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ABSTRACT Lockwires are often used as mechanical locking components for bolts on an engine. Inspecting
its twining direction relative to the bolt is vital for ensuring an engine runs normally. However, the dominant
manual inspection method is inefficient and limited by the professional skills of the inspector. In this paper,
we propose a method that can be used to automatically determine the twining direction of a lockwire. First,
a coarse-to-fine scheme for localizing the bolt is designed. Then, rough segmentation regions of the lockwire
are acquired by a novel elongated shape descriptor. The entire area containing the lockwire can be obtained
by connecting images from segmentation regions. An innovative skeleton tree and texture-based selection
strategy are used to extract the lockwire centerline. An efficient vector fitting approach is proposed for
computing the extension direction of the centerline. As a result, the twining direction can be identified via
the extension direction and the bolt’s position. The experimental results show that ourmethod is very effective
in determining the twining direction of a lockwire, with an accuracy reaching 95%. In addition, the results
also show that our method can deal with low-quality images of lockwires at different angles.

INDEX TERMS Lockwire, twining direction, automatic recognition, engine.

I. INTRODUCTION
Preventing threaded fasteners from loosening or falling out
due to vibration and other forces [1] is extremely important
as these events create safety hazards in mechanical systems,
especially engines. To this end, the lockwire [2]–[4] shown
in Fig. 1 is commonly used in the aviation and automotive
industries, as a secondary locking mechanism [5], [6] for the
bolt on an engine. Generally, the lockwire is assembled in
bolted joints where the use of locknuts is inconvenient, and
its twining direction should be parallel to the direction in
which the bolt is tightened, i.e., clockwise. Instead, the wrong
twining direction will speed up the bolt-loosening [7], which
could cause lethal security hazards. Therefore, it is essential
to carefully inspect the lockwire twining direction.

Currently, the primary approach determining the twining
direction of a lockwire is manual inspection. This has several
disadvantages. Specifically, inspectors are required to con-
centrate on this serious task for a long time. Thus, it could
be difficult to ensure a reliable inspection. Furthermore, this
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FIGURE 1. Examples of lockwire with correct twining direction (a) on a
race car and (b) on an aircraft engine. Note that the lockwire can prevent
the bolt from loosening only when it is assembled clockwise.

inefficient approach cannot satisfy great demand in modern
industrial production.

On the other hand, very few investigations on lockwires
were conducted and their focus is on other aspects rather than
the identification of the lockwire twining direction. A com-
parative analysis of lockwires with other locking devices
was performed previously in [8], [9], and the impact of the
lockwire material on locking strength was studied in [10].
Although they provide some instructions for preventing a
bolt from loosening under vibration, the risks caused by the
incorrect installation are still unavoidable.
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FIGURE 2. Overview of our LTDR method. The first stage is used for bolt localization (B1 and B2, where c∗ is the center and r∗
is the radius). The coarse elongated regions of the lockwire (L1 and L2) are determined in the second stage. Based on these
regions, the lockwire centerlines (V21 and V22, where P21∗ and P22 are the intersection of the centerline and the bolt) can be
extracted in the third stage. Finally, the extension direction of the centerlines is computed. The twining direction is identified
via the extension direction and the bolt’s fine position.

The two aforementioned issues motivated us to conduct
a study on automatic Lockwire Twining Direction Recogni-
tion (LTDR). Unlike common recognition tasks in industrial
production, such as crack identification [11] and pipeline
recognition [12], LTDR is more challenging. Firstly, common
recognition tasks only need to recognize one target. However,
the lockwire twining direction is determined by a pair of lock-
wires and locked bolts, requiring accurately localization and
their one-to-one correspondence. Secondly, the lockwire not
only has a braided structure [13], but also an elongated irreg-
ular shape [14]. This special structure makes it intractable
to completely segment the lockwire out, which causes great
difficulty for lockwire identification. Lastly, the background
is more complicated due to many types of components on
the outside of the engine. Therefore, it is more difficult to
accurately find the lockwire andmatch it to the corresponding
bolt.

