of the node and the distance between adjacent
nodes are both d , dvi,bj represents the shortest non-cyclic path
length of node vi and base station bj.
The data forwarding delay of BAWSNs is directly related

to the node forwarding radius and the number of forward-
ing nodes. If the maximum reliable transmission radius is
d , the time that is taken for data to be forwarded by each
intermediate node during network data transmission is 1t .
The complete process is illustrated in Fig. 3.

According to the transmission process that is illustrated
in Fig. 3, the data transmission time T (vi, b) of node vi and
base station bj can be expressed as follows:

T (vi, b) =
dvi , b

d
·1t (7)

The network data forwarding delay that is obtained via
equation (1) is linear in the distance between the node and
the base station. Therefore, the time optimization problem
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is converted into a distance optimization problem. In each
round of network data communication, the data forwarding
time depends on the farthest node from the base-station set,
namely, B = {b1, b2, · · · , bK }. Therefore, d(v,B) represents
the shortest distance of each base station in the base-station
set, namely, B, to a specified node, namely, v, which is
expressed as follows:

d(v,B) = min
v∈V

{
dv,b1 , dv,b2 , · · · , dv,bK

}
(8)

Then, according to equation (8), in selecting the base-
station set Bi, the largest distance, which is denoted as d imax,
from base-station set Bi among all nodes in the network can
be expressed as follows:

d imax = max
v∈V

d (v,Bi) (9)

The optimization objective in this paper is to select the base
station set, namely, B∗, that minimizes the farthest distance,
namely, d imax, from base station set Bi among all the nodes in
the network as follows:

min d imax

s.t. ∪civi = Bi
ci = {0, 1}∑

ci = K

1 ≤ i ≤ N (10)

In the above equation, ci denotes the location factor and
subscript i represents the ID of the corresponding selected
node, namely, vi. If node vi has been selected as the base
station location, ci = 1 ; if it has not been selected, ci = 0 .
And Bi denotes the set of base stations selected from the set
V . Equation (10) shows how to select the appropriate base
stations set Bi from the set V such that the distance d imax of
any node v from its nearest base station is the smallest. The
problem that is defined above is a combinatorial optimization
problem and the above model must be simplified.

C. SIMPLIFIED MODEL
In the BAWSNs data transmission, for a single base station,
the convergence time of each round of data transmission to the
base station is related to the longest non-cyclic path between
the base station and the node in the entire network. Therefore,
the longest non-cyclic path length of the node is defined as
follows:
Definition 2: L represents the longest non-cyclic path

length between nodes in the entire graph G and can be
expressed as follows:

L = argmax
{
dvi,vj |vi, vj ∈ V

}
(11)

The following lemma follows from the relationship
between Definition 1 and the transmission time, which is
expressed in equation (7).
Lemma 1: Under a single base station, the shortest time,

namely, T ∗, of the entire network data forwarding delay and

the longest non-cyclic path length, namely, Lmax between the
nodes in the entire network G are related as follows:

T ∗ =
⌈
L

2d

⌉
·1t (12)

(The proof is presented in Appendix)
According to Lemma 1, in the problem of efficiently deter-

mining a single base station location time, the optimal base
station is located halfway down the longest non-cyclic path
in network graph G. The problem of location selection is
simplified to the longest non-circulating loop problem in the
network graph G, for which current research is relatively
mature.

D. MULTI-BASE-STATION TIME-EFFICIENT LOCATION
MODEL
The multi-base-station time-efficient location model adopts
the strategy of divide and conquer. The graph, namely,
G, divides the edge set, namely, E , into a subset of connected
edges: {E1,E2, · · · ,EN }. According to the subset, a plurality
of the derived subgraph sets, namely, {G1,G2, · · · ,GN }, are
segmented and the middle node set of each derived sub-
graph is {V1,V2, · · · ,VN }. To divide the graph G into K
subgraphs, K base stations are selected, namely, K subgraphs
are selected from the plurality of connected derived subgraph
sets, namely, {G1,G2, · · · ,GN }, such that the K subgraph
node sets satisfy ∪Vi = V . According to Lemma 1, the sub-
graph data transmission time, namely, Ti, is determined by the
longest non-cyclic path length, namely, Li, in its subgraph.
The optimal selection method for the shortest non-cyclic
path Li in each derived subgraph Gi and the shortest time
for solving the network update under the multi-base-station
distribution can be rewritten as follows:

minL imax

s.t. ci = {0, 1}

∪ciVi = V∑N

1
ci = K

1 ≤ i ≤ N (13)

The above problem is difficult to solve due to too few
constraints and too large a search space for polynomial time.
According to the characteristics of the graph G, the con-
straints of the optimization target of the above problem can
be further tightened. First, from Definition 1 and conclusion,
the following lemma can be obtained:
Lemma 2: If the longest non-cyclic path in an undirected

simple graphG is L, ifG is divided into K derived subgraphs,
namely, Gi, and if Li is the length of the longest non-cyclic
path in subgraph Gi, then

∑K
i=1 Li ≥ L. (The proof is

presented in Appendix)
Lemma 3: If the graph G is divided into subgraphs of K

longest non-cyclic path lengths, the longest subgraph length,
namely, Li, for each subgraph Gi is: Li ≥

⌊ L
K

⌋
. (The proof is

presented in Appendix.)
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From Lemma 3, we conclude that the lower limit of the
optimal solution of the problem is ∀i 6= j,Li = Lj =

⌊ L
K

]
.

