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ABSTRACT This paper addresses a linearized interactive dispatching model developed between active
distribution network (ADN) and virtual micro-grid (VMG). To make such concept, a bi-level framework
is adopted based on the analytical target cascading (ATC) method. In this model, the lower level dispatches
each element in VMG from the standpoint of VMG’s own interests, and an objective function of maximizing
the VMG’s benefits is constructed. The upper level dispatches each element in ADN from the perspective
of ADN’s economy and reliability, on this basis, a synthetic objective function is built. In addition, the ACT
method is used to solve the coupling problem caused by the existence of interaction variables between the
upper and lower levels, and ultimately to achieve win-win cooperation between ADN and VMG levels.
Moreover, to reduce the computational complexity of themodel and speed up the solving process, the second-
order cone programming is employed in the proposed model to linearize the power flow calculation of the
distribution network. Finally, simulation studies are conducted on the IEEE 18-bus distribution test systems
to illustrate the feasibility of the proposed model. The stability and effectiveness of the model are verified
by various comparisons.

INDEX TERMS Active distribution network, virtual micro-grid, bi-level model, analytical target cascading,
second-order cone programming.

NOMENCLATURE
ABBREVIATIONS
ADN Active distribution network
VMG Virtual micro-grid
ESSs Energy storage systems
RES Renewable energy sources
CB Capacitor banks
DG Distribution generation
PV Photovoltaic
ATC Analytical target cascading
RL Response load

SETS
G Set of VMG in the lower model
Di/Qi/Ei Set of DG/PV/ESS in the VMGi

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Jahangir Hossain .

H Set of scheduling time
N Set of distribution network nodes
S/K Set of DG/ESS in ADN
u(j) The terminal node set of the branch with j as

the first node in power grid
v(j) Terminal node set of the branch with j as the

first node in power grid

PARAMETERS
Cdis,t Electricity purchase price of VMG at

time t
Crl,t RL unit response cost at time t
CPV ,t The unit output cost of PV at time t
Re Transaction price of unit carbon

emissions
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µk , ηk Carbon emission intensity /Carbon
credit under the unit output of gener-
ator

Ceo,k ,Cins,k ,Lk operation and maintenance
Cost/Installation cost/Service life
of ESSk

Cc(t),Cd (t) The unit charge/discharge price of
ESSk at time t

ηch, ηdis ESS charging/discharging efficiency
Pmax
ch,i ,P

max
dis,i Maximum charging/discharging

power of ESSi
Emax
soc,i Capacity limitation of ESSi
PDis,max
DGi ,QDis,max

DGi Maximum active and reactive power
of DGi

NCB,max
i,t Maximum number of CB commis-

sioning groups
BlimCB Maximum number of CB actions in a

cycle

VARIABLES
EVMGiload,t Cost of RL in VMGi at time t
EVMGiDGs,t Cost of DGs in VMGi at time t
EVMGiESSs,t Cost of ESSs in VMGi at time t
EVMGico2 Revenue from carbon trading inVMGi
PVMGisell,t The power of VMGi sales at time t

uch arg et,k , udisch arg et,k Charging and discharging state of
ESSk

Esoc,i,t Charging State of ESSi at time t
QCBi,t Reactive Power Compensation of CB

Connected on i Node at time t
QCBi,setp Reactive power compensation for

each group of CB
NCB
i,t The number of CB operating groups

at time t
BCBi,t On-off state of CB at time t
Pij,t ,Qij,t Active and reactive power flowing

through branch j-i at time t
Pj,t ,Qj,t Active and reactive power injected by

node j at time t
Pj,DG,t ,Qj,DG,t Active and reactive power of DG at

time t connected with j-node
Qj,CB,t Reactive power of CB at time t con-

nected with node j
PVMGj,t ,QVMGj,t Active and reactive power of VMG at

time t connected to node j
Pj,d,t ,Qj,d,t Active and reactive load of node j at

time t

I. INTRODUCTION
With the increasing penetration of distributed generation in
distribution network, in order to realize the active man-
agement and scheduling of internal resources in distribu-
tion network, various countries have successively studied
the active distribution network (ADN) technology under the

framework of smart grid. The objective of the ADN is to
control distributed generation (DG) equipments and load side
resources to improve power supply reliability and power
quality, as well as to reduce the loss of distribution network.
Relevant researches show that active management of DG sup-
ply and optimal dispatching of all kinds of controllable loads
in distribution network generation have become important
measures to achieve the above objectives [1]–[3].

With the rapid development of smart grid, power market
and intelligent load control technology, demand response
technology aiming at the active interaction between distri-
bution network and load has been widely concerned [4]–[6].
At the same time, the collaborative development of DGs
and various controllable loads is not only helpful to accom-
plish the goal of ADN but also significant to satisfy cus-
tomer’s demand for diversified, personalized and interactive
services [7]. Aiming at the coordinated dispatch problem
among distribution network, load, and distributed generation,
some related scholars have conducted in-deep research.

