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ABSTRACT The speech signal is different from the typical audio in terms of spectral bandwidth, intensity
distribution, and signal continuity, thus how to achieve high imperceptibility and strong robustness for speech
steganography is a big challenge. In this paper, we present a speech steganography scheme based on the
parity-segmented method and the differential singular value decomposition (SVD). The selected discrete
cosine transform (DCT) coefficients are divided into two segments according to parity order. In this way,
the energy of the paired segments is approximately equal, therefore the changes in the singular values caused
by data embedding are reduced, and high imperceptibility is achieved. Unlike the common SVD-based
steganography, the differential SVD scheme can effectively remove the impact of amplitude scaling attack by
embedding the secret message into the difference between the singular values. Experimental results show that
the proposed method achieves high imperceptibility and strong robustness while resisting the state-of-the-art
steganalytic methods.

INDEX TERMS Steganography, differential SVD, paired segments, imperceptibility, amplitude scaling.

I. INTRODUCTION
Steganography is an important way of secure communica-
tion via digital cover media such as image, audio and video
[1]–[3]. In recent years, steganography has received consider-
able attention due to the growing necessity for data security,
and a lot of steganography methods have been proposed to
embed secret message into cover objects and transmit through
public channels.

With the rapid development of advanced communication
technology, mobile wireless and Voice over IP (VoIP) are
widely used around the world, and speech steganography
has increasingly high value covering the secure and covert
communication. Speech is a special case of audio signals, and
it is different from the typical audio signals in terms of spec-
tral bandwidth, intensity distribution, and signal continuity
[4]–[6]. In general, methods designed for audio steganog-
raphy are not suitable for speech steganography because
those methods take the media object as continuous signal
and do not consider the speech characteristics. In addition,
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because the spectral bandwidth of speech signal is too nar-
row, the imperceptibility would be decreased seriously after
embedding the secret message. Besides the strict impercepti-
bility requirement for speech steganography, the speech data
would suffer from the typical digital speech processing such
as mp3 compression and amplitude scaling, which means
robustness should also be carefully studied. Therefore, it is
a big challenge to embed the secret message in speech data
with high imperceptibility and strong robustness.

The existing speech steganography methods can be gen-
erally classified as temporal domain methods and transform
domain methods [7], [8]. The temporal domain methods can
be further divided into echo-based solutions [9], [10] and least
significant bit (LSB) substitution solutions [11]. Generally,
the temporal domain steganography methods can achieve
high payload capacity with low computational complexity,
but they are highly vulnerable to attacks [12]–[14].

The transform domain methods have becomemore favored
by researchers for their good imperceptibility and robustness.
Rekik et al. [15] put forward a discrete wavelet transforma-
tion (DWT) steganography method in which the speech high-
frequency components are separated from the low-frequency
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components, and the secret data are embedded into the low
amplitude and high frequency regions of the cover signal,
thus the stego signal is perceptually indistinguishable from
the original speech signal. Ahani et al. [16] use discrete
wavelet transform and sparse decomposition to address the
imperceptibility and undetectability in speech steganogra-
phy, and both stego signal quality and embedding capacity
have been improved. In order to design an efficient speech
steganographic scheme with robustness to signal process-
ing attacks, Spread Spectrum (SS) and Quantization Index
Modulation (QIM) technique are commonly used [17], [18].
The additive and multiplicative data hiding methods based on
spread spectrum techniques are proposed [19], [20]. These
methods utilize the key-dependent pseudorandom sequence.
Compared to the spread spectrum methods, the QIM scheme
has capacity advantage for data embedding, and it is easy to
be implemented by using various sets of quantizers to embed
message [18], but the main weakness of QIM-base scheme is
its vulnerability against the amplitude scaling attack. Rational
Dither Modulation (RDM) is the improvement to QIM, and
the quantization step is derived recursively from the previ-
ous vector-norms, thus gain-invariant adaptive quantization
step-size can be achieved, which will effectively resist the
amplitude scaling attack [21], [22]. However, this method is
suitable for audio signals but does not work well for speech
data since speech is not the continuous signal.