Then, the problem can be transformed into a subgraph set,
namely,

{
G∗1,G

∗

2, · · · ,G
∗
K

}
, that divides the graph G(V ,A)

into K longest non-cyclic paths that are each of length (1 +
1)
⌊ L
K

⌋
, which corresponds to the longest non-circulating

path length when the optimal subgraph is divided. To solve
this problem, we specify a set of subgraph nodes, namely,
S = {S1, S2, · · · , SN }, that are centered on each node in graph
G and have a path length of (1+1)

⌊ L
2 K

⌋
to the node, where

Si can be formally defined as follows:

Si = {vi} ∪
{
vj|dvi,vj ≤ (1+1)

⌊
L
2K

⌋}
(14)

Then, the problem can be expressed as follows:

min max Li
ci = {0, 1}

V = ∪
Si⊆V

ciSi

s.t.
∑N

1
ci = K

Si = {vi} ∪
{
vj
∣∣dvivj ≤ (1+1)

∣∣ L
2K

⌋}
1 ≤ i ≤ N (15)

In the above equation, Si is a set of nodes that were selected
within the optimal radius

L∗i
2 centered on vi; hence, vi is the

optimal base station position that corresponds to node set Si.
Then, for the optimal node set S∗i , which satisfies the optimal-
ity condition that is specified above, the set

{
v∗1, v

∗

2, · · · , v
∗
K

}
of the central nodes v∗i that correspond to each optimal node
set S∗i is the final optimal base-station set:

{
b∗1, b

∗

2, · · · , b
∗
K

}
.

E. NP-COMPLETENESS PROOF
To prove the NP-completeness property of problem (13),
we must first prove that the problem belongs to the NP class
of problems. If it can be reduced to an existing NP-complete
problem, it is also NP-complete because it can be proven
to satisfy the NP-completeness conditions without loss of
generality.

To prove that the problem is NP-complete, we prove that it
reduces to the subset sum problem, which defined as follows:
For a finite set X ⊂ N and a known target t ∈ N , does there
exist a subset X ′ ⊆ X such that t is equal to the sum of its
elements? This problem is expressed as follows:

SUBSET-SUM = 〈X , t〉:there is a subset X ′ ⊆ X that
satisfies t =

∑
x∈X x .

Then, problem (15) is defined as the following
NP-complete problem: K -GRAPHCUT = 〈S,V 〉 :there is a
subset S ′ ⊆ S of elements K that satisfies V =

⋃
vi∈S ′ Si.

Proof: First, we prove that problem (11) belongs to the
class of NP problems. For an instance of the problem, namely,
〈S,V 〉, let subset S ′ be the optimal subset. With a verification
algorithm, it is possible to check whether V =

⋃
vi∈S ′ Si in

polynomial time. As shown in Fig. 4, (b) and (c) illustrate

FIGURE 4. Schematic diagram of subgraph segmentation and division.

the optimal cuts into two subgraphs of (a). The correctness
can be verified within polynomial time complexity; hence,
K -GRAPHCUT is an NP problem.

Next, it is reduced to the subgraph problem according to
the corresponding constraint. Then, we only need to prove
that SUNBSET-SUM ≤ p K -GRAPHCUT: Given a set of
problem variable sets X = {x1, x1, · · · , xn}, there exists a
subset X ′ ⊆ X such that the sum of its elements is t . The
statistical algorithm constructs an instance, namely, 〈S,V 〉,
of K -GRAPHCUT such that there exists S ′ ⊆ S that satisfies
V =

⋃
Si∈S ′ Si .

The following SUNBSET-SUM is reduced to problem (15)
via the following two steps, which can be completed in poly-
nomial time. First, the following two constraints are satisfied,
as illustrated in Fig. 5:

<1> The subset selection parameter, namely, ci, in prob-
lem (13) corresponds one-to-one with the elements in set
{x1, x1, · · · , xn};

<2> The value of ci satisfies the following conditions.
IfK -GRAPHCUT has an optimal subgraph partitioning set{
V ∗1 ,V

∗

2 , · · · ,V
∗
K

}
with K partitions, according to the con-

straint in problem (11), there must exist sets
{
c∗1, c

∗

2, · · · , c
∗
K

}
and

{
V ∗1 ,V

∗

2 , · · · ,V
∗
K

}
that are in one-to-one correspondence

and satisfy c∗i = 1, and according to the constraints in condi-
tions <1> and <2>, set

{
c∗1, c

∗

2, · · · , c
∗
K

}
must correspond to{

x∗1 , x
∗

2 , · · · , x
∗
K

}
and x∗i = 1 must be satisfied. Therefore,
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FIGURE 5. Node and base station association graph for the subset
problem.

the optimal partition subset, namely,
{
V ∗1 ,V

∗

2 , · · · ,V
∗
K

}
,

of problem (15) satisfies constraints <1> and <2>. Thus, t =
K , that is, for the set {x1, x1, · · · , xn}, there is a subset X ′ ⊆ X
that satisfies the constraint, and K =

∑
x∈X ′ x is satisfied.

To obtain the solution, namely,
{
V ∗1 ,V

∗

2 , · · · ,V
∗
K

}
, of the

K -GRAPHCUT in problem (15), it is necessary to solve the
subset problem, namely, to satisfy K =

∑
x∈X ′ x, where the

number of elements in subset X ′ is K, which is expressed
as |X ′| = K , which follows from the NP-completeness of
the subset problem. K -GRAPHCUT in problem (15) is also
NP-complete. Thus, the proposition is proved.