Lu et al. [8] propose a collaborative dispatching model
between the distribution network and large-scale renewable
energy, and use the balanced Q(λ)-learning method to obtain
the optimal scheduling strategy of multi-stakeholder game
coordination, so as to effectively improve the enthusiasm
and fairness of new stakeholders participating in grid coor-
dination and optimization in ADN. However, the balanced
Q(λ)-learning method will cause ‘‘dimension disaster’’ when
there are many variables, which leads to the failure of solving
the model. In addition, solving the model is time-consuming
because of its nonlinearity. Li et al. [9] propose a multi-
objective, multi-level model for active distribution system
expansion planning with high-penetration renewable energy
sources (RESs) and energy storage systems (ESSs) consid-
ering the interests of different participants in the grid. The
improved Prato-based particle swarm optimization (PSO)
algorithm is utilized to solve themodel. However, this method
also has a problem that the solution time is long, which is
not conducive to the real-time dispatch of the power grid.
More than this, the final outcome obtained from this model
is an optimal solution set with uncertainty. Guo et al. [10]
develop a hybrid integer cone programming based voltage
and reactive power collaborative optimization model for
ADN to optimize the network. Although the model solves
the problem that the solution time is considerably large due
to the nonlinearity, it loses sight of different participants’
interests. Moreover, in order to increase the consumption
of renewable energy and reduce the uncertainty of the sys-
tem, Zhu et al. [11] conduct a multi-stage active distribution
network scheduling method with renewable energy, but the
interests of distributed energy owners in active distribution
networks are still not considered. Golshannavaz et al. [12]
focus on a joint stochastic energy and reserve scheduling
problem in the distribution system and propose a novel high-
performance energy management system (EMS) making use
of automatically controlled switches to optimize energy in
the distribution network. Similarly, the role of costumers in
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energy management is neglected. Huang et al. [13] considers
both the speed of solving the model and the interests of
multiple participants and put forward a multivariate coopera-
tive optimal dispatching model for optimizing the interests
of all parties in active distribution network, but the model
weakens the impact of electricity price in different periods.
Mazidi et al. [14] concentrate on incorporating responsive
in day-ahead scheduling planning of ADN. A new control-
lablemixed-integer linear programming (MILP) optimization
technique is proposed to realize the pricing of electricity,
which maximizes the benefits of the power grid and users.
However, the reliability of ADN is not included in the process
of price setting. The emerging of competitive players with dif-
ferent interests changes the previous regulation mode of the
active distribution network, and different dispatching models
are desired. DG operators and users are both accounted for in
the optimization dispatch model in [15], [16], where a double
layer dispatch model is proposed: The upper level optimizes
the conflicting power between the distribution network and
different stakeholders, while the lower level optimizes the
objective of various stakeholders. Similarly, the reliability
of distribution network is not considered too much in the
optimization process.

By analyzing the above literatures, it can be find that in
the process of constructing the optimal dispatching model
of active distribution network, researchers share different
emphases on the interests of different participants, the reli-
ability of distribution network and the speed of solving the
model. But in Chinačwith the deepening of the reform of
the electric power system, strong power generation enter-
prises will be allowed to participate in the electricity market.
Therefore, there will be a large number of distributed power
supply in the distribution network, which will be invested and
constructed by operators, and will supply power to using area
independently. We call the regional power grid invested by
operators or multi-stakeholders as virtual micro-grid (VMG),
and the regional power grid is not uniformly scheduled by the
distribution grid. These VMGs aim at maximizing their own
profits, and have independent dispatching units, which are not
entirely dependent under the unified dispatch of the distribu-
tion network [17]. Accordingly, the mode of weakening the
stakeholders of different participants will no longer adapt to
the current situation [11], [18]. At the same time, the power
companies pay more attention to the quality of service, which
makes the users’ requirements for the reliability of distribu-
tion network further improved. The optimization model with-
out considering the reliability of distribution network will no
longer adapt to the current situation [19]. Additionally, due
to the high proportion of renewable energy in the distribution
network, the uncertain output of renewable energy will make
the operation of the distribution network change dramatically
in a short time. For this point, the iteration optimization
method of power flow in distribution network based on bionic
algorithm is difficult to meet the time requirement of model
calculation due to the long solving time [8], [10], [34].

To figure out the problems mentioned above, a bi-level
linearized dispatching model of active distribution network
with the consideration of multi-stakeholder participation,
the power supply reliability of ADN, and the solving speed
of the model is developed in this paper, in which the VMG as
the lower level of the model and ADN as the upper level. The
main contributions are summarized as follows:

(1) We propose the concept of VMG, on this basis, a bi-
level linearized dispatching model between ADN and VMG
is constructed, which fully pays attention to multiple inde-
pendent stakeholders. The model can achieve cooperative
optimization between ADN and VMG according to the elec-
tricity price at different time from the perspective of multiple
stakeholders.

(2) In the process of optimizing the upper level model, not
only the goal of the economy but also the voltage of the distri-
bution network is considered, which makes the optimization
of the distribution network more integrated.

(3) The second-order cone optimization is utilized to lin-
earize the power flow of the distribution network, and the dis-
patching problem of the distribution network is transformed
into a convex optimization problem to accelerate the solving
speed of the model.

(4) There are transmission variables coupled with other
regions in the upper and lower models, which lead to the
models cannot be solved independently. In view of this dif-
ficulty, the ATC method is utilized in this paper because of
its capability in handling multi-level, multi-body coordina-
tion and optimization problems. The transmission variables
between the upper and lower levels are introduced into the
ATC method in the form of the penalty function to decouple
the upper and lower levels model and obtain the solution of
the optimal model.

The remainder of this paper is organized as follows.
The framework of the proposed model is introduced in
Section II. Section III describes the problem and formulates
the model. Aiming at enhancing the speed of solving the
model, the power flow calculation method based on second-
order cone optimization and the ATC method is presented
in Section IV. Section V analyzes the simulation results.
Section VI concludes.

II. FRAMEWORK OF BI-LEVEL INTERACTIVE ENERGY
SCHEDULING MODEL BETWEEN ADN AND VMG
A. VIRTUAL MICRO-GRID
Virtual micro-grid(VMG) mainly refers to the regional power
grid that is not uniformly scheduled by the distribution grid,
which can maximize revenue by coordinating and control-
ling internal resources. VMG mainly includes three types
of grids. The first type is a user-built micro-energy grid
with renewable energy, which can not only provide energy
to users but also conduct electricity trading with the distri-
bution network. Such a grid is typically operated with the
objective of minimizing operating costs, without considering
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the safety/economy of the distribution grid. The second type
of grid is formed according to the reform of China’s power
system. It is mainly a grid managed by a new power sale
company, which is formed by the reform of the power system.
During the operation of such grids, the company usually puts
its economic benefits first and is not aware of the distribution
grid’s operation. The third type of grid is a generalized virtual
power plant introduced by [20], which is composed of various
types of distribution generations and loads. Such a grid has an
independent scheduling system, yet it also fails to take into
account the operation of the distribution grid.

