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ABSTRACT River water quality (RWQ) data has obvious characteristics of spatial and temporal distribution,
and tables are conventionally exploited for storage of multi-period monitoring data of RWQ; however,
neither effective visualization nor accurate analysis of the obtained data can be realized due to its dispersion
character. In this paper, a novel spatiotemporal data model is proposed for RWQ data to realize conveniently
data representation and spatiotemporal analysis. In this model, a spatial point, containing both location
and dynamic water quality information, is considered as the basic element of river spaces, and methods
of expanding a point to a line segment, a flat surface and a cube are designed respectively so as to make
this model be applicable to different generalizations of river spaces. Moreover, a temporal data storage
structure is designed so that efficient inquiry and advanced analysis of RWQ data can be guaranteed and the
occupied memory space can be reduced. Finally, case studies are conducted by performing 3D visualization,
trend analysis and anomaly identification on RWQ data, the result of which showing that tridimensional
representation of RWQdata can be realized efficiently, the computational complexity is reduced significantly
and the occupied memory space of monitoring data is effectively economized. Accordingly, the proposed
spatiotemporal data model can contribute to the efficient visualization and advanced analysis of RWQ data.

INDEX TERMS River space, spatiotemporal data model, water quality prediction.

I. INTRODUCTION
With the continuous growth of population and the rapid
development of industry and agriculture, rivers are suf-
fering various degrees of pollution, presenting a serious
threat to drinking water safety, social and economic devel-
opment, etc. [1]–[3] In recent years, river pollution incidents,
e.g., the one occurred in Animas River, America in 2015 [4]
and another one occurred in Jialing River, China in 2017 [5],
have caused serious impacts on regional economic develop-
ment and the safety of the peoples life and property. It has
been an urgent demand to gain timely both existing situation
and abnormal information of RWQ [6]–[8]. Under this back-
ground, rapid acquisition and efficient analysis of RWQ data
have aroused great attention of government departments at all
levels and researchers at home and abroad [9]–[11].

Considerable attention has been paid to the research and
development of hardware devices to improve the efficiency of
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in-field RWQ monitoring. Limited by the hardware configu-
ration of mobile equipment, only several simple water qual-
ity parameters (e.g., pH, temperature, etc.) can be obtained
in the earlier researches [12]. Along with the development
of basic hardware, e.g., sensors, digital cameras, etc., more
water quality parameters, e.g., COD, NH3-N, Chl-a, etc., can
be obtained conveniently [13], [14]. To describe efficiently
the spatial distribution characteristics of RWQ, the design
and optimization schemes of monitoring networks have been
investigated bymany researchers. Both the numbers and loca-
tions of monitoring sites are commonly determined according
to basic characters of watershed basin [15], e.g., point and
diffuse pollution sources [16]. And the spatial distribution
of monitoring sites is usually further optimized from the
global perspective so that RWQ state can be grasped with
less sampling sites [17]. After the acquisition of monitoring
data, efficient means for data transmission are also essential
and have been concerned by some researchers. To realize effi-
cient and reliable transmission of monitoring data of RWQ,
several monitoring systems [18]–[20] have been designed
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and implemented based on wireless sensor network, realizing
continuous and remote data monitoring based on wireless
communication protocols.

Great progress has been made by the above-mentioned
approaches in terms of RWQdatamonitoring& transmission.
Efficient organization and analysis of obtained RWQ data,
nevertheless, is ignored. As a result, it is difficult to grasp
global distribution, changing trend and abnormal information
of RWQ, which may result in property damage, personal
injury, etc. To the best of our knowledge, there is only a
limited number of works that are focused on the topic of RWQ
data organization and analysis; for instance, a knowledge
discovery algorithm of hydrological data was put forward
for quantitative information extraction of RWQ, extracting
sequential patterns based on stations located along several
rivers and then filter and group theses patterns to gener-
ate spatialized indicators for decision support [21]. Another
approach based on ontology modeling was proposed to eval-
uate RWQ and the relevant processing knowledge, in which
the built ontology model is specially designed for RWQ
monitoring so that RWQ data with semantic properties can
be represented and the semantic relevance among the differ-
ent concepts involved in RWQ monitoring domain can be
built [22]. A GIS-based scheme of RWQ assessment was
designed and applied in Klang River, Malaysia, in which a
risk hazard map is constructed according to data sets of BOD,
COD, TSS and NH3, and the hazard level for each parameter
of each station is assessed by the Risk Matrix Approach [23].
To achieve the goal of abnormal RWQ prediction, differ-
ent landscape effects on RWQ were commonly assessed
by geographic analysis methods, e.g., principal component
analysis [24], fuzzy c-means and subtractive clustering [25],
artificial neural networks [26], etc.