Recently, Singular value decomposition (SVD) has been
applied to speech steganography due to its two important
properties [23]: 1). The singular values are determined by
the signal energy, which contributes to the stability of the
singular values and the data hiding. 2). Slight changing sin-
gular values does not affect the quality of the signal. Kanhe
and Aghila [24] propose a DCT-SVD-based speech steganog-
raphy method which embeds the secret message in voiced
frames. Dhar and Shimamura [25] propose a DCT-SVD-
based scheme using entropy and log-polar transformation
(LPT), and data is embedded by quantizing the Cartesian
component of highest singular value obtained from the DCT
sub band with highest entropy value. Nematollah et al. [26]
design a scheme which utilizes linear predictive analysis
(LPA) with SVD and QIM by applying the ability of LPA
for modeling quasi-stationary part of the signal. Although
the imperceptibility is improved, these SVD-based stegano-
graphic methods are still not robust enough to amplitude
scaling attack. Recently, Hwang et al. [23] introduce an SVD-
QIM-based algorithm that has strong robustness to amplitude
scaling attack by utilizing the SVD of stereo audio signals.
But this approach can not be applied to data embedding on
mono audio and speech signals because the matrix for SVD
transformation must be constructed with two channels.

In this paper, instead of modifying the singular value in
transform domain directly, we propose a differential SVD
steganographic method that can achieve high imperceptibility
and resist common attacks, especially for amplitude scaling
attack. Firstly, the speech signal is partitioned into speech
frames. Secondly, DCT is applied to the speech frame to get

the DCT coefficients Xi(k). The DCT coefficients Xi(k) are
divided into a pair of segments according to the parity of k .
The aim of this segmentation method is to ensure that the
paired segments is approximately equal. In this way, the data
modification can be decreased and the speech distortion can
be reduced accordingly. Finally, the DCT coefficients in each
segment are sorted to form a matrix. SVD is employed to
decompose the matrices and the difference of the largest
singular values from the paired segments are adopted for data
embedding. The embedding thresholds are adjusted adap-
tively to maintain a satisfactory balance between robustness
and imperceptibility. Data extraction follows the similar pro-
cedure to data embedding. The proposed scheme is verified
by the state-of-the-art steganalytic methods and tested with
several common attacks. The considerable imperceptibility,
security and robustness are achieved.

The main contributions of the paper can be summarized as
follows.

1) DCT is applied to the speech frame to get theDCT coef-
ficients, and the selected DCT coefficients are divided
into two segments such that the energy of the paired
segments is approximately equal.

2) The adaptive embedding thresholds are adopted to
improve the robustness against attacks, and the values
of the thresholds are adjusted adaptively by the largest
singular values of the two segments, respectively.

3) A robust differential SVD steganographic scheme is
proposed. The secret message is embedded into the
difference of the two largest singular values of the
paired DCT coefficients segments.

The remainder of the paper is organized as follows.
Section II provides background information related to SVD.
Section III presents the embedding and extraction processes
of the proposed method. The experimental results are shown
in Section IV. Section V concludes the paper.

II. TECHNICAL BACKGROUND
A. SINGULAR VALUE DECOMPOSITION
SVD, a mathematical tool for matrix analysis, has become
a generally used means in the information hiding field owing
to its unique characteristics. A typical SVD is used to decom-
pose an m× n matrix A as follows.

A = USV T
= U

 σ1 · · · 0
...

. . .
...

0 · · · σN

V T (1)

where U is a left singular vector matrix, V is a right singular
vector matrix, and they are orthogonal matrices. S is a diago-
nal matrix with σi ≥ 0, i = 1, · · · r . The diagonal entries of S
are called the singular values of A. Singular values are related
to the energy of the signal.U and V can be evaluated through
the eigenvalue decomposition of AAT and ATA as follows:

AAT = US2UT

ATA = VS2V T (2)
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In addition, S can be evaluated by taking the square root of
the eigenvalues to either AAT or ATA.

B. RELATIONSHIP BETWEEN SINGULAR VALUES
AND SIGNAL ENERGY
Let x be a sequence of speech signal samples. To get the
matrix for SVD transformation, we divide the signal samples
into N segments signal vectors xi, where i = 1, 2, ...,N .