B. MODEL FRAMEWORK
In the traditional operation process, VMG only focuses on
its own economy, ignoring the operating state of the distribu-
tion grid. However, the security and economy are important
factors in the dispatching process of the distribution network,
which should be taken seriously. VMG and ADN are con-
trolled and operated by operators and power gird dispatch-
ers respectively. Therefore, the access of VMG brings great
obstacles to the operation of the distribution grid. With the
improvement of the automation level of distribution grid,
supervisory control and data acquisition (SCADA) system
has reached full coverage, which enables staff to obtain real-
time operational information about the distribution grid and
provides the possibility for the interconnection of VGM and
ADN.

To better achieve coordination between VMG and ADN,
a bi-level linearized interactive operation model is proposed.
The decision category of the model is a problem with two
decision making levels where each decision maker tries to
optimize its own objective in an interactive process. The
upper level is adopted to optimize the economic and reliabil-
ity problem of ADN. The lower level serves to optimize the
operation scheduling of VGM, including renewable energy
source (RES), energy storage system (ESS), distribution gen-
eration (DG), and response load (RL), to maximize the eco-
nomic benefits of VGM. The optimization results from the
lower level are fed back to the upper level to calculate the eco-
nomic and security of the distribution. Similarly, the results
from the upper level will be fed back to the lower level to
calculate the economic of the VMG. The framework of the
bi-level model is shown in Figure 1.

III. PROBLEM FORMULATION
A. OPTIMIZATION OBJECTIVE
1) OBJECTIVE FUNCTION OF LOWER LEVEL
The lower level model focuses on maximizing VMG bene-
fits by scheduling RES, ESS, DG, and RL. For large-scale
renewable energy, this paper introduces the carbon trading
mechanism to reduce the output cost of renewable energy, and
further increase the benefits of VMG. In order to facilitate the
analysis, photovoltaic (PV) will be used instead of RES. The
objective function of the lower model is shown in Eq. (1),
and the detailed expression of each item contained therein is

FIGURE 1. Framework of bi-level model between ADN and VMG.

as shown in Eqs. (2)-(7).

Flow = max
G∑

VMGi=1


H∑
t=1

Cdis,tP
VMGi
dis,t + E

VMGi
PVs,t

+EVMGiDGs,t + E
VMGi
ESSs,t

+EVMGiload,t − Csell,tP
VMGi
sell,t


−EVMGico2

 (1)

EVMGiload,t = Crl,tP
VMGi
rl,t (2)

EVMGiDGs,t =

Di∑
k=1

[
aVMGik PVMGik,t + c

VMGi
k

]
(3)

EVMGiPVs,t =

Qi∑
k=1

CPV ,tP
VMGi
k,t (4)

EVMGico2 =Re
H∑
t=1

Qi∑
k=1

ηkPPV ,k,t−

( Di∑
i=1

µkPk,t−
Di∑
i=1

ηkPk,t

)
(5)

EVMGiESSs,t =

Ei∑
k=1


(
Ceo,kP

VMGi
ESS,t,k +

Cins,k
365×24Lk

)
1t

+

[(
uch arg et,k Cc (t)− u

disch arg e
t,k Cd (t)

)
×PVMGiESS,t,k

]
1t


(6)

PVMGisell,t = PVMGidis,t − P
VMGi
load,t + P

VMGi
PVs,t + P

VMGi
ESSs + P

VMGi
DGs,t (7)

where Eqs. (2)-(6) represent the RL cost, DG output cost, PV
output cost, carbon dioxide emission cost, and ESS charge
and discharge cost in VMGi, respectively. Eq. (7) represents
the selling power of VMGi. If the result of P

VMGi
sell,t is less than

zero, then let PVMGisell,t = 0.

2) OBJECTIVE FUNCTION OF UPPER LEVEL
The upper level serves as the planning of networks from
the angle of ADN operation. Different from the traditional
planning approach, ADN requires the best alternative with a
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multi-objective approach [21]. In this paper, two objectives
are adopted, including economy and reliability.

a: ECONOMIC OBJECTIVE
The exchange power between the ADN and the VGM,
the energy storage on the side of the ADN, the output of the
distributed generator, and the exchange power with the upper
transmission network constitute the economic objective func-
tion, as shown in Eq. (8), and the detailed expression of each
item contained therein is as shown in Eqs. (9)-(13).

f1 = min
1

H∑
t=1

N∑
j=1

Ctran,tPtj

×

H∑
t=1

Ctran,tPtran,t+EDisco2,t +
G∑
i=1

CVMG,tPF,t,i

+EDisDGs,t+E
Dis
ESSs,t+Ctran,tPloss,t


(8)

PF,i,t = PVMGisell,t (9)

EDisDGs,t =

S∑
i=1

[
aDisi PDisi,t + b

Dis
i

]
(10)

EDisco2,t = Re
H∑
t=1

(
S∑
i=1

µiPDisi,t −

S∑
i=1

ηiPDisi,t

)
(11)

Ploss,t =
N∑
i=1

∑
j∈u(i)

rij

(
Pij,t

)2
+
(
Qij,t

)2(
Ui,t

)2 (12)

EDisESSs,t =

K∑
i=1


(
Ceo,iPDisESS,t,i +

Cins,i
365×24Li

)
1t

+

[(
uch arg et,i Cc (t)− u

disch arg e
t,i Cd (t)

)
PDisESS,t,i

]
1t


(13)

where Eq. (9) is equal to Eq. (7); Eqs. (10), (11), and (13) are
similar to Eqs. (3), (5), and (6); Eq. (12) indicates the power
loss during the operation of ADN, respectively. This paper
holds that reactive power compensation device is the intrinsic
asset of ADN, so the cost of reactive power compensation is
not considered.

b: RELIABILITY OBJECTIVE
The most basic requirement for safe and stable operation of
ADN is that the voltage is stable within the specified range.
The average voltage deviation has become a key indicator for
evaluating the reliability of ADN. The smaller the average
voltage deviation, the higher the reliability. We aim to min-
imize the average voltage deviation and set it as the second
objective, defined as Eq. (14).

f2 = min
1
H

H∑
t=1

√√√√ N∑
i=1

(
1− Ui,t

)2 (14)

Reactive power compensation in ADN is close to voltage.
Therefore, the realization of this objective requires the control
of reactive power compensation devices in ADN and VMG.

c: CONVERSION MULTI-OBJECTIVE FUNCTION
Considering the economic and reliability factors of ADN,
the comprehensive objective function Fup is constructed,
as shown in Eq. (15). According to the multi-objective com-
prehensive evaluation method proposed in [22], the optimal
weight of each sub-subjective in the multi-objective function
can be determined. The weight constraint is α + β = 1.