To accomplish such a challenging task, this paper pro-
poses an automatic LTDRmethod based on machine learning
and image processing. The bolt is initially localized using
a coarse-to-fine scheme. The entire region containing the
lockwire is subsequently acquired by locating different bright
spots. Afterwards, the lockwire centerline in this region is
extracted, and its extension direction is computed. Finally,
the twining direction is identified from the extension direction
and the bolt’s position.

The rest of this paper is organized as follows. Our LTDR
method is presented in Sec. 2, and each step is detailed

in Sec. 3. Our dataset, experimental evaluation, and compre-
hensive analyses are presented in Sec. 4. Sec. 5 concludes the
paper.

II. OVERVIEW
An overview of our LTDR method is shown in Fig. 2.
The method includes bolt localization (Sec. 3.1), lockwire
coarse segmentation (Sec. 3.2), lockwire centerline extraction
(Sec. 3.3), and twining direction recognition (Sec. 3.4).

A. BOLT LOCALIZATION
We propose a coarse-to-fine scheme to precisely localize
the bolt. Specifically, an Adaboost-based model is used for
coarse localization. The fine position is determined using
edge detection in the polar image.

B. LOCKWIRE COARSE SEGMENTATION
In this stage, the separated bright spots of the lockwire
are obtained from the bolt’s coarse localization using the
maximally stable extremal regions (MSER) algorithm [15].
We propose a novel shape descriptor that uses these spots in
continuous segmentation.

C. LOCKWIRE CENTERLINE EXTRACTION
A novel skeleton tree and texture-based selection strategy
are proposed for extracting the lockwire centerline from the
elongated segmentation regions determined in the previous
stage.
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D. TWINING DIRECTION RECOGNITION
The random sample consensus (RANSAC) algorithm [16] is
an efficient vector fitting approach.We use RANSAC to com-
pute the lockwire’s extension direction. Finally, the twining
direction is determined from the extension direction and the
bolt’s fine position.

III. METHODS
A. BOLT LOCALIZATION
Recognizing the twining direction requires localizing the bolt
and lockwire simultaneously. Generally, it is reasonable to
localize the bolt first because the lockwire can be determined
from the bolt’s position.

We propose a coarse-to-fine scheme for localizing the bolt
in the image. Specifically, we designed a detection model
based on the Adaboost algorithm [17] to obtain the bolt’s
coarse localization first. In this model, the decision tree is
used as the weak classifier, and the HOG descriptor [18] is
used as the feature descriptor. The Adaboost algorithm uses
simple weak classifiers for detection, and we can choose from
a variety of weak classifiers. Usually, Adaboost can get a
robust classifier even with a small-scale dataset.

We approximate the bolt in the image as a circle and
perform accurate edge detection on its polar image. Because
the bolt remains circular even if it is deformed, the edge of
the bolt can always remain in the vertical direction in its polar
image. Compared with common strategies for circle detection
like Hough transformation, the proposed method can detect
bolts that are not round enough, thus it has better universality
and robustness. Fig. 3(a) can be approximated as a vertical
line in Fig. 3(b). For visual comparison, Fig. 3(d) and (e) show
the transformation of a standard hexagonal bolt using two
relevant circles.

The original image is transformed into a polar image using
two steps. The first step requires transforming the original
image from the image coordinate system to a Cartesian coor-
dinate system, and subsequently to a Polar coordinate system.
Fig. 4 shows the origin and axes in these three coordinate
systems. Formally, let H and W be some number of rows
and columns. Moreover, let (u, v), (x, y), and (m, n) denote
the coordinates in the image, Cartesian, and polar coordinate
systems, respectively. Then, (x, y) is defined as

x = u−W
/
2, y = −v+ H

/
2. (1)

To eliminate the impact of the changes in image scales,
the images should have the same size in the image and polar
coordinate systems. Therefore, we defined an angle scaling
factor1θ = 2π/H and a length scaling factor1θ= 1. Then,
(x, y) can be written in polar coordinates as follows

m = ρ
/
1ρ, n = θ

/
1θ, (2)

where ρ =
√
(x2 + y2) is the length of the vector consisting

of (x, y) and the origin, and θ = arctan((y)/(x)) is the angle
between this vector and the x-axis.