In summary, the main emphases of traditional researches
in terms of RWQ monitoring include three major aspects,
i.e., design & development of monitoring devices, construc-
tion & optimization of monitoring networks and efficient &
reliable transmission of monitoring data. Organization, man-
agement and analysis of obtained RWQ data, however, have
captured relatively little attention, especially from the aspect
of data model construction. To fill this gap, a spatiotempo-
ral data model is designed and implemented in this paper,
the innovations of which can be summarized as follows:

v A data structure is designed to improve the efficiency of
RWQ visualization and analysis.

v A method is put forward for memory space reduction of
RWQ data without affecting normal uses.

v A spatiotemporal data model is implemented which is
applicable to various generalizations of river spaces.

II. THE MAIN IDEA OF THE PROPOSED
SPATIOTEMPORAL DATA MODEL
It is well known that RWQ data has strong spatial and
temporal distribution characteristics. Although it cannot be
visualized directly by human eyes, it fills up river spaces

FIGURE 1. Idea of a spatial point to form linear, planar and steric units.

in its own way. At present, it is still a problem that how to
represent and analyze the invisible RWQ data. The main idea
of the spatiotemporal data model in this paper is put forward
based on the following assumption. Similar to water quality
indicators, imagine that there are abundant spatial points that
can detect water quality parameters (e.g., TN, TP, COD,
NH3-N, Chl-a, etc.) around their locations and each river
space is full of such innumerable points. It can be inferred
from the above assumption that RWQ data and its distribution
characteristics can be described by gathering these points
and analyzing their inherent attribute information. In this
study, the idea of designing the spatiotemporal data model is
proposed as follows: each spatial point has its own coordinate
(x, y, z), as well as the water quality data in the exact location
at various times. A spatial point in river spaces could be
expressed by

Pt=F {(x,y,z) ,Seq〈tuplei[timei, valuei(v1, v2,. . ., vn)]〉} (1)

where Pt represents the spatial point, (x, y, z) denotes the 3D
coordinate of Pt, tuplei [·] means a tuple which is exploited
to record RWQ parameters of Pt at various times, timei is the
time mark, valuei stands for the corresponding RWQ data of
timei and vi(i ∈[1, n]) represents the i-th parameter of RWQ.

In practical applications, river spaces can be abstracted
into three types, i.e., linear space, planar space and steric
space. The basic units of the three types of river spaces are
linear unit, planar unit and steric unit, respectively. In the
proposed spatiotemporal data model, a spatial point, contain-
ing both spatial (coordinates) and attribute (water quality)
information, is the fundamental unit of river spaces. And
each spatial point can be multi-dimensionally expanded to
construct linear, planar and steric units (Fig. 1).

Obviously, in the proposed spatiotemporal data model,
river spaces in each dimension can be filled up by setting
reasonable radii of point expansion. Accordingly, RWQ data
can be expressed efficiently by the designed data model in
theory.

III. ABSTRACTION OF THE PROPOSED
SPATIOTEMPORAL DATA MODEL
In this study, for practical uses, river spaces are logically
classified into three types of spaces, namely linear space,
planar space and steric space (Fig. 2). The steric space is the
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FIGURE 2. Diagram for the logical abstraction of river space.

FIGURE 3. Design of the proposed spatiotemporal data model.

closest to reality, while the linear space and the planar space
are two frequently applied forms of river spaces.

A steric river space (Fig. 2(b)) can be regarded as a very
similar counterpart of the river existing in the real world.
In this kind of river spaces, the visualization of RWQ data can
be very realistic and the convenient analysis and prediction
of water quality can be guaranteed. In this case, a river space
is made up of numerous cuboids and water quality data has
characteristics of both horizontal and vertical distribution.