Fup = min (αf1 + βf2) (15)

Eqs. (1)-(14) contains many constraints, which will be
described and explained in detail in the following.

B. OPTIMIZATION OBJECTIVE
1) CONSTRAINTS OF LOWER LEVEL
a: RL CONSTRAINTS
Continued in Eq. (2), in order to ensure that the RL in VMG
can participate in the scheduling normally, RL should be
limited to a certain range for hour t , as shown in Eq. (16).
In addition, following Sattarpour et al. [23], RL is supposed
to have a constant power factor (θrl), as shown in Eq. (17).

0 ≤ PVMGirl,t ≤ P
VMGi,max
rl,t (16)

QVMGirl,t = tan
[
cos−1 (θrl)

]
× PVMGirl,t (17)

b: PV AND DG CONSTRAINTS
To alleviate the harmful effects of bi-directional power flow,
PV output should be lower than its predicted value, as shown
in Eq. (18). In this study, PV is supposed to have a constant
power factor (θPV ), as shown in Eq. (19)

0 ≤ PVMGiPVs,t ≤ P
max
PVs,t (18)

QVMGiPVs,t = tan
[
cos−1 (θPV )

]
× PVMGiPVs,t (19)

For DG, since the power response speed of the micro
gas turbine is faster, the climb constraint is not consid-
ered, and only the output is constrained. The constraints of
active power output and reactive power output are shown in
Eqs. (20) and (21), respectively.

0 ≤ PVMGiDGi,t ≤ P
VMGi,max
DGi (20)

0 ≤ QVMGiDGi,t ≤ Q
VMGi,max
DGi (21)

c: ESS CONSTRAINTS
The operation of ESS should be strictly under the constraints
of the periodic behaviors, the permissible ranges of state of
charge (SOC) and charging/discharging power, as shown in
Eqs. (22)-(26).

0 ≤ uch arg et,i PVMGiESS,t,i ≤ P
max
ch,i (22)

0 ≤ udisch arg et,i PVMGiESS,t,i ≤ P
max
dis,i (23)

uch arg et,i + udisch arg et,i ≤ 1 (24)
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FIGURE 2. Active distribution network with radial operation.

Esoc,t,i + u
ch arg e
t,i PVMGiESS,t,iηch1t

−

(
udisch arg et,i PVMGiESS,t,i

ηdis

)
1t = Esoc,t+1,i (25)

Emax
soc,i × 20% ≤ Esoc,i,t ≤ Emax

soc,i × 90% (26)

2) CONSTRAINTS OF UPPER LEVEL
In the upper level, it mainly involves ESS, DG, and
power flow constraints of ADN operation. Since the voltage
deviation is involved in the objective function, the reactive
compensation needs to be taken into account in the upper
optimization model. According to the actual situation, this
paper will use the capacitor banks (CB) to perform reactive
power compensation for ADN. The ESS and DG constraints
are similar to those in the lower model, and the CB and power
flow constraints are described in detail below.

a: CB CONSTRAINTS
Due to the restriction of manufacturing technology and ser-
vice life of the equipment, the number of CB operation in
the scheduling cycle is limited, and each switching of the CB
is operated in groups, so the CB operation should meet the
following constraints.

QCBi,t = NCB
i,t Q

CB
i,step

NCB
i,t ≤ N

CB,max
i ,NCB

i,t ∈ int
BCBi,t ∈ {0, 1}
T−1∑
t=1

BCBi,t = BlimCB

BCBi,t Q
CB
i,step ≤

∣∣∣QCBi,t+1 − QCBi,t ∣∣∣ ≤ BCBi,t NCB,max
i QCBi,step

(27)

b: POWER FLOW CONSTRAINT
Figure 2 shows the ADN with radial operation in the upper
optimization model, the corresponding power flow con-
straints are as follows [24]:

For node j, there are the following equality constraints for
active power and reactive power.∑

i∈u(j)

[
Pij,t − rij

P2ij,t + Q
2
ij,t

U2
i,t

]
=

∑
k∈v(j)

Pjk,t + Pj,t (28)

∑
i∈u(j)

[
Qij,t − rij

P2ij,t + Q
2
ij,t

U2
i,t

]
=

∑
k∈v(j)

Qjk,t + Qj,t (29)

Pj,t = Pj,DG,t − u
ch arg e
t,j PDisj,ESS,t

+udisch arg et,j PDisj,ESS,t − Pj,d,t + P
VMG
j,t (30)

Qj,t = Qj,DG,t + Qj,CB,t + QVMGj,t − Qj,d,t (31)

For the branch ij, there is the following equality constraint:

U2
j,t = U2

i,t − 2
(
rijPij,t + xijQij,t

)
+

(
r2ij + x

2
ij

) P2ij,t+Q2
ij,t

U2
i,t

(32)

c: OTHER CONSTRAINTS
The following constraint determines the proper voltage pro-
file for all nodes in ADN. For substation bus, the voltage
magnitude remains constant and equal to 1.{

Umin ≤ Ui,t ≤ Umax

U1,t = 1
(33)

Moreover, the following constraints ensure that each node
does not exceed its allowable power range and that each line
does not exceed its maximum power transmission range.√

P2j,t + Q
2
j,t ≤ Smax

j (34)√
P2ij,t + Q

2
ij,t ≤ Smax

ij (35)

IV. SOLVING APPROACH
A. LINEARIZATION OF POWER FLOW USING
SECOND-ORDER CONE PROGRAMMING
In the upper optimization model, decision variables include
ESS charging and discharging power, CB operating power,
and DG output at each moment, etc., accordingly, it is an
ADN dynamic optimization model with continuous and dis-
crete variables. In addition, the power flow constraints pre-
sented by Eqs. (28), (29) and (32) in the model are quadratic
equations, leading to a mixed-integer non-convex non-linear
problem, which belongs to NP problem [27]. Using the non-
linear solution method will make the solving speed of the
model longer. Therefore, the linearization of power flow
calculation is the first task we need to do. Current linearized
power flow is usually carried out by second-order cone pro-
gramming [25].