IV. DESIGN AND ANALYSIS OF ALGORITHMS
A. ACCURATE ALGORITHM WITH EXPONENTIAL TIME
COMPLEXITY
Suppose that for each node vi in G, the set of nodes within
radius

⌊ L
2 K

⌋
from the base station is calculated by vi. Next,

a full combination of K base stations is selected from n nodes
and a combination of ∪Si = V is selected among all the
combined base-station combinations.

In this paper, an accurate algorithm with exponential time
complexity is proposed. First, all the subgraph sets, namely,
S = {S1, S2, · · · , SN }, in the graph G that are centered
on each node and have path length

⌊ L
2 K

⌋
to the node are

specified. Then, K base stations are selected from n nodes.
All combinations of sets

RKn =


r11 r12 · · · r1K
r21 r22 · · · r2K
...

...
. . .

...

rϕ1 rϕ2 · · · rϕK


are formed, where ϕ = CK

n and r is the node ID number and
the merged set, which is denoted as OKi , is calculated via the
following expression:

OKi = OK−1i ∪ Sri,K (16)

The solution method for Sri,K is based on the distance matrix,
namely,

D =


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . . d3n

dn1 dn2 · · · dmn

 ,
between the nodes in the network and the longest non-circular
path length, namely, L, of the network. According to equation

(14), Si = {vi} ∪
{
vj|dvi,vj ≤

[ L
2 K

]
, vi, vj ∈ V

}
: centring on

the node vi, row i is traversed to identify all nodes vj such
that dvi,vj ≤

⌊ L
2 K

⌋
and the set of all nodes vj that satisfy this

condition is the set Si.

Algorithm 1 : The Optimization Algorithm of the Model

Input: A =
(
ai,j
)
n×n: Initial adjacency matrix;

D =
(
di,j
)
n×n: Distance matrix;

Output: S∗:Final base station location set.
Initialization: O0

i ← ∅;
n = CK

N : The iteration of the algorithm;
RKN : Select all combinations of base stations from the set of

nodes;
1: EXACT-BASE (RKm);
2: for i = 1 to n do
3: for j = 1 to K do
4: if OKi == V then
5: return ri1, ri2, · · · , riK
6: end if
7: end for
8: end for

For the above algorithm, the time complexity of the out-
ermost loop is O

(
CK
n
)
, namely, O

(
n!

K !(n−K )!

)
; the time com-

plexity of the second-layer loop is O(K ); and the complexity
of the Sri,j algorithm is O(n). Therefore, the time complexity

of the entire algorithm isO
(

K ·n·n!
K !(n−K )!

)
, which can be reduced

to O
(

n·n!
(K−1)!(n−K )!

)
. When the value of K is small, the time

complexity is polynomial. When K is large, it is exponential.
In the problem that is studied in this paper, the underground
area is larger. To reduce the data transmission time, many
base stations are required as the initial transmitting nodes of
the data transmission code and the value of K must be large;
hence, the complexity is exponential for the problem that is
studied in this paper.

B. GRADIENT LOOP-BASED (1 + ε) ALGORITHM
For the above algorithm, which is of exponential time com-
plexity, it is necessary to traverse the entire base-station
combination and its coverage space. The search space is
large, and the convergence speed is too low for the optimal
solution to be obtained in a short time. For converging to the
optimal solution as quickly as possible, this paper presents a
(1 + ε) approximation algorithm that is of polynomial time
complexity and is based on gradient descent. The algorithm
mainly improves the convergence speed from two aspects:
the gradient descent algorithm is used to reduce the search
space for the base-station combination and the base-station
coverage radius is adjusted to increase the convergence speed
of the algorithm.

The core strategy of gradient descent is to find the optimal
solution along the direction of gradient descent. It is formally
expressed as follows:

ak+1 = ak + ρks(k) (17)
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FIGURE 6. Graph of the boundary nodes.

where s(k) represents the negative direction of the gradient
and ρk represents the search step size. For each round of
the search process for the problem that is studied in this
paper, once the initial base station, namely, b0, has been
determined, it is necessary to select an appropriate gradient
direction, namely, s(k), and search with step length ρk among
the remaining nodes. Finally, the algorithm identifies the
optimal base station as quickly as possible.

1) SELECTION OF THE STEP SIZE ρK FOR THE GRADIENT
ALGORITHM
Suppose the nodes at the ends of the longest non-cyclic path
of the subgraph are vp and vq. According to Lemma 3, dbi,vp =
dbi,vq ≥

⌊ L
2 K

⌋
. Then, for the problem that is studied in this

paper,Gi is divided based on base station bi and the subgraph
that is obtained by dividing the radius by dqi,vp . According
to the distance between the base station bi and the boundary
nodes in subgraphGi, the boundary nodes are divided into the
following two cases:

(1) The first is the set of boundary nodes of graph G that
are contained in graphGi. However, not all the adjacent nodes
of these nodes will become connection points between the
two subgraphs in graph Gi. Therefore, the distance between
the base station and such boundary nodes is independent of
the distance between the two subgraph base-stations. This is
beyond the scope of our research;

(2) The second set of boundary nodes is divided into
subgraphs and represented by Z = {z1, z2, · · · , zk}. Among
the adjacent nodes, there are nodes that belong to another
subgraph, as shown in illustrated 6:

According to the above analysis, for subgraph Gi, the dis-
tance between base station bi and any node zj in the set of
boundary points of the second category satisfies dbi,zj ≥⌊ L
2 K

⌋
and the following inference can be drawn:

Inference 1: If bi and bj are two adjacent optimal base
stations in graphG, then the distance, namely, dbi,bj , between
bi and bj satisfies dbi,bj ≥

⌊ L
K

⌋
.