Although a steric river space is the optimal expression
of the corresponding real river space, it is sometimes not
exploited for the visualization and analysis of RWQ data, for
the limitation of both data source and computer hardware.
Accordingly, a planar river space (Fig. 2(c)) is commonly
applied to represent approximatively the real river space.
In this case, a river space is composed of a number of planar
polygons.

A linear river space (Fig. 2(d)) is usually employed tomake
generalization of the corresponding real river space when the
geographical scope of the study area is very wide or only the
summary distribute information of water quality is required.
In this case, a river space is composed of a number of line
segments.

Based on the above-mentioned abstractions, the pro-
posed spatiotemporal data model can be designed as shown
in Fig. 3.

FIGURE 4. Data structure framework for the realization of the spatial
data model.

IV. REALIZATION OF THE PROPOSED
SPATIOTEMPORAL DATA MODEL
A. REALIZATION OF DATA STRUCTURE
According to the logical analysis above, linear, planar and
steric units can be constructed by the basic elements,
i.e., spatial points, using multidimensional expansion mode.
To implement the spatiotemporal data model, the data struc-
ture should be designed accordingly (Figure 4).

For those linear units, planar units and steric units orga-
nized by expanding spatial points, the corresponding struc-
tures can be designed as

(i) Linear unit:

{(x, y, z) , half length, Seq 〈tuplei [timei, valuei]〉}

(ii) Planar unit:

{(x, y, z) , half width, half height, Seq 〈tuplei [timei, valuei]〉}

(iii) Steric unit:

{(x, y, z) , half width, half height, half length,

Seq 〈tuplei [timei, valuei]〉}

where a spatial point is located at the center of each unit and
(x, y, z) is the coordinate of the point, half length, half width
and half height indicate the half-length of the sides of units,
Seq〈 · 〉 denotes the sequence of time series RWQ data which
is realized by a list structure in this paper.

B. DISCRETIZATION OF RIVER SPACE
The key task of this study is to divide river spaces into
independent parts and characterize them by spatial points.
It can be obviously seen from the description in Part A of
Section IV that each spatial point occupies an individual
part within a river space, and thus spatial points will not
be recorded redundantly when constructing different units.
Moreover, adjacent parts in a river space must be consecutive
with no intersection to guarantee (i) the whole river space can
be filled up completely and (ii) there are no parts that have
ambiguity attribute information. Accordingly, the following
condition must be satisfied:{

S (Pt0) ∪ S (Pt1) ∪ . . . ∪ S (Ptm−1) = R
S (Pti) ∩ S

(
Ptj
)
= ∅ (i 6= j)
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where R represents the whole river space, m is the total
number of spatial points that fill up the river space, S(Pti)
means the part of river space occupied by Pti.

C. OPTIMIZATION OF DATA STORAGE
RWQ data is composed of several parameters which are
commonly represented by float numbers. It is well known that
float numbers occupy more memory space than integer ones.
An optimization method of RWQ data storage is designed in
this section to reduce the occupied memory space during data
processing phase, which can be summarized as the following
three steps:

Step 1:Unify the fraction length of values of RWQ param-
eters using the rounding method. Assume that the unified
length is l.

Step 2: Magnify the values of water quality parameters
10l times, and it can be inferred that all the values of RWQ
parameters will be converted into integers which can be then
stored as unsigned short integer values.

Step 3: Store these converted values which will be recon-
verted into floating numbers, i.e., divided by 10l , before data
representing and analysis.

For example, the TN parameter of a spatial point at one
time is 1.38 (unit: mg/L), then 4 bytes (the basic storage unit
of a float number) are needed to store the value. Exploiting the
designedmethod (assume that l = 2), 1.38 is firstlymagnified
102 times and 138 can be generated, which can be stored by
1 byte (the range of unsigned short integer numbers stored by
1 byte is from 0 to 255). It can be concluded that the occupied
memory space of RWQdata can be economized greatly by the
designed method.