The standard form of second-order cone programming
(SOCP) is as follows [26]:

min
xi

{
cT x|Ax = b, xi ∈ K , i = 1, 2, . . . ,N

}
(36)

where x ∈ RN , b ∈ RM , c ∈ RN , AM×N ∈ RM×N , K is
shown as follows:

K =

{
xi ∈ RN |y2 ≥

N∑
i=1

x2i , y ≥ 0

}
(37)

Based on the characteristics of SOCP, the power flow
equation can be relaxed. Let Ĩij,t = (P2ij,t + Q2

ij,t )/U
2
i,t and

Ũi,t = U2
i,t , the original Eqs. (28), (29) and (32) can be

transformed into Eqs. (38)-(40).∑
i∈u(j)

(
Pij,t − Ĩij,trij

)
=

∑
k∈v(j)

Pjk,t + Pj,t (38)
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∑
i∈u(j)

(
Qij,t − Ĩij,trij

)
=

∑
k∈v(j)

Qjk,t + Qj,t (39)

Ũj,t = Ũi,t − 2
(
rijPij,t + xijQij,t

)
+

(
r2ij + x

2
ij

)
Ĩij,t (40)

Then, following Liu et al. [27], let Ĩij,t ≥ (P2ij,t+Q
2
ij,t )/Ũi,t ,

this inequality constraint is further transformed into the stan-
dard second-order cone by equivalent deformation, as shown
in Eq. (41). ∥∥∥∥∥∥

2Pij,t
2Qij,t

Ĩij,t − Ũi,t

∥∥∥∥∥∥
2

≤ Ĩij,t + Ũi,t (41)

Then, Eqs. (28), (29), and (32) can be replaced by
Eqs. (38)-(41), and flow constraints are successfully trans-
formed from nonlinear to linear.

B. A HIERARCHICAL TWO-LEVEL OPTIMIZATION METHOD
If the ADN and VMGs are independent of each other and
there is no connection between them, we can use the security-
constrained unit commitment (SCUC) algorithm to solve the
upper and lower models to obtain the optimal scheduling
strategy [28], [29]. However, the ADN and VMGs are linked
together in this paper, and the optimal operating point of
one will affect the operating point of the other. In order
to solve this problem and find the optimal operating point
of the ADN and VMGs, a hierarchical two-level optimiza-
tion method named analytical target cascading (ATC) is
considered.

ATC method is mainly used to solve multi-level and multi-
body coordination and optimization problems. It allows each
optimization subject in the hierarchy to make independent
decisions while at the same time obtaining the overall opti-
mal solution of the problem through coordination and opti-
mization. As ATC has the advantages of unlimited series,
easy parameter selection, and different optimization forms for
sub-problems of the same level, it also overcomes the phe-
nomenon that the traditional dual decomposition algorithm
based on Lagrange relaxation is prone to repeated oscillation
in the iteration. Therefore, it is usually utilized to address
large-scale system optimization problems [30], [31]. The con-
vergence of ATC for solving convex optimization problems
has been strictly proved in Michelena et al. [32].

Since the ADN and VMGs are actually connected together,
there are transmission variables coupled with other regions
in both optimization modules, leading to the model can-
not be solved independently. In this paper, the penalty
function of the transmission variable is added to the
ATC to achieve complete decoupling of inter-region opti-
mization. Specific modeling principle are described in
appendix A.

After introducing the penalty function, the upper and lower
optimization objective functions are reconstructed.

The objective function of the upper model with respect to
ADN is modified to:

Fup_finally = Fup +
H∑
t=1

G∑
i=1

×


[
vi,p,t vi,q,t

] [ Pup,t,i − Plow,t,i
Qup,t,i − Qlow,t,i

]
+

[[
wi,p,t wi,q,t

] [ Pup,t,i − Plow,t,i
Qup,t,i − Qlow,t,i

]]2


(42)

The objective function of the lower model with respect
to VMGi is modified to:

Flow_finally = Flow +
H∑
t=1

G∑
i=1

×


[
vi,p,t vi,q,t

] [ Pup,t,i − Plow,t,i
Qup,t,i − Qlow,t,i

]
+

[[
wi,p,t wi,q,t

] [ Pup,t,i − Plow,t,i
Qup,t,i − Qlow,t,i

]]2


(43)

where vi,p,t , vi,q,t , wi,p,t , and wi,q,t are algorithm multipliers,
Pup,t,i and Qup,t,i are the active and reactive power of VMGi
after upper optimization at time t , and these two values will
be transmitted to the ADN level for optimization. Plow,t,i
and Qlow,t,i are the active and reactive power of ADN after
lower optimization at time t , and these two values will be
transmitted to the VMG level for optimization. Pup,t,i,Qup,t,i,
Plow,t,i, and Qlow,t,i are values of coupling variables obtained
from adjacent regions, which are known variables. By setting
the penalty function, the coupling variables can be as close as
possible to the boundary power values transmitted by adja-
cent regions during the calculation process, and eventually
reach consistency.

C. SOLVING FLOW
There are two different optimization procedures to deal with
these two levels, respectively. The optimization procedure of
upper and lower level transfer boundary variables to each
other, as shown in Figure 3.