Afterwards, the Sobel operator is used to detect the edge
along the vertical direction in the polar image. The edge of

FIGURE 3. A hexagonal bolt in different coordinate systems. (a) Normal
image showing hexagonal bolt. (b) The polar image of (a). (c) A partially
magnified image of (b). (d) An image showing the outline of a hexagonal
bolt and standard circles. The yellow hexagon shows the edge of the bolt,
and the red and green circles show its inscribed and circumscribed
circles. (e) Polar image of (d). The six colored points in (a) and
(c) represent the six corners of the hexagonal bolt.

FIGURE 4. Defining the origin and axis in the three coordinate systems.

the bolt in the original image can be determined by transform-
ing the result back to the original image coordinate system.
Because the bolt’s edge is approximated as a circle, its fine
position can be represented in terms of its center and radius.

B. LOCKWIRE COARSE SEGMENTATION
Due to the constrained spatial position between the lockwire
and bolt, the region containing the lockwire can be identified
in the image produced from the Adaboost-based detection
model. However, as shown in Fig. 3(a-2), directly segmenting
the lockwire is intractable because it is quite inhomogeneous
and has an irregular elongated shape. To eliminate the diffi-
culty, we first perform coarse segmentation by utilizing the
special braid structure of the lockwire. This is achieved using
the MSER algorithm. Regardless of the segmentation grey
thresholds of an image, the segmentation result of MSER
(maximally stable extremal regions) is almost constant. These
regions have either very large or very small gray values. In our
case, an illuminated lockwire usually exhibits obvious bright
spots with large gray values. Therefore, as shown in Fig. 5,
these spots can be extracted using MSER.

However, the extracted bright spots might be separated
due to the braided structure of the lockwire. In general,
bright spots in an image of a lockwire should have a similar
shape, small size, and strong directional correlation. Based
on these characteristics, we propose a novel elongated shape
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FIGURE 5. An example of bright spot extraction (red lines) on a lockwire
using the MSER algorithm.

FIGURE 6. Schematic diagram of the parameters used in the shape
descriptor. (a) Two kinds of distances: ZC (black arrow) and ZE (green
arrow). The blue areas are two adjacent bright spots and the red curves
are the skeletons. Black points show the center points and green points
show the endpoints. (b) Minimum bounding rectangle. The light blue
rectangle indicates the minimum rectangle that circumscribes the dark
blue curve.

descriptor to determine the continuous region on the lock-
wire. The shape descriptor is represented by three parameters,
which are detailed as follows (T∗ is a constant, sgn is the
symbolic function):
(i) Distance
As shown in Fig. 6(a), for each region’s contour li ∈ L,

we define P(i)(1) =
{(
x(i)(1), y(i)(1)

)
|i = 1, 2, . . . , k

}
as the

first endpoint andP(i)(ni) =
{(
x(i)(ni), y(i)(ni)

)
|i = 1, 2, . . . , k

}
as the last endpoint. Moreover, we define two kinds of
vectors: ZCi = {‖Ci − Ci+1‖ |i = 1, 2, . . . , k − 1} and
ZEi =

{∥∥P(i)(ni) − P(i+1)(1)∥∥ |i = 1, 2, . . . , k − 1
}
, where

C indicates the centroid. The two types of distances are
di =

∣∣ZCi ∣∣ , (i = 1, 2, . . . , k − 1) and d ′i =
∣∣ZEi ∣∣, (i = 1,

2, . . . , k − 1). Finally, we define a compositive distance

Fdistance = [1− sgn(di − T1)]+
[
1− sgn(d ′i − T2)

]
(3)

(ii) Aspect ratio
The minimum circumscribed rectangle of an arbitrary

curve is shown in Fig. 6(b). Its aspect ratio is Ri = hi
/
wi,

where w and h are the long and short sides of the rectan-
gle, respectively. We define the following compositive aspect
ratio