From inference 1, it follows that the lower limit of the value
of search step ρk is

⌊ L
K

⌋
. Via this approach, the combination

case in which the distance between adjacent nodes is less than⌊ L
K

⌋
is excluded from the total combination space of nodes,

which substantially reduces the size of the search space.

2) (1+ ε) APPROXIMATELY OPTIMAL SELECTION OF THE
OPTIMAL SEARCH STEP SIZE ρ∗K
The above inference only specifies the lower limit of the
search step; it does not specify the optimal search step size.
It remains necessary to filter the optimal search step size to
obtain the base-station distribution under the optimal search
step size, which is costly. For the selection of the optimal step
size, the (1 + ε) approximately optimal selection method is
proposed.

According to Inference 1, the longest non-circulating path
distance between adjacent optimal base stations b∗i and b∗j
is the optimal step length ρ∗k , namely, ρ∗k = db∗i ,b∗j . In the
problem that is studied in this paper, the graph G is divided
into K subgraphs that have the longest non-cyclic path, are
of equal length, and minimize the longest non-cyclic path of
each subgraph. To ensure that the longest path of the subgraph
is as short as possible, repeated nodes should be avoided
between the subgraphs. It is assumed that zi̇ is a subgraph that
is centered on base station b∗i to obtain a subgraph boundary
node of the first type and zj̇ is a subgraph that is centered
on base station b∗j for obtain a subgraph boundary node of
the second type. According to the division of the subgraph,
for the subgraph that is obtained by dividing G with the base
station as the center and the boundary node of the second
type, which is denoted as dbi,zi , as the radius, the following
inferences are drawn:
Inference 2: Suppose zi divides the subgraph with the

base station b∗i as the center to obtain a subgraph boundary
node of the second type and suppose zj is a subgraph that
is centered on the base station b∗j and is used to obtain a
subgraph boundary node of the second type. Then, db∗i ,zi and
db∗j ,zj are the radii of the subgraphs of base stations b

∗
i and b

∗
j ,

respectively, which satisfy the following:

db∗i ,zi = db∗j ,zj =
db∗i ,b∗j
2

(18)

For the problem that is studied in this paper, the shorter the
distance dbi,bj between adjacent base stations, the shorter the
time consumption for data transmission; however, the shorter
the search step, the slower the search convergence. According
to Inference 1, the theoretically optimal step size is

⌊ L
K

⌋
;

however, in searching with step size
⌊ L
K

⌋
in an underground

wireless network, the optimal base-station distribution is not
realized and the convergence speed is too slow.

To increase the convergence speed of the algorithm,
the search step is reduced to (1+ ε)

⌊ L
K

⌋
and H (

⌊ L
K

⌋
) is used

to denote the convergence time when the search step size is⌊ L
K

⌋
. H

(
(1+ ε)

⌊ L
K

⌋)
denotes the convergence time under

the reduced search step size. The following lemma compares
H
(
(1+ ε)

⌊ L
K

⌋)
with the original convergence time:
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Lemma 4: The following inequality holds:

H
(⌊

L
K

⌋)
) ≤ (1+ ε)H

(
(1+ ε)

⌊
L
K

⌋)
(19)

Lemma 5: If the network topology of the graph G has been
determined, the data transmission time T

(
(1+ ε)

⌊ L
K

⌋
, S
)
,

under the base-station distribution that is obtained by the
reducing search step size to (1 + ε)

⌊ L
K

⌋
and the data trans-

mission time T (d∗, S∗) under the optimal base-station distri-
bution are related as follows:

T
(
(1+ ε)

⌊ L
K

⌋
, S
)

T (d∗, S∗)
≤ (1+ ε) (20)

According to Lemma 4 and Lemma 5, gradient search
with the reduced step size of (1 + ε)

⌊ L
K

⌋
can yield higher

search efficiency; however, the accuracy of the algorithm is
reduced. To more accurately approximate the optimal step
size between adjacent base-stations, once the topology of
the graph G network has been determined, there must exist
a set of optimal base station sets, namely, S∗. Subgraph
partitioning with the optimal radius, namely, r∗, centered on
each base station in S∗ minimizes the longest non-cyclic path
in each subgraph. According to Lemma 2, the optimal radius
satisfies r∗ ≥

⌊ L
2 K

⌋
. According to Inference 2, the relation-

ship between the division radius and the distance between
the adjacent base stations is d∗ = 2 r∗ and d∗ ≥

⌊ L
K

⌋
.

It is assumed that a set of optimal base stations is obtained
using the reduced step size of (1+ ε)

⌊ L
K

⌋
and all nodes can

be covered by the division radius of (1 + ε)
⌊ L
K

⌋
; however,

the shortest division radius is not guaranteed. Combined with
the above relationships, it follows from (1 + ε)

⌊ L
2 K

⌋
≥ r∗

that: ⌊
L
K

⌋
≤ d∗ ≤ (1+ ε)

⌊
L
K

⌋
(21)

According to the clamping criterion, the value of ε is
continuously adjusted to approximate the optimal distance d∗

of the adjacent base station and the iterative process of its
parameters is expressed as follows:

ε(k) = ε(k−1) −1 (22)

The following conditions are satisfied:

ε∗ = arg(1+ ε)
⌊
L
K

⌋
= d∗ (23)

where 1 is the E adjustment parameter. The distance
between adjacent nodes is assumed to be 1, which is also the
minimum unit of the division radius; hence, the adjustment
condition of parameter 1 is as follows:

(1+ ε −1)
⌊
L
K

⌋
= (1+ ε)

⌊
L
K

⌋
− 1

1 ·

⌊
L
K

⌋
= 1

1 =

⌈
K
L

⌉
(24)