Then we concatenate vectors to form a matrix

A = [x1, x2, ..., xN ] (3)

Since N vectors are seldom linearly dependent, it is reason-
able to assume that the rank of the matrix A isN . We use SVD
to decompose the matrix A as

A = USV T
= σ1u1vT1 + σ2u2v

T
2 + · · · + σNuN v

T
N (4)

where ui and vi are the ith column vectors of U and V ,
respectively. σi is the singular values of A. From the Eq.(2),
we know that σi can be calculated by

|ATA− σ 2I | = 0 (5)

where ATA can be expressed as

ATA =

 x
T
1
...

xTN

[ x1 · · · xN ]

=


E1 ρ12 · · · ρ1N
ρ21 E2 · · · ρ2N
...

...
. . .

...

ρN1 ρN2 · · · EN


(6)

where Ei=‖xi‖2( i= 1, 2,...,N ), Ei represents the energy of
the segment xi, ρij= xTi xj, and ρij = ρji, i 6= j.

Eq.(5) can be expressed as

|ATA− σi2I |=

∣∣∣∣∣∣∣∣∣
E1 − σi2 ρ12 · · · ρ1N
ρ21 E2 − σi2 · · · ρ2N
...

...
. . .

...

ρN1 ρN2 · · · EN − σi2

∣∣∣∣∣∣∣∣∣=0
(7)

where σ 2
i (i = 1, 2, · · · ,N ) is the eigenvalue of the square

matrix, so we get

σ 2
1 + σ

2
2 + · · · σ

2
N = E1 + E2 + · · ·EN (8)

Based on the Eq.(8), it can be clearly seen that σi is deter-
mined by the energy of the speech signal.

III. PROPOSED METHOD
In this section, we give further insights into the cause of
weakness of theQIM-basedmethodwith respect to the ampli-
tude scaling at first, then we propose a differential SVD
steganographic scheme in detail.

A. THE PROBLEM OF QIM
In the QIM-based steganography method, the secret message
is embedded into the host speech signal via quantizer:

y = Q (x;bk ;1) (9)

where x is the original speech signal, y is the stego-speech
signal, y = x + bk , bk is the secret message, and 1 is the
quantization step size. Based on the Eq.(9), the procedure of
embedding can be expressed as

y =


⌊
x
1
+

1
2

⌋
1, bk = 0⌊ x

1

⌋
1+

1

2
, bk = 1

(10)

where b·c denotes the floor function.
In the extraction process, a minimum distance decoder is

used to extract the secret message b̂k :

dmin = argmin
bk
|y− bQ (y; bk ;1)c| = |λ| (11)

b̂k =

1, |λ| −
1
2
1 ≤

1
4
1

0, otherwise
(12)

where 1 is equal to the quantization step size of embedding
process.

Now we assume that z is a stego-signal after amplitude
scaling attack, z = ρy, which is equivalent to scaling the
output of encoder by ρ. Then, we substitute z = ρy into
Eq.(11), and Eq.(11) can be expressed as

dmin = argmin
bk
|ρy− bQ (ρy; bk ;1)c| = ρ |λ| (13)

Then the secret message is extracted as

b̂k =

1, ρ |λ| −
1
2
1 ≤

1
4
1

0, otherwise
(14)

Obviously, the minimum distance is scaled by ρ after
the amplitude scaling attack, but the quantization step size
at the decoder is not scaled accordingly. It will lead to a
mismatch between encoder and decoder, which seriously
affects performance in the extraction process. Therefore, the
QIM-based watermarking method are generally weak against
the amplitude scaling attack.

B. PROPOSED APPROACHES
1) PARITY-SEGMENTED METHOD FOR DCT COEFFICIENTS
First, we split the speech data into Ns frames and the DCT
coefficients of the speech frames are calculated. Let x(n)
be the speech signal of the current frame with length N .
The DCT coefficients are denoted by X (k), and it can be
expressed as

X (k) = w (k)
N−1∑
n=0

x (n) cos
(
π (2n+ 1) k

2N

)
, (15)
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where k = 0, 1,...,N − 1, and

w (k) =


1
√
N
, k = 0√

2
N
, 1 ≤ k ≤ N − 1

(16)

Since the low and high frequency components are vul-
nerable to the attacks such as filtering and compression,
we only select DCT coefficients X (k) corresponding to a
certain frequency range [fl, fh], where fl and fh are determined
experimentally.