V. CASE STUDIES
A. VISUALIZATION OF RWQ DATA
Long-term RWQ data of a river in Chaohu Basin, China,
was employed to test and verify the proposed spatiotemporal
data model. The key parameters are set as follows: l = 2,
spatial points are arranged using equally distant method and
half width = half height = half length = 0.1m. Moreover,
functions of RWQ data visualization and analysis are imple-
mented employing Unity3d platform and C# programming
language.

It is well known that river spaces are continuous while the
distribution of monitoring stations is discrete. Accordingly,
it is necessary to make RWQ data spatial interpolated so that
each spatial point can be assigned water quality information.
In this paper, based on long time series monitoring data,
the spatial and temporal distribution characteristics of RWQ
can be expressed visually and intuitively by exploiting spatial
interpolation methods (Fig. 5). Applying the same method,
RWQ can be easily represented in a linear river space.

Within traditional methods (using tables to store RWQ
data), it is difficult to achieve ‘‘stereo-vision’’ representa-
tion or advanced analysis of RWQ. In this study, a stereo
river space can be represented conveniently by visualizing

FIGURE 5. Visualization of water quality data in a planar river space.

FIGURE 6. Visualization of TN in stereoscopic view.

the attribute information of spatial points, i.e., water quality
parameters. Fig. 6 shows the stereo-visualization result of
RWQ data, taking the TN parameter of a target river segment
as example.

In addition, RWQ data is projected onto a 2D planar
plane in conventional methods for data visualization, and it
is extremely difficult to grasp the vertical distribution char-
acteristics of water quality. In this paper, by gathering spatial
points at a horizontal or an upright plane and acquiring infor-
mation from their inherent properties, the vertical distribution
of RWQ can be described. Fig. 7 shows the distribution
of TP at three different depths in a chosen river segment
(depth means the distance from the surface of the water to
the specified layer), and the visualized result of RWQ in the
view of profile is given in Fig. 8 (taking the value of Chl-a
concentration as example).

B. ADVANCED ANALYSIS OF RWQ DATA
Effective expressing methods could make invisible RWQ
data visualized, which can contribute to grasp the spatial-
temporal distribution of water quality. On this basis, it is
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FIGURE 7. Visualization of TP in the view of layered-graph.

FIGURE 8. Visualization of RWQ in the view of profile.

FIGURE 9. The result of time trend analysis of water quality.

more significant to conduct advanced analysis on the acquired
RWQ data to grasp rapidly both changing trend and abnormal
information of RWQ data.

1) TREND ANALYSIS
Trend analysis of RWQ data refers to the trend calculation of
water quality parameters over time at fixed positions in river
spaces. In traditional methods, this kind of work is mainly
completed by analyzing large amounts of monitoring data
manually, the efficiency of which is quite low. Based on the
proposed spatiotemporal data model, the time trend analysis
of RWQ at a certain position can be realized conveniently
by fitting the time series attribute data of the corresponding
spatial point in chronological order (Fig. 9).

Here, let k and l be the numbers of monitoring sites
and data periods respectively. It is obvious that each period

of RWQ data of each sampling site will be calculated one
time to represent RWQ data, and the computation times of
trend analysis is k×l. In traditional methods, different periods
of monitoring data are stored in various tables, and it can
be inferred that the computation times of trend analysis is
l × k × l = k × l2.

2) ABNORMAL INFORMATION IDENTIFICATION OF RWQ
Compared with normal water quality data in river spaces,
abnormal information about RWQ (e.g., location, area, con-
centration of parameters, etc.) has captured more attention of
managers of water environment. In this paper, river spaces
are actually discretized into abundant solid, planar or linear
spaces, each of which is formed by expanding a spatial point.
And long time series RWQ data is considered as attribute
information of discrete units in river spaces. Accordingly,
the abnormal water quality information can be identified
automatically and rapidly by analyzing the attribute informa-
tion of spatial points.

In this research, abnormal information of RWQ can be
classified into two categories, i.e., temporal anomaly and
spatial anomaly. While temporal anomaly can be recognized
by conducting comparisons among current water quality data
and the historical counterparts, spatial anomaly can be dis-
criminated by extremum judgment of water quality parame-
ters within a certain region.