The first step is to optimize the lower level scheduling.
Firstly, the algorithm multipliers and the virtual injection
power of VMG (Pup,i,t ,Qup,i,t ) are initialized. In addition,
let the number of iterations be k = 1 and get the transaction
price of VMG andADN. Then, the boundary exchange power
Pklow,i,t and Qklow,i,t of the lower model can be calculated
according to Eq. (43), Eqs. (2)-(7), and Eqs. (16)-(26), and
then transferred to the upper model. The second step is to
optimize the upper level scheduling. Firstly, the transaction
price of transmission network and ADN, and the transaction
price of VMG and ADN are obtained. Then, considering the
security constraints of ADN, the power flow is linearized
by second-order cone programming. By using Eqs. (9)-(13),

154850 VOLUME 7, 2019



P. Du et al.: Bi-Level Linearized Dispatching Model of ADN With Multi-Stakeholder Participation Based on ATC

FIGURE 3. Bi-level optimization flow chart based on ATC.

Eqs. (20)-(27), and Eqs. (38)-(42), the AND optimal schedul-
ing sub-problem can be solved, from which a set of optimal
VMG switching power is obtained. After that, Eqs. (44)-(45)
are applied to determine whether the loop converges or not,
and if so, data of each device in the upper and lower levels is
output, and the iteration terminates; Otherwise, the exchange
power data is transferred to the lower level, the algorithmmul-
tipliers are updated according to Eq. (46), and the iteration
continues.∣∣∣∣∣ Pkup,t,i − Pk−1low,t,i

Qkup,t,i − Q
k−1
low,t,i

∣∣∣∣∣ ≤
∣∣∣∣ ε1Pε1Q

∣∣∣∣ (44)∣∣∣∣∣F
k
up_finally − F

k−1
up_finally

Fkup_finally

∣∣∣∣∣ ≤ ε2 (45)

[
vk+1i,p,t

vk+1i,q,t

]
=

[
vki,p,t
vki,q,t

]
+2

[
wki,p,t
wki,q,t

]2 [
Pup,t,i−Plow,t,i
Qup,t,i−Qlow,t,i

]
[
wk+1i,p,t

wk+1i,q,t

]
=

[
γp

γq

][
wki,p,t
wki,q,t

]
(46)

where γp and γq are constants, Initial values of vki,p,t , v
k
i,q,t ,

wki,p,t and w
k
i,q,t generally take smaller constants.

V. CASE STUDY
A. INTRODUCTION OF CASE
In this section, IEEE18 distribution network is used as the
text system, and the network topology is shown in Figure 4.

FIGURE 4. IEEE18-bus distribution test system.

TABLE 1. Time-of-use price for purchasing and selling electricity from
AND to VMG.

Bus 12 and bus14 are connected with reactive compensation
capacitors, bus 7 is connected with the active power of 1MW,
bus 10 and bus 17 are connected to VMG. VMGs contain
DG, ESS, PV, and RL. The branch parameter, typical daily
load parameter, typical PV output parameter, DG parameter,
CBs parameter, and ESS parameter in ADN are shown in
Appendix B. Table 1 presents the time-of-use price for pur-
chasing and selling electricity from ADN to VMG.

The simulation of the case is carried out under the com-
piling environment of MATLAB 2016a. The model is built
by the Yalmip optimization toolbox and solved by calling
Cplex [33]. The computer used for simulation is configured
as Intel(R)Core(TM)i5-5500 2.40GHz.

B. CASE ANALYSIS
Firstly, the power flow of the distribution network is
linearized. Then, for the convenience of comparison, we
consider three optimizationmodels, including the VMG inde-
pendent optimization, ADN independent optimization, and
VMG&ADN joint optimization are simulated. VMG inde-
pendent optimization means focusing only on the optimiza-
tion of the upper level, and the obtained optimal outcome
is transmitted to the ADN level for solution. With respect
to ADN independent optimization, only the upper level is
optimized according to the upper and lower load limits of
VMG of each time, and the optimized result is transmitted
to VMG for solution. When ADN&VMG joint optimization
is simulated, ATC method is used to optimize the scheduling
of upper and lower models to obtain the final optimization
results. The parameters of ATC method are set as follows.
The initial multipliers value of ATC method: vi,p,t = vi,q,t =
wi,p,t = wi,q,t = 0.5, γp = γq = 1.5. The virtual injection
power of VMG:P1up,i,t = Q1

up,i,t = 0, ε1P = ε1Q =

ε2 = 0.01. The weights of the objective function in the ADN
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FIGURE 5. The load of VMG1 under three optimization modes.

FIGURE 6. The load of VMG2 under three optimization modes.

optimization level: α = 0.6 and β = 0.4. Optimization
results are shown in Figures 5-9.

Figures 5-6 depict the load conditions of VMG1 andVMG2
under three optimization modes, from which we can see that
when VMG is optimized independently, VMG will mobilize
the output of internal resources during the peak period of
electricity price (10:00-12:00 & 18:00-20:00), so as to mini-
mize the electricity purchased, and may even sell electricity
to ADN. However, during the valley period of electricity
price (0:00-7:00 & 23:00-24:00), VMG will purchase a large
amount of power from ADN due to the high cost of VMG
internal resources. During the flat period of electricity price,
VMG will strictly control the output of its internal resources
because the internal resource output cost is slightly higher
than the purchase price. Overall, it can be seen from the
scheduling results of VMG that the load of VMG is highly
correlated with the time-of-use price with respect to its inde-
pendent optimization. For the mode of ADN independent
optimization, during the peak period, VMG needs to be dis-
patched to reduce the load demand due to the large load
of ADN, to realize the economy and reliability of ADN
operation. In the flat and valley period, the internal resources
of VMG will be frequently mobilized by ADN. From the
dispatching results of ADN independent optimization, it can
be seen that to give priority to ADN’s own interest, the load of
VMG will be kept at a low level for a long time, resulting in
a great loss to the economy of VMG. Importantly, the VMG
& ADN joint optimization mode combines the advantages of
the first two optimization modes, which not only improves
the load of VMG and ensures the maximization of VMG’s
benefits during the valley period of electricity price, but also
mobilizes part of internal resources of VMG in the flat price
period, thereby reducing the load of VMG and improving the
economic and reliability of ADN.

FIGURE 7. RL response in VMG1 and VMG2 under three optimization
modes.

FIGURE 8. DG output in VMG1 and VMG2 under three optimization
modes.