3) SELECTION OF GRADIENT DESCENT DIRECTION S
(k)

After the search step has been determined, the selection of
the gradient direction directly affects the speed at which
the algorithm converges. Therefore, the greedy strategy is
adopted for selecting the gradient descent direction, which
is denoted as s(k), and the number of nodes is constant for
the graph G. After the initial base station has been selected,
the candidate base station that is adjacent to the initial base
station is searched using step size ρk as the search radius.
To avoid duplicate coverage of nodes in neighboring base sta-
tions, the neighboring base stations cover the network nodes
with a radius of ρk2 . The base stations that can cover additional
nodes are the optimal direction for gradient descent, namely,
s(k) solves the following optimization problem:

max
(
N i
cover

)
s.t. si = {vj|dbi,vj ≤

ρk

2
}

N i
cover = |si| (25)

whereN cover is the number of nodes that the next base station
covers with a radius of ρk2 .

4) INITIAL BASE STATION SELECTION
After the search step size, namely, ρk , and the gradi-
ent descent direction, namely, s(k), have been determined,
the selected position of the initial base station, namely, b0,
determines the positions of the remaining K − 1 base sta-
tions, which is essential for location selection. According to
Inference 2, the distance between base station bi and bound-
ary node of the second type zi of the optimally partitioned
subgraph and the search step size, namely, ρk , are related as
dbi,zi =

ρk
2 . It is shown that for each subgraph, the optimal

base-station position is of distance ρk
2 from the boundary

node. Combining with the greedy gradient descent direction,
it is desirable to have as many base stations as possible to
cover additional nodes with the division ρk

2 when selecting
the base station. This involves finding the boundary nodes
of the first type in a subgraph. The boundary nodes of the
first type are boundary nodes of graph G. When they are
divided into subgraphs, the base station cannot divide further
than by ρk

2 . These nodes cause insufficient division; therefore,
when selecting the initial base station, a node that is separated
from the boundary nodes of the first type by ρk

2 is selected,
as illustrated below.

C. ALGORITHM DESCRIPTION
The solution steps and pseudocode of the (1 + ε) approxi-
mately optimal algorithm that is based on gradient descent
are summarized as follows:

1) First, the network topology and distance matrix of
graph G are specified.

2) Identify the boundary nodes of the first type in graph G.
3) In the first round of siting, the step-size lower limit

⌊ L
K

⌋
and the step length ρ0 are determined according to the longest
path L and the number of base-station addressK in the figure.
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FIGURE 7. Initial base station selection graph.

4) According to Inference 1, the initial base station b0 is
determined in conjunction with the initial step size ρ0 and
the boundary nodes of the first type.

5) Select the gradient descent direction S
(1)

according to
equation (21).

6) According to the gradient descent algorithm, for which
the iteration step is expressed as bk+1 = bk + ρks(k), the best
base station set S(1) is identified.
7) The base station set S(1) is judged. If the current set

of base stations is centered on S(1) elements and the set of
nodes covered by

⌊ L
2 K

⌋
, which is the coverage radius is V ,

the current base station set is output as the best base-station
set. Otherwise, proceed to the next step.

8) The update search step length ρk = (1 + k1)ρ0 is
iteratively modified by applying equation (18) to modify the
parameter k . Then, proceed to 3) to perform the above steps
to select the base station S(k) under the optimal search step.
Finally, apply 7) to obtain a set of optimized base stations that
satisfy the conditions.

The pseudocode for the entire algorithm is as follows:
The complexity of the above algorithm is mainly attributed

to the first filtering of the three-layer loop of the optimal base-
station location set when the search step size is (1+ ε)

⌊ L
K

⌋
.

The innermost loop is used to determine the direction of
gradient descent and the selection is based on the num-
ber of covered nodes; the algorithmic complexity is O(n).
The second-layer loop mainly identifies the candidate base-
station node, for which the distance, according to the previous
iteration, is (1+ ε)

⌊ L
K

⌋
; the algorithmic complexity is O(n).

The outermost loop mainly controls the number of base sta-
tions; and its algorithmic complexity is O(K ).
Therefore, the complexity of filtering the three-layer loop

of the optimal base station location set isO
(
Kn2

)
if the search

step size is (1+ε)
⌊ L
K

⌋
. In addition, to determine whether the

selected base station set can completely cover the graph G,
it is determined in the second layer loop that the K base-
stations that can be selected are centered on the node that is

Algorithm 2 : Gradient Descent Location Algorithm
// 1 : Adjustment parameters
// ρk : Search step size
// k : Step growth
// BS−selected[K ] : Base station selection set
// Full_cover[n] : Node coverage set
// Node_cover[k] : Number of nodes with radius ρk2
covered by vj

// CoverNummax : Maximum number of coverage
// b0 : First type boundary node
Input: A =

(
ai,j
)
n×n: Initial adjacency matrix;

D =
(
di,j
)
n×n: Distance matrix;

Output: S∗:The final set of base-station locations.
Initialization: 1 =

⌈K
L

⌉
, ρk = (1+ k1)

⌊ L
K

⌋
,

k = 0, BS_selected[K ] = zeros[K ],
N [n] = 0,Nmax = 0,
Full_cover[n] = zeros[n]

1: while Full_cover[n] 6= ones[n] do
2: for i = 1 to K − 1 do
3: for j = 1 to n do
4: for u = 1 to n do
5: if dS[i],vj = ρk and dvj,vu ≤

ρk
2 then

6: Node_cover[j] = Node_cover[j]+ 1
7: end if
8: if Node_cover[j] ≥ CoverNum_max then
9: CoverNummax = Node_cover[j]

10: BS_selected[i+ 1] = j
11: end if
12: for W = 1 to n do do
13: if dS[i],vw ≤

ρk
2 then

14: Full_cover[w] = 1
15: end if
16: end for
17: end for
18: end for
19: end for
20: k = k + 1
21: ρk = (1+ k1)

⌊ L
K

⌋
22: end while
23: return BS_selected[K ]

covered by the partition radius (1+ ε)
⌊ L
K

⌋
and the algorith-

mic complexity is O(Kn). Therefore, the complexity of the
optimal base station location set algorithm is O

(
Kn2 + Kn

)
if the search step size is (1+ ε)

⌊ L
K

⌋
.