Fratio= [sgn(Ri−Tr1)+1] ∗ [sgn(Ri−Tr2)−1] (Tr1<Tr2)

(4)

(iii) Angle
In Fig. 6(b), let θ denote the angle between the long side

of the rectangle and the x-axis. Similar to Eq. (4), we define
a compositive angle as:

Fangle= [sgn(θi−Tθ1)+1] ∗ [sgn(θi−Tθ2)−1] (Tθ1<Tθ2)

(5)

TABLE 1. Correspondence between points on the skeleton and nodes on
the skeleton tree.

As a consequence, the candidate spots on the lockwire can
be selected by adjusting T∗, which changes the distance, ratio,
and angle accordingly. Then, the candidate spots on the lock-
wire with suitable T∗ value can be selected. To connect the
two candidate regions of a lockwire more smoothly, we apply
the cubic spline interpolation. Formally, let ∇f |P(i)(ni) denote
the gradient of P(i)(ni), and ∇f |P(i+1)(1) be the gradient of
P(i+1)(1). The objective function of the cubic spline interpola-
tion S_i (x) is defined as:
Si (x) = Ai + Bi (x − xi)+ Ci(x − xi)2 + D(x − xi)3

S ′(i)(0) (x0) = ∇f |P(i)(ni)
S ′(i)(m−1) (xm) = ∇f |P(i+1)(1)

(6)

where S ′(i)(0) (x0) and S ′(i)(m−1) (xm) indicate the gradients
of the first and last points in the discontinuous space,
respectively.

Eventually, the coarse segmentation of the lockwire can be
performed by connecting all candidate regions.

C. LOCKWIRE CENTERLINE EXTRACTION
We design a three-step scheme to precisely extract the lock-
wire centerline. The first step aims to obtain the skeleton
from the elongated region determined in the previous stage
(Sec. 3.2). A novel skeleton tree is used to obtain a smooth
skeleton in the second step. Then, a texture-based selection
strategy is used to extract an accurate centerline from many
candidates in the third step. A refining algorithm is used in
the first step [14]. The second and third steps are described
below.

Generally, the segmentation result from the previous stage
will contain a significant amount of noise, and the noise
will appear as small burrs on the skeleton. Hence, we pro-
pose using a novel skeleton tree to remove these burrs.
Table 1 shows the correspondence between points on the
skeleton and nodes on the skeleton tree. In addition to the
endpoints, the points on the skeleton are divided into branch
points and middle points. There are multiple directions to
traverse at branch points, while there is only a single direction
to traverse at a middle point.

Fig. 7 shows the process of building a skeleton tree to
remove burrs. First, the refined result is processed as a single-
pixel skeleton (Fig. 7(a)). Then, the skeleton is traversed
to build the corresponding skeleton tree. The traversal is
detailed as follows. The starting point can be chosen as E1
or E2, which should be one of the two endpoints separated
by the greatest distance. The traversal direction should be
the skeleton’s longest possible traversal distance, as shown
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FIGURE 7. The process of removing burrs from the skeleton. (a) One skeleton with eight branch points named
C1-C8. (b) Partially magnified image of (a). (c) The skeleton tree. (d) The filtered smooth skeleton that start from the
lower left endpoint E1 to the upper right endpoint E2. The red nodes and red arrows make up the longest path on
the skeleton tree. Points that remain along the red path constitute the smooth skeleton.

in the arrows of Fig. 7(b). Traversal ends when all points
in the skeleton are traversed. Meanwhile, the coordinates of
each child node in the skeleton tree and the number of the
traversed middle points are recorded. As a result, the points
on the longest path of this skeleton tree are the points of the
centerline. The skeleton tree in Fig. 7(a) is shown in Fig. 7(c),
and the smoothed skeleton is shown in Fig. 7(d). It is clear that
all burrs on the original skeleton have been removed.