Figures 7 and 8 show the RL response and DG output in
VMG1 and VMG2 under three optimization modes. It can be
seen from the simulation results that the RL response cost and
the DG output cost are higher than the purchase price of the
flat and the valley period for VMG independent optimization,
consequently, the RL andDGwill participate in the grid inter-
action strictly according to the time-of-use price. When ADN
is independently optimized, ADN will fully schedule the RL
and DG output in the VMG, resulting in poor economics of
the VMG. When VMG & ADN joint optimization, the RL
and DG in the VMG will reduce the output during the valley
period, and will participate in the ADN scheduling during
the flat period. This joint optimization scheduling model
takes into account the interests of both ADN and VMG, thus
realizing the win-win situation. In addition, the introduction
of carbon trading mechanism further reduces the cost of PV
output, so PV in VMG does not reduce the output operation
during the scheduling cycle.

Figure 9 shows the ESS dispatching results under three
optimization modes, from which it can be known that when
VMG independent optimization, the ESS in VMG will be
charged during the valley period and discharged during the
peak period to obtain the best interest of ESS. ADN inde-
pendent optimization model ignores the economy of VMG,
the ESS will be charged and dispatched during the flat period
of electricity price, and moreover, the discharge capacity of
ESS will be reduced during the peak period. As a result,
the economy of ESS in VMG will be reduced. However,
the ESS dispatching in the model of ADN and VMG joint
optimization is a comprehensive process, which will decrease
the charge of ESS in the flat period and increase the discharge
of ESS in the peak period.
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FIGURE 9. ESS charging and discharging status in VMG1 and VMG2 under three optimization modes.

FIGURE 10. Operating costs for VMG under three optimization modes.

On this basis, the operating costs of VMG under three
optimization modes can be obtained. As shown in Figure10,
the operating cost of VMG reaches ceil with ADN indepen-
dent optimization and touches floor with VMG independent
optimization, respectively. ADN & VMG joint optimization
can be treated as a compromise.

The simulation results of the ADN level are shown as fol-
lows. As can be seen from Figure 11, the voltage fluctuation
of ADN is the greatest (0.8629) in the case that VMG is
optimized independently, and the voltage situation obtained
by ADN&VMG joint optimization is closer to the result
obtained fromADN independent optimization. Figures 12-14
show the results of internal elements (CBs, ESS, DG) for
ADN under three optimization models. From these three
graphs, we can find that for the model of ADN independent
optimization, the equipment in ADNwill retain a certain mar-
gin because the VMG’s internal resources are fully mobilized
during the VMG operation process. The VMG independent
optimizations will result in a decrease in equipment operat-
ing margin in ADN, while joint optimization operation is a
reasonable trade-off between VMG and ADN.

On this basis, the results of the ADN level’s optimiza-
tion objectives under three optimization modes are shown
in Figure 15. We can see that when the ADN runs based on
the results of VMG independent optimization, the loss of the
ADN is large (7.977 MW), the average voltage of the system
is lower, and the reliability and economic operation indicators
at the ADN level are poor, which are contrary to the results

FIGURE 11. Voltage situation of ADN under three optimization modes.

obtained based on AND independent optimization. Fortu-
nately, the corresponding results with respect to economy
and reliability under ADN&VMG joint optimization mode
are more in common with the AND independent optimization
mode.
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FIGURE 12. The state of CBs in ADN under three optimization modes.

FIGURE 13. The state of ESS in ADN under three optimization model.

FIGURE 14. The state of DG in ADN under three optimization model.

FIGURE 15. Results of ADN optimization objectives under three
optimization modes. Note: to facilitate the presentation of the figure,
the network loss value of ADN shown in the histogram is one tenth of the
true value, for example, 0.6312=6.312/10, where 6.312 is the true
network loss value.

The simulation results of the whole dispatching cycle show
that the ADN independent optimization mode features the
advantage of economy and reliability of ADN, but the oper-
ating cost is high due to VMG’s interest is neglected. Addi-
tionally, although the operating cost of the VMG independent

TABLE 2. Three optimization results at 9:00.

optimization mode is the lowest, it will result in increased
network loss and a decline in voltage quality of ADN. ADN
& VMG joint optimization mode can not only get the advan-
tages of the first two modes but also overcome the shortcom-
ings of both to a certain extent.

C. TYPICAL MOMENT ANALYSIS
In this section, a typical moment is analyzed. It can be seen
from Table 2 that at 9:00, since the DG output cost and RL
response cost are higher than the purchase price, neither of
them will contribute when VMG independent optimization.
At this point, VMG will absorb power from ADN, resulting
in the lowest cost of VMG. When ADN independent opti-
mization, the internal resources of VMG will be dispatched
according to the situation of ADN to ensure that the ADN
is in the optimal operation, but such results are accompanied
by the highest cost of VMG at this moment. The joint opti-
mization proposed in this paper has dual contributions, which
not only improves the output of internal elements in VMG
appropriately but also reduces the operation cost of VMG to
a certain degree.

In addition, it is obvious in Figure 11 that the voltage
of ADN is low at 9:00. According to table 2, the reactive
power compensation devices of ADN under three optimiza-
tion modes are in full compensation state. Joint optimization
and ADN independent optimization can improve the reliabil-
ity of the ADN by dispatching active and reactive power in
VMG. On this basis, the optimizing objectives of ADN under
three optimization modes can be obtained (see Table 3).
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TABLE 3. Comparison and analysis of ADN optimizing objectives under
three optimization modes at 9:00.

FIGURE 16. Iteration of two algorithms for the upper and lower objective
functions.

TABLE 4. Comparison of the results of three method.

D. CORRECTNESS COMPARISON OF METHOD
In order to verify the effectiveness of the method, the method
proposed in Li et al. [34] and the centralized optimization
method are adopted to solve the case. According to Li et al,
the upper level utilizes the multi-objective particle swarm
optimization (PSO) method to optimize the model. In the
optimization process, the calculation of power flow in the
distribution network is realized by calling the Matpower pro-
gram, which is not linearized. The lower model is optimized
by the chaos PSO algorithm. The number of iterations is set to
40, and the convergence condition is ε1P = ε1Q = ε2 = 0.01.
For the centralized optimization method, the objective

functions of upper and lower models are added to the final
objective function, and the model is solved by combining
the upper and lower model constraints. The final results
are shown in Table 4. The iteration of algorithms is shown
in Figure16.