For temporal anomaly identification, target data (RWQ
parameters within a specific time range) will be firstly chosen
and organized in chronological order. Let Li (0≤ i ≤n − 1)
be the sequence of the target data (Ln−1 means the latest
water quality parameter). Then, Ln−1 will be regarded as an
anomaly if Eq. (2) is true. Here, n denotes the total number
of target data periods and δ stands for the given threshold.∣∣∣∣∣1n

n−2∑
i=0

Li − Ln−1

∣∣∣∣∣ ≥ δ (2)

Here, let k ′ and l ′ be the numbers of monitoring sites and
the number of target data periods respectively. Each period of
monitoring data of each sampling site must be calculated one
time for anomaly judgment, as well as subtraction (one time)
and threshold comparison (one time). The total computation
times is thus k ′ × l ′+2. In conventional schemes, it can be
inferred that the required computation times for temporal
anomaly identification is k ′×(l ′)2+2.
For spatial anomaly recognition, the key task is to judge

whether the specified RWQ parameter is the maximum one
within a given region. The corresponding spatial points in
the region will be chosen firstly according to spatial distance,
which can be calculated exploiting Eq. (3). Here, (x1, y1, z1)
and (x2, y2, z2) represent the coordinates of two spatial points.

s =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 (3)

The target data can be obtained then by extracting attribute
information of the chosen spatial points, and the speci-
fied water quality parameter will be considered as a spatial
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anomaly if Eq. (4) is true. Here, N means the number of
chosen spatial points, Pi denotes the target water quality
parameter of the i-th spatial point, and ε is the given threshold.∣∣∣∣∣ 1N

N−1∑
i=0

Pi − P∗
∣∣∣∣∣ ≥ ε (4)

Here, let k ′′ and l ′′ be the numbers of monitoring sites and
total data periods respectively. Similar to the process of tem-
poral anomaly identification, it can be inferred from Eq. (4)
that the essential computation times of the proposed scheme
and conventional schemes are k ′′ × l ′′+2 and k ′′×(l ′′)2+2,
respectively.

C. PERFORMANCE ASSESSMENT OF DATA
STORAGE OPTIMIZATION
An optimization method is presented in this paper to econo-
mize memory space of RWQ data. And a set of simulation
experiments have been done to test and verify the perfor-
mance of the presented method. Ten periods of monitoring
data of RWQ are taken as experimental data, which are stored
by conventional form (float values) and the optimizedmethod
(unsigned short integer values) respectively and the occupied
memory spaces are separately calculated and compared. The
experimental results are shown in Table 1, indicating that the
proposed method has a satisfying ability in terms of memory
space economization.

TABLE 1. Experimental results of data storage optimization.

VI. DISCUSSION
Experimental results show that the efficiency of RWQ data
visualization and analysis is improved significantly and the
occupied memory space is reduced drastically, exploiting
the designed spatiotemporal data model. Firstly, the tasks of
multi-period RWQ data visualization and analysis are boiled
down to the dealing with time series attribute data of spatial
points, and the efficiency can be thus improved. Moreover,
RWQ data are stored by integer values, instead of float ones,
and the storage space can be reduced accordingly (the larger
the volume of RWQ data, the more obvious the effect is).

VII. CONCLUSION
This study mainly contributes on three aspects. Firstly, a
spatial point with both spatial and attribute information is
exploited as the basic unit of river spaces to efficiently
visualize the spatial-temporal distribution of RWQ data.

Then, methods of expanding a point to a line segment, a flat
surface and a cube are designed respectively to make the
proposed data model available for common generalizations of
river spaces. Finally, an optimization method of data storage
is designed and the occupied memory space of RWQ data can
be economized.

There are still some limitations to be solved in our future
research. Spatial points are arranged at equal intervals in the
proposed data model so that the whole river space can be
filled up conveniently and entirely. However, the variation of
water quality is uneven in real river spaces and this method
has some shortcomings. In those regions where water quality
varies greatly, the intervals among spatial points need to be
as small as possible so that detailed water quality information
can be represented. In contrast, to reducemaximally the occu-
pied memory space of RWQ data, the corresponding intervals
should be as large as possible in those regions with little
difference of water quality. In our future research, we will
paymore attention to the self-adaption adjustment of intervals
among spatial points so that both details representation of
RWQ and memory space reduction of long-term monitoring
data can be realized.
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