There may be multiple candidates for the lockwire cen-
terline. As one bolt has two lockwires at most, we utilize a
texture-based strategy to select the correct candidates. Two
kinds of texture features, i.e., contrast and entropy, are used
in this strategy. Specifically, contrast reflects the clarity of the
image and the depth of the groove while entropy indicates
the complexity of the image texture. Both of these texture
features are calculated on the basis of the gray level co-
occurrence matrix. Assume k is the number of candidates.
Let Texc denote the contrast, and Texe be the entropy. Then,
we define a compositive texture feature Ftex as
Texcm = max (Texci)
Ftex=Texc+exp [αc−min((Texcm−Texci) /Texcm)]Texe
(i = 1, 2, . . . , k)

(7)

where αc= 0.5. Let Pλ8,d (a, b) be the value of the co-
occurrencematrix. Then, Texc and Texe are defined as follows

Texc =
∑

a,b
|a− b|Pλ8,d (a, b) (8)

Texe =
∑

a,b
P8,d (a, b)log2P8,d (a, b) (9)

where κ = 2 and λ = 1. We calculated the texture features of
a square window with a size of 100 pixels, i.e., d ∈ [1, 99].
The gray level is compressed from 256 to 16 levels to improve
the computational efficiency, thus a ∈ [0, 15] and b ∈ [0, 15].
We use the gray level co-occurrence matrix at four angles
φ = 0◦, 45◦, 90◦, or 135◦ and their mean value are used
to get the texture feature. Usually, an image with lockwires
has larger contrast and entropy because the image is more
complex.

D. TWINING DIRECTION RECOGNITION
In this stage, we determine the twining direction by iden-
tifying the relative direction of the extension direction of
the lockwire and center-intersection vector of the bolt.

FIGURE 8. Different parts in a curve and their possible directions. The
line segment inside the blue rectangle is input into RANSAC. The red
points are along the direction vector and the blue points are not along
the direction vector.

The former is obtained using the RANSAC algorithm. The
latter is determined from the bolt’s fine position.

The lockwire centerline may be irregular, leading to mul-
tiple extension directions in different centerline segments
(Fig. 8). Thus, we select a valid segment based on the inter-
section of the centerline and the bolt. RANSAC is then used to
efficiently fit the direction of the valid segment. Specifically,
for a line segment, if the mathematical model of this line
segment is set to a straight line, the RANSAC algorithm can
be used to estimate a point on the direction vector (Fig. 8)
of the segment by iteration. We used the two points on the
direction vector that are separated by the largest distance to
compute the extension direction-vector in our experiment.
Moreover, the direction is reliable because the RANSAC
algorithm is robust against noise.

The center-intersection vector of the bolt is defined as
EV1 = ECbCl , where Cb denotes the center of the bolt and Cl
represents the intersection of the centerline and the bolt. Let
EV2 be the extension direction of the lockwire centerline. Then,
as shown in Fig. 9, the lockwire twining direction W can be
determined using the signum of the cross product of the two
vectors:

W= sgn( EV1 × EV2) (10)

If W is positive, then the twining direction is clockwise.
Otherwise, the twining direction is counterclockwise.W = 0
if V1 and V2 are collinear.

IV. EXPERIMENTS AND RESULTS
We first describe the dataset used in our experiments and
evaluation indicators are presented in this section. We then
present the overall qualitative and quantitative results and
the robustness performance on rotating and low-quality
images.
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TABLE 2. Distribution of our dataset.

FIGURE 9. Lockwire twining direction identification: (a) false lockwire
twining direction and (b) correct lockwire twining direction. The center
point of the hexagonal blot is Cb and the lockwire hole is Cl. V2 is the
unit extension direction vector of lockwire.

FIGURE 10. Example images from our dataset: (a) single-locking;
(b) double-locking; (c) multiple-locking.

A. DATASET DESCRIPTION
To the best of our knowledge, there is no publicly avail-
able dataset on lockwires at present. Therefore, we collected
391 images of an aircraft engine using an industrial camera
(1 MER-504-10GM-P, Imavision) and lens (1 M1214-MP2,
Computar) with 12 mm focal length. This camera provided
images with 2048×2048 pixels.