Then, the selected DCT coefficients of the ith frame are
denoted as

Xi(k) = [Xi(0),Xi(1), · · · ,Xi(2M − 1)], i = 1, 2, ...,Ns
(17)

where 2M is the number of selected DCT coefficients.
Furthermore, the Xi(k) is partitioned into the two seg-

ments. To achieve the high imperceptibility, the proposed
embedding algorithm requires the energy of the paired seg-
ments approximately equal. In general, the energy varies
significantly if two segments are partitioned according to
the sequence order of the DCT coefficients (We name this
method as sequence-segmented method). As the energy con-
tour becomes smoother with the samples increasing [27],
we would adopt a parity-segmented method as{

Xi,1(k) = [Xi(0),Xi(2), · · · ,Xi(2M − 2)]
Xi,2(k) = [Xi(1),Xi(3), · · · ,Xi(2M − 1)]

(18)

where Xi,1(k) is the first segment of Xi(k), and Xi,2(k) is
the second segment of Xi(k).
To evaluate the energy difference between the paired seg-

ments, we compare the different segmentation strategies:
parity-segmented method and sequence-segmented method.
The distribution of energy difference between the paired
segments on TIMIT database is shown in Fig.1. It can be seen
that the energy difference using the parity-segmented method
is relatively small. From the analysis in section II-B, singular
values are determined by the energy of the speech signal, thus
the largest singular values of the paired segments are approx-
imately equal using the parity-segmented method, which will
be helpful in achieving high imperceptibility performance.

2) DIFFERENTIAL SVD SCHEME
To overcome the limitation of QIM-based method, we pro-
pose a differential SVD steganographic scheme.

The DCT coefficients in the two segments are sorted to
form amatrix, respectively. Then we use the Eq.(1) to decom-
pose the each matrix, and select the two largest singular
values of segments to embed secret message. The largest
singular values of the first and second segment are called
σ11 and σ21, respectively. The procedure of embedding can
be expressed as

FIGURE 1. Distribution of energy difference between the paired
segments; (a) parity-segmented method; (b) sequence-segmented
method.

Embedding of message bit ‘‘0’’:

σ̂11 =

{
σ11, if (σ11 − σ21) ≥ Tbu,1
σ21 + Tbu,1, else

(19)

σ̂21 = σ21 (20)

Embedding of message bit ‘‘1’’:

σ̂11 = σ11 (21)

σ̂21 =

{
σ21, if (σ21 − σ11) ≥ Tbu,2
σ21 + Tbu,2, else

(22)

where σ̂11 and σ̂21 are the two largest singular values after
embedding data. Tbu,1 = α1 ∗ σ21, Tbu,2 = α2 ∗ σ11, and they
represent the embedding strength.

Because σ11 and σ21 are approximately equal with the
parity-segmentedmethod, the changes caused by data embed-
ding are relatively small. Thus, the higher imperceptibility
can be achieved.

In the extraction process, we get the singular values accord-
ing to Eq.(1), then the difference between the two largest
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FIGURE 2. Embedding process of the proposed method.

singular values σ̂11 and σ̂21 can be calculated as

dj = σ̂11 − σ̂21 (23)

The secret message extraction decision criterion is as follows.
if dj = Tbu,1 > 0, the message bit b̂k = 0.
if dj = −Tbu,2 < 0, the message bit b̂k = 1.
According to the extraction decision criterion, to success-

fully extract message bit ‘‘0’’ (ormessage bit ‘‘1’’), we simply
demand dj ≥ 0 (or dj < 0). Now we assume that z is the
stego DCT coefficient vector after amplitude scaling attack,
z = ρy. We sort z to form an m× n matrix A′.

A′ = ρA (24)

We substitute A′ into Eq.(1), and Eq.(1) can be expressed as

A′ = ρA = US ′V T
= U

 ρσ̂1 · · · 0
...

. . .
...