By comprising, we can find that although the optimization
results of the proposed method are accordance with results
obtained based on the above algorithm, the solution time in
Li et al is longer since the power flow calculation is not
linearized. Although the centralized optimization method has
a faster solution speed, it has a premise, i.e., it requires to fully
derive the VMG internal resource information, which does
not meet the current situation. However, the method proposed
in this paper can realize the rapid solution of the model on the
basis of fully considering and respecting the interests of all
parties.

TABLE 5. Solution results of the proposed model based on different
algorithm packages.

E. STABILITY COMPARISON OF THE METHOD
From the results of Table 5, we can see that the solution
results of the proposed model based on various algorithm
packages are highly consistent, which verifies the stability of
the method.

VI. CONCLUSION
This paper attempts to solve the dispatching problem
caused by the emergence of a new environment with multi-
stakeholder participation in power grid operation. To do this,
a two-level optimization dispatching model between ADN
and VMG based on the ATC method is proposed. A simu-
lated case study is conducted to demonstrate the proposed
model and its reliability and effectiveness are verified by
various comparisons. Additionally, the following conclusions
are drawn:

(1) The cooperative optimization dispatching of ADN and
VMG can not only improve the reliability of power supply in
the ADN but also improve the economics of ADN and VMG.

(2) By using the second-order cone programming to lin-
earize the power flow calculation, themodel solving’s solving
speed is improved.

(3) By adding the penalty function with the transmission
variables to the ATC, the complete decoupling of the inter-
region optimization problem is realized.

It should be noted that the reactive power output equipment
in VMG is relatively single, PV and RL are output with con-
stant power factor, and only DG has some flexibility in VMG
reactive power optimization dispatching process. In addition,
since this paper focuses on the economics of renewable
energy, the uncertainty of its output is weakened. Therefore,
in the follow-up research, it is necessary to further enrich the
reactive power output equipment of VMGand pay attention to
the impact of renewable energy output uncertainty on model
optimization results. Moreover, it would also be interesting
to study the joint optimization dispatching problem between
the active distribution network and the regional distribution
network with multiple VMGs.

APPENDIX A
MODELING PRINCIPLE BASED ON ATC METHOD
If ADN and VMG are regarded as independent optimization
subjects, and for ADN, let x be the optimization variable, then
the optimization problem can be expressed as follows.

Min f (x)

s.t. g (x) ≤ 0

h (x) = 0 (A-1)
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FIGURE 17. The solving process of bi-level optimal dispatching model.

For VMGi, let yi be the optimization variable, then the
optimization problem can be expressed as follows.

Min f (yi)

s.t. g (yi) ≤ 0

h (yi) = 0 (A-2)

Considering that VMGi and ADN are connected to each
other and there is a coupling change between them, let x and
yi be the peculiar variables within their respective systems,
and z be the coupling variables between them, then the ADN
optimization problem can be re-expressed as follows.

Min f (x, z1, z2, . . . , zn)

s.t. g (x, z1, z2, . . . , zn) ≤ 0

h (x, z1, z2, . . . , zn) = 0 (A-3)

The VMGi optimization problem can be re-expressed as
follows.

Min f (yi, zi)

s.t. g (yi, zi) ≤ 0

h (yi, zi) = 0 (A-4)

Because of the existence of coupling variables, (A-3) and
(A-4) cannot be solved independently. We define the active
and reactive information transmitted from ADN to VMGi as
target variable, denoted by η, and the variable transmitted
from VMGi to ADN as the response variable, denoted by µ.
The consistency constraint can be represented as follows.

c = η − µ = 0 (A-5)

The target variable and response variable essentially rep-
resent the same common variable, so this paper adds a
penalty function to relax the algorithm. The penalty function
is defined as π (c).
Accordingly, the ADN optimization problem is replaced

by the following model.

Min f (x, η1, η2, . . . , ηn)+ π (c1, c2, . . . , cn)

s.t. g (x, η1, η2, . . . , ηn) ≤ 0

h (x, η1, η2, . . . , ηn) = 0 (A-6)

Moreover, the VMGi optimization problem is replaced by
the following model.

Min f (yi, µi)+ π (ci)

s.t. g (yi, µi) ≤ 0

h (yi, µi) = 0 (A-7)

TABLE 6. Data statistics of ADN structure framework.

TABLE 7. Typical daily load parameters and PV output parameters.

The coupling variables in this paper are the active power
and reactive power transmitted between VMG and ADN,
and the penalty function is an augmented Lagrange penalty
function in the following form:

π (c) = vT c+ ‖w ◦ c‖2 (A-8)
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TABLE 8. Operating parameters of VMG.

where v and w are the algorithm coefficient, ◦ represents
itemized multiplication calculation. The ADN optimization
problem can be finally expressed as follows.

Min f (x, η1, η2, . . . , ηn)+
T∑
t

n∑
k=1

[
vk,t

(
ηi,t − µi,t

)
+
(
wk,t

(
ηi,t − µi,t

))2]
s.t. g (x, η1, η2, . . . , ηn) ≤ 0

h (x, η1, η2, . . . , ηn) = 0 (A-9)

Similarly, the VMGi optimization problem can be finally
expressed as follows.

Min f (yi, µi)+
T∑
t

[
vi,t

(
ηi,t−µi,t

)
+
(
wi,t

(
ηi,t−µi,t

))2]
s.t. g (yi, µi) ≤ 0

h (yi, µi) = 0 (A-10)

where η and µ are respectively represented as follows.

µ =

[
Plow
Qlow

]
η =

[
Pup
Qup

]
After decomposing the solution process of the above prob-

lem, the optimization model of each level system can be
obtained, and the iterative solution can be carried out accord-
ing to the optimization flow chart shown in Figure 3.

APPENDIX B
STUDY PARAMETER
See Table 6, 7, 8.
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