The images were randomly separated into training and test-
ing sets with 290 and 101 images, respectively. The images
were divided into three categories based on the number
of locked bolts: single-locking, double-locking, and ultiple-
locking. The distribution of our dataset is shown in Table 2,
and example images are shown in Fig. 10. The test set con-
tained 122 lockwires with correct twining direction and 108
lockwires with incorrect twining direction.

The training set was used to build an Adaboost-based
model. All hexagonal bolts in the training images are labeled

FIGURE 11. Example result images: (a) hexagonal bolt detection results
and (b) lockwire twinging direction recognition results. Images in the first
column have a single lockwire. Images in the second column have two
lockwires, and images in the third column have multiple lockwires.

TABLE 3. Some parameters of the pdollar toolbox.

similar to the format used in the PASCAL VOC dataset [19].
It is worth noting that there may be occluded hexagonal
bolts in some images. These occluded bolts may be intact
in other images because the images were captured at differ-
ent shooting angles. Thus, these hexagonal bolts were not
labeled.

As shown in Table 2, the number of lockwires in the
test images is less than the number of hexagonal bolts. The
reason is that some hexagonal bolts are not assembled with
lockwires. These hexagonal bolts are omitted in the following
steps related to the lockwire.

B. EVALUATION INDICATORS
We used different performance evaluation measures to evalu-
ate different steps. The bolt detection and lockwire detection
results are evaluated using recall. The recognition result is
assessed using the accuracy measure.

If the test set contains a hexagonal bolts and m lockwires,
and only b hexagonal bolts and n lockwires are detected, then
c hexagonal bolts and k lockwires were detected incorrectly.
Meanwhile, the twining direction of p lockwires wasmisiden-
tified. The recall of hexagonal bolt detection can be defined
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TABLE 4. Hexagonal bolt detection results.

TABLE 5. Lockwire detection and twining direction recognition results.

as

Recallbolt= ((b− c)/a)× 100%, (11)

The recall and accuracy of lockwire detection can be
defined as

Recalllockwire = ((n− k)/m)× 100% (12)

Accuracylockwire = ((n− k − p)/(n− k))× 100% (13)

The ratio of lockwires with clockwise twining direction to
those with counterclockwise twining direction in the test is
1:1, thus the accuracy as defined in Eq. (13) can be used to
describe the performance of the algorithm.

C. OVERALL PERFORMANCE
Fig. 11 shows example images of the results, including the
bolt detection and twining direction recognition result.

The Adaboost-based model introduced in Section 3.1 was
created with pdollar Matlab toolbox [20] to detect hexagonal
bolts. Table 3 shows some parameters used in the pdollar
toolbox. The detector used a step size of 4 pixels, training was
divided into 4 stages, and the number of decision trees trained
at each stage was [32 128 512 2048]. The final detection
model consisted of 2048 depth-2 trees. The cell size was set
to 4 and the block size was set to 2. Considering that the bolt
is hexagonal, the entire 360◦ area around the bolt is divided
into 6 equal intervals. Each pixel casts a vote for the bin
corresponding to its gradient orientation that is weighted by
its gradient magnitude. The entire training process required
approximately 7 to 9 minutes.

We tested the Adaboost-based model against the test set
(101 images, 216 hexagonal bolts); the results are shown
in Table 4. As can be seen from Table 3, there is 1 undetected
hexagonal bolt with no errors. The detection recall of the
model reaches 99.5%. The results suggest that our model can
be used to accurately locate all hexagonal bolts in the images.

Afterwards, we tested the algorithm for detecting lock-
wires on the test set (101 images, 230 lockwires).
Table 5 shows the result of the lockwire detection and twining
direction recognition. The detection recalls for single-locking
and double-locking images are 98.1% and 97.2%, respec-
tively. Both the single-locking and double-locking images

have 1 omitted bolt. All single-locking images were detected
correctly, and only 1 double-locking image was detected
incorrectly. The multiple-locking images have the worst
lockwire detection results with 14 undetected hexagonal bolts
with a recall of only 86.3%. There is one main reason why
the detection recall from the multiple-locking images is the
lowest. When a bolt is equipped with two lockwires and the
two lockwires extend along the same direction, our algorithm
may mistake the two lockwires for the same lockwire. Most
bolts in the multiple-locking images are equipped with two
lockwires, so there are more omissions in this kind of image.