To identify the optimal base-station location, a recursive
algorithm is applied. Each time a set of base station, namely,
S(i), is obtained with a step size of (1 + ε)

⌊ L
K

⌋
, a recursion

must be performed in the address selection algorithm. If the
number of recursions isM , the complexity of the whole algo-
rithm is

∑M
i=1

(
Kn2 + Kn

)
. The adjustment of each parameter

by1 =
⌈K
L

⌉
changes the search step as ρk+1 = ρk−1 and the

search step satisfies ρk+M = ρk −M ≥ 0, namely, ρk ≥ M .
Due to the properties of the graph G, the maximum value of
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FIGURE 8. Time performance of the OMSS algorithm as a function of the
network complexity.

the search step is the longest non-circulating path length l
of G, namely, ρk ≤ l, and M ≤ ρk ≤ l is satisfied; thus,∑M

i=1
(
Kn2 + Kn

)
≤ l

(
Kn2 + Kn

)
.

Therefore, the complexity of the complete algorithm is
O
(
lKn2 + lKn

)
, where lK is a constant term and O(lKn) can

be neglected if n is large. In summary, the complexity of the
complete algorithm is O

(
kn2
)
.

V. SIMULATION EXPERIMENTS AND ANALYSIS
In this paper, MATLAB 2018b which developed by Math-
Works was used for algorithm simulation verification. A CPU
was used with an Intel core i7-6700HQ processor with a
main frequency of 2.6 GHz and a maximum frequency
of 3.5 GHz. The GT-ITM Topology Generator was used to
generate the network topology. According to the number of
nodes, the number of selected base stations, and the network
complexity, a comprehensive simulation verification of the
performance of the OMSS algorithm is conducted. The com-
plexity of the network is calculated by dividing the sum of the
degrees of all nodes in the network by the number of vertices,
as expressed in equation (26).

θ =

∑n
i=1 bi
n

, θ > 1 (26)

where bi represents the degree of node ni and θ represents
the network complexity. We select 100 nodes and compare
the influence of the network complexity on the performance
of the algorithm under the same number of nodes and various
numbers of base stations by adjusting θ and the number of
base stations. The results are plotted in Fig. 8.

According to Fig. 8, the calculation time of the algorithm
is proportional to the network complexity: the higher the
network complexity, the longer the calculation time. The
number of base station selections also has a substantial impact
on the performance of the algorithm. If the number of network
nodes is the same as the network complexity, the more base-
station selections, the longer the algorithm calculation time.

FIGURE 9. Comparison of algorithm location accuracies under various
numbers of nodes and numbers of base stations.

To further evaluate the effects on the time performance of
the OMSS algorithm of the number of nodes, the number of
selected base stations and the network complexity, the time
for selecting the optimal base station with the OMSS algo-
rithm is measured under various values of the variables. The
results are listed in Table 1.

According to the data in Table 2, when other conditions are
unchanged and the number of nodes is increased, the growth
rate of the algorithm calculation time is lower than the growth
rate of the number of nodes and the algorithm has higher
stability relative to the number of nodes.

To evaluate the accuracy of the base-station location
selection algorithm, we compare it with various p-center
location algorithms: the classical algorithm for the p-
center problem, namely, the Scr algorithm; the CDS algo-
rithm; and the CDSh + algorithm, which is based on
CDS and for which the source code is available from
(https://github.com/jesgadiaz/vertex-k-center). The source
code for the Binary algorithm is obtained from the URL
(https://www.tau.ac.il/∼chenr/or_research.html) of R. Chen.
To objectively evaluate the performances of the algorithms
for a network with a specified topology, the minimum-
maximum distance, namely, d∗i , in each algorithm for select-
ing the optimal base station must be compared with the
d∗EXACT -row under the optimal base station that is selected by
the accurate exponential-time algorithm; the ratio is called
the approximate optimal ratio, which is denoted by µ and
formally expressed as follows:

µi =
d∗i

d∗EXACT
(27)

In this paper, the numbers of nodes and base stations are
selected to evaluate the location performance of the algorithm
more comprehensively. The OMSS algorithm and the five
classical algorithms are run on the same network topology
to compare their location performances. Moreover, to ensure
the credibility of the results under the same topology, each
algorithm was run 10 times and the average value was used
to evaluate the performance. The results are plotted in Fig. 9.
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TABLE 1. Time performance of the OMSS algorithm under various numbers of nodes, network complexities, and numbers of base stations.

TABLE 2. Performance comparison of OMSS with other classical algorithm.

To further evaluate the location accuracy of the algo-
rithm as a function of the network complexity, 10 base sta-
tions were selected from 500 nodes under various network

complexities and these results were compared with the results
of the classical algorithms; the comparison results are plotted
in Fig. 10.
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FIGURE 10. Comparison of the algorithms’ siting accuracies under
various complexities.