0 · · · ρσ̂N

V T (25)

Then we use the two largest singular values ρσ̂11 and ρσ̂21 to
extract the secret message.

d ′j = ρσ̂11 − ρσ̂21 = ρdj. (26)

According to the Eq.(26), the sign of d ′j is the same as that
of dj, so the proposed differential method is resistant to the
amplitude scaling attack.

Besides, the proposed method can also reduce the impact
of additive interference. As the embedding rule mentioned
above, we have dj ≥ Tbu,1 if we embed the message bit ‘‘0’’.
Similarly, we have dj ≤ −Tbu,2 if we embed the message
bit ‘‘1’’. Because of the impact of additive interference, σ̂11
becomes to σ̂11 + ε1, σ̂21 becomes to σ̂21 + ε2, and dj
becomes to dj + ε, where distortion ε = ε1 − ε2. Generally,
ε is less than the minimum of ε1 and ε2. As long as the
value of abs(ε) < Tbu,1 or Tbu,2, the embedded message bit
‘‘0’’ or ‘‘1’’ can be extracted correctly.What’smore, Tbu,1 and
Tbu,2 are adaptively determined by the two largest singular
values, which can further reduce the influence of attacks.
Therefore, the proposed differential SVD scheme can reduce
the impact of additive interference.

C. EMBEDDING AND EXTRACTION PROCESS
1) EMBEDDING PROCESS
The original speech signal is divided into frames firstly,
then we apply DCT to the frame, and the DCT coefficients
are divided into a pair of segments using parity-segmented
method. We sort DCT coefficients of each segment to form a
matrix, and SVD is applied to decompose each matrix. Fig.2
illustrates the embedding process based on DCT and SVD.
The detailed procedure of data embedding is as follows.
Step 1: Split the original speech data into multiple frames,

and x(n) is the signal of one frame with length N .
Step 2: Apply DCT to x(n) by Eq.(15).
Step 3: Select those DCT coefficients Xi(k) in a certain

frequency range [fl, fh].
Step 4: Divide Xi(k) into a pair of segments Xi,1(n) and

Xi,2(n) by Eq.(18).
Step 5: Sort Xi,1(n) and Xi,2(n) to form a matrix, respec-

tively. SVD is applied to decompose each matrix by Eq.(1).
Step 6: Select the two largest singular values σ11 and σ21

to embed secret message bk as Eq.(19), Eq.(20), Eq.(21),
Eq.(22)
Step 7: Use σ̂11 and σ̂21 to replace σ11 and σ21, then apply

inverse SVD to compose the newmatrices and get X ′i,1(n) and
X ′i,2(n).
Step 8: Rearrange X ′i,1(n) and X

′

i,2(n) back to their original
positions and reconstruct the stego-speech frame x ′ (n) by
inverse DCT.

2) EXTRACTION PROCESS
Secret message extraction follows the similar procedure to
data embedding. The detailed procedure of data extraction is
shown as follows.
Step 1: Split the stego speech data into multiple frames,

and x ′ (n) is the signal of one frame with length N .
Step 2: Apply DCT to x ′ (n) by Eq.(15).
Step 3: Select those DCT coefficients X ′i (k) in a certain

frequency range [fl, fh].
Step 4: Divide X ′i (k) into a pair of segments X ′i,1(n) and

X ′i,2(n) by Eq.(18).
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Step 5: Sort X ′i,1(n) and X
′

i,2(n) to form a matrix, respec-
tively. Then SVD is applied to decompose each matrix
by Eq.(1).
Step 6: Extract the secret message bit b̂k from the two

largest singular values σ̃11 and σ̃21 as follows.
Calculate dj = σ̃11 − σ̃12. if dj > 0, b̂k = 0. Otherwise,

b̂k = 1.

IV. EXPERIMENTS
In this section, we implement the methods in [20], [22],
[25], [26], to compare the performance with the proposed
method. These methods cover the representative methods for
speech steganography: SS, RDM, SVD algorithms.

The performance of the proposed algorithm is evaluated on
TIMIT database. The TIMIT is a well-known speech database
which contains 6300 utterances recorded from 630 adult
speakers of eight major dialects of American English, each
read ten sentences. The length of the speech file varies
between 1.4 and 5.04s [28].The sentences are originally sam-
pled at 16kHz and down-sampled to 8 kHz.