Although the recall of lockwire detection for the three
types of images is different, the accuracies of the twining
direction recognition are nearly the same. From Table 5, there
are 13 lockwires with incorrect twining direction in total,
including 4 single-locking images, 5 double-locking images,
and 4 multiple-locking images. The multiple-locking images
have the highest recognition rate (95.4%). The difference
in accuracy for single-locking images compared to double-
locking images is only 0.7%. The accuracy for detecting
single-locking and double-locking images reaches 92.5% and
93.2%, respectively.

Some results from our proposed method are shown
in Fig. 12, which includes results for all three types of images.
One can see that the background in some images is relatively
simple, but it contains a lot of noise. Even so, the proposed
method still provides high recognition accuracies.

D. ROBUSTNESS TESTS
Images captured in a practical environment may exhibit slight
rotation or have low quality. To further test the robustness of
the proposed method, various rotations were applied to the
test images to simulate various industrial imaging situations.
In addition, we tested the robustness of the proposed method
with low-quality images.

1) ROBUSTNESS TO ROTATIONS
The original test images were rotated within −12◦ to 12◦

in 4◦ intervals. This rotation range is sufficient to cover most
rotation cases in various imaging conditions. The test results
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FIGURE 12. Some intermediate results of the proposed method on automatically identifying the twining direction of (a)
single-locking lockwire, (b) double-locking lockwire, and (c) multiple-locking lockwire.

TABLE 6. Lockwire detection and twining direction recognition results (counterclockwise rotation).

TABLE 7. Lockwire detection and twining direction recognition results (clockwise rotation).

FIGURE 13. Some low-quality images: (a) images with uneven illumination; (b) low-quality images with significant noise; (c) low-quality images with
low-quality hexagonal bolts; (d) segmentation results of (b). Images in the yellow rectangle are lockwires.

on the rotated images are shown in Table 6 and 7, where a
positive number indicates counterclockwise rotation.

From Table 6 and 7, one can see that there is no significant
decrease in accuracy as the angle of rotation increases. One
can see that the lowest accuracy in the single-locking image is
93.0% within 12◦ rotation. For the other two types of images,
the lowest accuracies are 93.2% and 95.2%. The results show

that the accuracy after rotation is nearly equal to the accuracy
before rotation. Therefore, our method is robust enough to
rotation up to 12◦.

2) ROBUSTNESS TO LOW-QUALITY IMAGES
We collected 123 low-quality images to further evaluate
our proposed method. Fig. 13 shows some example images.
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TABLE 8. Lockwire detection and twining direction recognition results of with low-quality images.

The low-quality images have either a poor background, such
as uneven illumination and a lot of noise, or low-quality
hexagonal bolts with uneven gray scale on the surface. The
results are presented in Table 8. Although these images are of
low quality, the proposed method still provides considerable
accuracy.

V. CONCLUSION
We propose an automatic lockwire twining direction recog-
nition (LTDR) method based on the machine learning and
image processing in this paper. To the best of our knowledge,
our method is the first designed for automatic LTDR tasks.
Our experimental results show that our method provides high
recall ratio and accuracy in lockwire detection and twining
direction recognition. The results also show that our method
is quite robust against low-quality images and diverse rota-
tions. Moreover, our method provides precise determination
of a bolt’s position and lays a foundation for defect detection
in bolts.

The proposed method only provides LTDR with limited
illumination at this stage. Because bright spots on the surface
of a lockwire may disappear in low light, it will be difficult
to detect and identify the lockwire, resulting in decreased
accuracy. In future research, we will improve the robustness
of the proposed method such that it can be used in different
illumination conditions.
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