According to Fig. 9 and Fig. 10, the results of the OMSS
algorithm are closer to the optimal site selection results
than those of the other algorithms under the same network
topology with various numbers of nodes and base stations
and its location accuracy is more stable under various net-
work complexities. To further evaluate the stability of the
OMSS algorithm’s running time, this paper selects various
numbers of network nodes and base stations for running
the OMSS algorithm, the SAA algorithm, CIK algorithm
and the Binary algorithm. The results are shown in table2,
Fig. 11 and Fig. 12.

According to Fig. 9 and Fig. 10, the results of the OMSS
algorithm are closer to the optimal site selection results than
those of the other algorithms under the same network topol-
ogy with various numbers of nodes and base stations, and
its location accuracy is more stable under various network
complexities. To further evaluate the stability of the OMSS
algorithm’s running time, this paper selects various numbers
of network nodes and base stations for running the OMSS
algorithm, the SAA algorithm, CIK algorithm and the Binary
algorithm. The results are presented in Table 2, Fig. 11 and
Fig. 12.

According to Fig. 8, the running time of the OMSS algo-
rithm is much shorter than those of the CDSh+ and EXACT
algorithms and the results of the above simulation experi-
ment demonstrate that the OMSS algorithm exhibits excel-
lent performance in terms of both location accuracy and
computational stability and can satisfy the time- efficiency
requirements for address selection in large-scale BAWSNs.

Table 2 lists the times taken when the number of network
nodes is increased by 8000 from 500 and when the number
of locations is increased from 5 to 20, for selecting the best
base-station location. The data from Table 2 demonstrate
that when the number of locations is fixed, as the num-
ber of nodes increases, the location time of each algorithm
increases overall.When the number of nodes does not change,
the address time of each algorithm also increases within
a range as the number of locations increases. In addition,
according to Table 2, when the number of nodes and the
number of locations have been determined, the OMSS algo-
rithm outperforms the other two algorithms in terms of both
the average location time and the most preferred address
time.

Fig. 11 plots the time consumptions for calculating 2 and
5 optimal node positions for each algorithmwhen the number
of locations is 2 and the number of nodes is from 2000 to
10,000. In Fig. 12, the time consumptionswhen the number of
locations is 2, the number of nodes is from 10,000 to 100,000,
and the algorithm selects 2 and 5 optimal node positions
are plotted. Comparing with Fig. 11, when the number of
locations is fixed and the number of nodes is increased from
2000 to 10,000, the overall site selection time of the algorithm
increases, but the trend is not strong. Comparing Fig. 11 and
Fig. 12, when the number of nodes is unchanged and the num-
ber of selected nodes is increased from 2 to 5, the address time
increases of the SAA algorithm and the CIK algorithm are
larger than that of the OMSS algorithm. Moreover, from the
trends in Fig. 11 and Fig. 12, as the number of nodes increases
and the number of selected sites increases, the time lags of
the other algorithms increase substantially. However, the time

FIGURE 11. Computational times for instances with N ∈ [2000, 6000] and K ∈ {2, 5}.
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FIGURE 12. Computational times for instances with N ∈

[
104, 106

]
and K ∈ {2, 5}.

FIGURE 13. The effect graph of OMSS site selection under the real mine structure.

consumption of the OMSS algorithm does not increase sub-
stantially and the fluctuations are relatively stable. Based on
these simulation results, the OMSS algorithm realizes excel-
lent performance in terms of both location accuracy and com-
putational stability, and can satisfy the address selection time
efficiency requirements of large-scale band-area wireless
networks.

Finally, the topology of a real strip-shaped wireless sensor
network in an underground roadway with an area of 3 km ×
5 km is selected for practical evaluation. The node spacing
is 100 meters and the number of nodes is 225. The network
topology and node distribution are presented in Fig. 10.
The OMSS algorithm is run on this topology under various
numbers of base stations and its running times are plotted
in Fig. 13.

According to the results that are presented in Fig. 13,
under the fixed belt network topology that is illustrated
in Fig. 10, as the number of locations increases, the loca-
tion time of the OMSS algorithm increases and the
two are linearly related for the examined numbers of
locations.

VI. CONCLUSION
In this paper, the problem of base-station location in a
BAWSNs is studied, and the minimum-maximum base-
station discrete p-center location model is established. The
NP-hardness of the belt network location problem is proved.
A (1 + ε) approximation algorithm-OMSS algorithm that
is based on gradient loop descent and has an algorithmic
complexity of O

(
kn2
)
is proposed.
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The results of our theoretical analysis and simulation ver-
ification demonstrate that OMSS can accurately locate the
optimal base station with a low time consumption. Moreover,
this algorithm outperforms the classical algorithms for the p-
center location problem in terms of time consumption and
stability.

In the future, we plan to study the problem of continuous
p-center location for wireless networks in belt regions.

APPENDIX
Lemma 6: Under a single base station, the entire network
forwarding delay time, which is denoted as T ∗, is related
to the longest non-cyclic path length, namely, dmax, between
nodes in the entire network G as follows:

T ∗ =
⌈
dmax

2d

⌉
1t (28)

Proof: In the propagation scenario that is shown
in Fig. 3, the update time, namely, Ttotal, of the entire network
is determined by the base station b and the node vi that is
farthest from it:

Ttotal =
db,vi
d
1t (29)

where db,vi represents the distance between the base station s
and the node vi that is farthest from it.