Through our experiments and analysis, we set fl =
1.5 kHz, fh = 2.5 kHz, α1 = α2 = 0.2. To ensure fairness
in the evaluation of performance, the embedding rates of
methods in [22], [25], [26] and the proposed method are
identical at 25 bps, while the embedding rate of method
in [20] is 12.5 bps for facilitating the use of spread spectrum
in steganography. And we compare the performance from the
imperceptibility, robustness, and security.

A. IMPERCEPTIBILITY
Imperceptibility or inaudibility means that the secret message
embedded into the host signal is inaudible. In this section,
we used various metrics to assess the quality of the stego-
speech.

The first metric is the signal-to-noise ratio (SNR)
defined as

SNR = 10 log

( ∑K
n=1 x

2 (n)∑K
n=1 (x (n)− x

′ (n))2

)
(27)

where x(n) and x ′(n) are the original and stego speech in time
domain respectively, and K is the length of the signal.

The SNR test can only give a general evaluation without
taking into account the specific characteristics of the human
auditory system. Thus, the test is further conducted using the
perceptual evaluation of speech quality (PESQ). The PESQ is
the effective method for objective speech quality assessment
described in ITU-T Recommendation P.862, and a cognition
model is adopted to predict the perceived speech quality of the
degraded speech signal. The PESQ assesses speech quality
on a range of [−0.5,4.5], which means from annoyance to
imperceptibility.

We also employ one of the most popular methods called
mean opinion score (MOS) as a better measurement of imper-
ceptibility based on human perception. Ten subjects are asked
to classify the difference between the original and the stego
speech in terms of 5-points.

TABLE 1. Comparison of SNR, PESQ and MOS.

Table 1 shows the values of different metrics for speech
signal resulting from the proposed method and the other
compared methods. The randomly generated secret mes-
sage is embedded into the files of the TIMIT database, and
then the average SNR, PESQ and MOS values of the all
stego files obtained under 25bps are listed. We can see that
our method achieves the largest SNR value among these
five methods. It should be noted that the coefficients are
modified to embed synchronous signal repetitively in [22],
which results in the obvious difference between the original
speech and stego speech, thus the negative SNR value occurs.
In addition, we also observe that the average PESQ and
MOS values of our method are 3.5681 and 4.9 respectively,
which indicates that original and stego speech are perceptu-
ally indistinguishable.

Fig.3 presents the time waveform of the original, stego
speech and the differences between them, and it can be
seen that the differences are quite small using the proposed
method. Fig.4 shows that the spectrogram of the original and
stego speech signal, and there are no obvious changes.

FIGURE 3. Waveform of the original, stego speech and difference
between them.

In order to further verify the imperceptibility performance
of the proposed scheme, we attempt to compare SNR and
PESQ under the different embedding rates (range from
12.5 to 33.3bps). The proposed method and the other four
steganography methods embed the secrete message into sig-
nal files of the TIMIT database, and then the average SNR
and PESQ values of the all stego files obtained at each
embedding rate are shown in Fig.5 and Fig.6, respectively.
As shown in Fig.5 and Fig.6, both SNR and PESQ of the
proposed method are higher than the other methods, which
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FIGURE 4. Spectrogram of the original and stego speech using the
proposed method; (a) original speech; (b) stego speech.

FIGURE 5. SNR values under different embedding rates.

FIGURE 6. PESQ values under different embedding rates.

indicates that it outperforms the other methods in terms of
imperceptibility.

B. ROBUSTNESS
Robustness is a measure of secret messages against attempts
to eliminate or corrupt it, intentionally or unintentionally,

by different kinds of digital signal processing. For the eval-
uation of robustness, we examine the bit error rates (BER)
between the original secret message and the extracted secret
message. BER is defined as

BER =
BERR
N
× 100% (28)

where BERR is the number of erroneous bits and N is the total
number of bits.

In the following experiments, we attack the stego speech
signal separately using the following typical signal process-
ing manipulations:

1) Amplitude scaling: the amplitudes of the stego speech
are rescaled by ±30%;

2) Re-sampling attack: the stego speech is up-sampled to
16 kHz and then down-sampled back to 8 kHz;

3) Low-pass filtering (LPF): low-pass filter is applied
to the stego speech, where the cut-off frequency is
3.5 kHz;

4) High-pass filtering (HPF): high-pass filter is applied to
the stego speech, where the cut-off frequency is 500Hz;

5) MP3 compression: MPEG-1 Layer-III compression is
applied to the stego speech signal, where the compres-
sion bit rates are 128 kbps and 96 kbps;

6) Noise addition: random noise is added to the stego
speech signal, where the signal-to-noise rate (SNR)
is 30 dB.

Table 2 shows the BER of five steganographic methods
after these different attacks. Methods in [22], [25] and [26]
provide little resistance to HPF attack. Method in [25]
and method in [26] fail severely in the amplitude scaling
attack, which are based on SVD-LSB and SVD-QIM tech-
nique respectively. Although method in [22] can improve the
robustness to the amplitude attack by using RDM, but it is
still inferior to our method while embedding data into the
non-voiced, salient frames in the speech signal. In general,
the SS-based embedding method in [20] performs well on
the varies of attacks but the embedding rate is relatively low.
It can be seen that the proposed method provides stronger
robustness against common signal processing attacks com-
pared with the other four methods, especially for the ampli-
tude scaling attack. These results verify the good robust
performance of the differential SVD scheme.

C. SECURITY
The steganographic security (statistical undetectability) is the
import criteria to evaluate the steganographic systems. In the
experiments, four steganalysis methods [29], [30] are used
to test the security of the proposed method. Accordingly,
four kinds of features are extracted for steganalysis, which
include derivative-based high-frequency spectrum (DHS),
derivative-based mel-cepstrum (DMC), wavelet-based mel-
cepstrum (WMC) and reversed-Mel energy (RME). We use
ensemble classifier to identify stego speech according to the
different features. Then, we randomly select 1000 cover files
and 1000 stego files as the training set and the remaining
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TABLE 2. Comparison robustness (BER) among different methods.

FIGURE 7. ROC curve of the DHS steganalysis method.

FIGURE 8. ROC curve of the DMC steganalysis method.

as the testing set to obtain the ROC (Receiver Operating
Characteristic) curves.

As a general assessment of the steganalysis results, a larger
area under the ROC curve (AUC) indicates a higher detection
accuracy of the steganalyzer. Conversely, a ROC curve closer
to the bisector line shows less detectability of stego signal by
the steganalyzer. Fig. 7, 8, 9, and 10 vividly show the com-
parison of ROC curves between five different steganography
methods.

FIGURE 9. ROC curve of the WMC steganalysis method.

FIGURE 10. ROC curve of the RME steganalysis method.

We further test the undetectability performance at different
embedding rates (range from 12.5 to 33.3bps), and the detec-
tion errors of five different steganography methods against
four steganalysis methods are reported in Table 3.

From the steganalysis results, we can see only the proposed
steganographic method can effectively resist the steganalysis
methods based on DHS and DMC features, and the other
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TABLE 3. Detection errors at different embedding rate.

four steganographic methods can be detected easily. The
WMC steganalyzer is not able to detect the stego speech
generated by the different kinds of steganographic methods
except for the method in [20]. Regarding the RME stegan-
alyzer, SVD based steganographic methods including the
proposed method, methods in [25] and [26] perform well
in anti-detecting when compared to the SS method [20] and
RDMmethod [22]. It can be observed that only the proposed
method can resist the above four steganalysis methods, so we
conclude that the proposed method can achieve higher secu-
rity than the other four steganographic methods.

V. CONCLUSION
In this paper, we have proposed a robust speech stegano-
graphic method that utilizes the characteristics of the differ-
ential SVD. We adopt DCT transform and divide the DCT
coefficients into a pair of segments. The two segments are fur-
ther split with equal energy approximately, and the changes
in the singular values caused by data embedding are reduced.
The difference of the two largest singular values is modified
to embed the secret message, and the adaptive embedding
thresholds are determined by the two largest singular values.
The experimental results show that compared with existing
methods, the proposed method achieves higher impercep-
tibility, stronger robustness and better security. In the near
future, the embedding capacity and security performance will
be optimized, and the synchronization mechanism will be
explored to improve the robustness further.
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