In the above equation, both d and 1t are constants.
Minimizing the update time Ttotal is equivalent to minimiz-
ing db,vi . The network update must ensure that all nodes
are updated. Therefore, db,vi must satisfy the following
constraint:

db,vi ≥ db,vj
(
vj ∈ V

)
(30)

Due to the parallelism of time, the distance db,vi should
be transmitted in parallel to the two sides or in multiple
directions with the base station b as the center in the update
time Ttotal, where any one of the b, vi directions is assumed to
be b, vi, and the following constraint is imposed:

db,v′i ≥ max db,v′j

(
v′j ∈ V

)
(31)

Combining equation (28) and equation (29) yields:

db,vi + db,vi ≥ max db,vj +max db,vj (32)

Due to the parallelism of the transmission time, db,vi =
db,vi satisfies the following:

2db,vi ≥ max db,vj +max db,vj (33)

Let db,vj denote the length of path R
(
b, vj

)
and db,vj

denote the length of path R
(
b, v′j

)
. Then, paths R

(
b, vj

)
and

R
(
b, v′j

)
are connected end to endwith b as the common node

and the path length is as follows:

dvj,vj ≤ max db,vj +max db,v′j

(
vj, v′j ∈ V

)
(34)

We obtain dmax = dvj,v′j from the definition of dmax. Then,
equation (33) can be rewritten as follows:

2db,vi ≥ max db,vj +max db,v′j
2db,vi ≥ dvj,vj

2db,vi ≥ dmax

db,vi ≥
dmax

2
(35)

According to equation (35), the minimum value of db,vi
is dmax

2 . Then:

minTtotal =
min db,vi

d
t =

dmax

2d
t (36)

The original proposition is proved.
Lemma 7: If the longest non-loop path in an undirected

simple graph G is L, G is divided into K derived subgraphs,
which are denoted as Gi, and li is the length of the longest
non-loop path in subgraph Gi, then:

K∑
i=1

li ≥ L (37)

Proof: The longest non-cyclic path, which is denoted
as w(L), must be separated into segments in the subgraph
Gi and its length is Li, where Li ≤ li. Then,

∑K
i=1 Li ≤∑K

i=1 li because
∑M

i=1 Li = L satisfies
∑M

i=1 li ≥ L and the
proposition is proved.
Lemma 8: If the graph G is divided into subgraphs of

K longest non-cyclic path lengths, the longest subgraph
length li for each subgraph Gi satisfies
li ≥

⌊ L
K

⌋
.

Proof: We divide the graph G into subgraphs with the
longest non-recurring path lengths. If ∀i 6= j, li = lj, then∑K

i=1 li = Ki. According to Lemma 6,
∑K

i=1 li ≥ L and,
hence, Kli ≥ L. Thus, li ≥

⌊ L
K

⌋
and the proposition is

proved.
Lemma 9: The following inequality is satisfied:

H
(
L
K

)
) ≤ (1+ ε)H

(
(1+ ε)

⌊
L
K

⌋)
(38)

Proof: Find the convex hull of the node setV and enclose
the entire graph G by a convex polygon of area S. If the
search step size of the adjacent base station is

⌊ L
K

⌋
, then

the distance between the adjacent base stations, namely, bi
and bj, is

⌊ L
K

⌋
. From Inference 2, the corresponding divi-

sion radius is
⌊ L
2K

⌋
, which is equivalent to base stations bi

and bj being the centers and
⌊ L
2K

⌋
being the radius cov-

erage. The coverage area of each subgraph is π
(
b

L
2 K

⌋
)2;

thus, the convergence speed H
(
b

L
2 K

⌋
) of the algorithm is as

follows:

H (
⌊
L
2K

⌋
) =

S
π (L/2Kc)2

(39)
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Similarly, the convergence speed H
(
(1+ ε)

⌊ L
K

⌋)
is as

follows:

H
(
(1+ ε)

⌊
L
K

⌋)
=

S
π [(1+ ε)bL/2Kc]2

=
S

π (1+ ε)2bL/2Kc2

=
H (L/Kc)
(1+ ε)2

≥
H (L/Kc
(1+ ε)

(40)

Then, we obtain H
(⌊ L

K

⌋)
≤ (1+ ε)H

(
(1+ ε)

⌊ L
K

⌋
). The

lemma is proved.
Lemma 10: If the network topology of the graphG has been

determined, the data forwarding time T
(
(1+ ε)

⌊ L
K

⌋
, S
)

under the base station distribution is obtained by reducing the
search step size to (1+ ε)

⌊ L
K

⌋
, which has the following rela-

tionship with the data forwarding time, namely, T (d∗, S∗),
under the optimal base station distribution:

T
(
(1+ ε)

⌊ L
K

⌋
, S
)

T (d∗, S∗)
≤ (1+ ε) (41)

Proof: The base station distribution that is obtained by
searching with step size (1 + ε)

⌊ L
K

⌋
yields the longest divi-

sion radius of the base station, namely, (1+ ε)
⌊ L
2K

⌋
, and the

longest division radius of the base station under the optimal
base station distribution is d∗

2 . According to the process of
data transmission, the data transmission time of each sub-
graph is equal to the coverage radius of each subgraph base
station:

T
(
(1+ ε)

⌊
L
K

⌋
, S
)
= (1+ ε)

⌊
L
2K

⌋
(42)

T
(
d∗, S∗

)
=

d∗

2
(43)

The following relationship follows from Lemma 7:⌊
L
2K

⌋
≤
d∗

2
≤ (1+ ε)

⌊
L
2K

⌋
(44)

Finally, we obtain the following:

T
(
(1+ ε)

⌊
L
K

⌋
, S
)
≤ (1+ ε)T

(
d∗, S∗

)
(45)

The proposition is proved.
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