
Received October 2, 2019, accepted October 18, 2019, date of publication October 22, 2019, date of current version November 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948849

Total Efficient Domination in Fuzzy Graphs
XUE-GANG CHEN1, MOO YOUNG SOHN 2, AND DE-XIANG MA1
1Department of Mathematics, North China Electric Power University, Beijing 102206, China
2Department of Mathematics, Changwon National University, Changwon 641-773, South Korea

Corresponding author: Moo Young Sohn (mysohn@changwon.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant 2017R1D1A3B03029912.

ABSTRACT This study proposed total efficient domination in fuzzy graphs. The exact values on the total
efficient domination number for several classes of fuzzy graphs are determined. A lower bound and an upper
bound for the total efficient domination number in terms of maximum strong arc neighborhood degree and
the order are obtained. In addition, a new relationship between total efficient domination number and total
efficient domatic number is established. Finally, we design an algorithm to determine the minimum fuzzy
cardinality of the total efficient dominating set of a fuzzy tree T or decide that T has no total efficient
dominating set.

INDEX TERMS Fuzzy graph, fuzzy tree, total efficient dominating set.

I. INTRODUCTION
It is a challenge obtaining full details about real world
problems, therefore, the vagueness and uncertainty in the
description has led to the growth of fuzzy graph theory.
A mathematical framework to describe uncertainty in real
life situation was first suggested by Zadeh [2]. Rosenfeld [3]
introduced fuzzy graph and several other fuzzy analogs
of graph theoretic concepts such as paths, cycles and
connectivity.

One of the most interesting graph theoretical concept
is domination in graphs which was introduced by Ore
in 1962 [8]. The concept of total domination was introduced
by Cockayne and Hedetniemi [7]. Kulli and Patwari [1]
introduced total efficient domination in graphs. A remarkable
beginning in fuzzy graphs for the concept domination was
made by Somasundaram and Somasundaram [4].

Revathi et al. [6] defined total perfect domination in fuzzy
graphs using strong arcs. This present study discussed total
efficient domination in fuzzy graphs using strong arcs.

This paper is organized as follows. Section 2 comprises of
preliminaries and in section 3, the total efficient domination
of a fuzzy graph is defined (Definition 1). A complete fuzzy
graph has no total efficient dominating set (Theorem 1).
For several classes of fuzzy graphs such as a path, a fuzzy
cycle and a complete bipartite fuzzy graph, the exact values
on the total efficient domination number were determined
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(Theorem 2,3,4). In section 4, lower bounds and upper bounds
for the total efficient domination number were obtained in
terms of maximum strong arc neighborhood degree and
the order (Theorem 5,6). In addition, a new relationship
between total efficient domination number and total efficient
domatic number was established (Theorem 7 ). In section 5,
a vertex data structure was designed. Combining with a
labeling method, an algorithm was designed to determine the
minimum fuzzy cardinality of the total efficient dominating
set of a fuzzy tree T or decide that T has no total efficient
dominating set. Section 6 gives the conclusion of the study.

II. PRELIMINARIES
A fuzzy graph G = (σ,µ) is a pair of membership functions
on fuzzy sets σ : V → [0, 1] and µ : V × V → [0, 1] such
that µ(u, v) ≤ σ (u) ∧ σ (v) for all u, v ∈ V . We denote the
underlying crisp graph by G∗ = (σ ∗, µ∗) where σ ∗ = {u ∈
V : σ (u) > 0} and µ∗ = {(u, v) ∈ V × V : µ(u, v) > 0}.
Throughout the paper, we assume that σ ∗ = V .
In a fuzzy graph G = (σ,µ) , a path P of length n

is a sequence of distinct vertices u0, u1, . . . , un such that
µ(ui−1, ui) > 0, i = 1, 2, . . . , n and the degree of member-
ship of the weakest arc is defined as its strength. If u0 = un
and n ≥ 3 then P is called a cycle, and a fuzzy cycle if it
contains more than one weakest arc. For any two vertices
x and y, let d(x, y) denote the length of the shortest path
between x and y. The strength of connectivity between two
vertices x and y is defined as the maximum of the strengths
of all paths between x and y and is denoted by ConnG(x, y).
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A fuzzy graph G = (σ,µ) is connected if for every u,
v ∈ σ ∗, ConnG(u, v) > 0. An arc (u, v) is said to be a strong
arc if µ(u, v) ≥ ConnG(u, v) and the vertex u is a strong
neighbor to v.
The order p and size q of a fuzzy graph G = (σ,µ) are

defined as p =
∑

v∈V σ (v) and q =
∑

(u,v)∈E µ(u, v).
The strong arc neighbourhood degree of a vertex v is

defined by sum of the membership values of the strong adja-
cent vertices of v and is denoted by dN (v). That is dN (v) =∑

u∈NS (v) σ (u), where NS (v) = {u ∈ V : (u, v) is a strong
arc }. The minimum strong arc neighbourhood degree of the
fuzzy graphG is defined by δN (G) = min{dN (u) : u ∈ V } and
the maximum strong arc neighbourhood degree of the fuzzy
graph G is defined by 1N (G) = max{dN (u) : u ∈ V }.

A fuzzy graph G = (σ,µ) is said to be a complete if
µ(u, v) = σ (u) ∧ σ (v) for all u, v ∈ V . A fuzzy graph
G = (σ,µ) is said to be a bipartite if the vertex set V can
be partitioned into two non-empty sets V1 and V2 such that
µ(v1, v2) = 0 if v1, v2 ∈ V1 or v1, v2 ∈ V2. Further if
µ(u, v) = σ (u) ∧ σ (v) for all u ∈ V1 and v ∈ V2, then G
is called a complete bipartite fuzzy graph.
Let G = (σ,µ) be a fuzzy graph. Let u, v ∈ V . The vertex

u dominates the vertex v inG if (u, v) is a strong arc. A subset
D of V is called a perfect dominating set of G if each vertex
not in D is dominated by exactly one vertex of D.
A perfect dominating set D in a fuzzy graph G is said to be

total perfect dominating set if every vertex in D is dominated
by at least one vertex ofD. The minimum fuzzy cardinality of
the total perfect dominating set is the total perfect domination
number and is denoted by γtpf (G).

III. EXACT VALUES ON TOTAL EFFICIENT DOMINATION
NUMBER
In the section, the new concept of total efficient dominating
set in fuzzy graph is introduced. Furthermore, we determine
the exact values on total efficient domination number for
several classes of fuzzy graphs.
Definition 1: A perfect dominating set D in a fuzzy

graph G is said to be a total efficient dominating set if every
vertex in D is dominated by exactly one vertex of D. The
minimum fuzzy cardinality of a total efficient dominating set
is the total efficient domination number ofG and it is denoted
by γtef (G).
A total efficient dominating set of G with minimum fuzzy

cardinality is called a γtef -set of G. If G has no total effi-
cient dominating set, we define γtef (G) = 0. Consider the
fuzzy graph G in Fig. 1. Total efficient dominating set of G
is {b, c, g, f }, {a, b, g, f }, {a, d, g, h} and {c, d, g, h}. Total
efficient domination number γtef (G) = σ (b)+σ (c)+σ (g)+
σ (f ) = 1.9. LetG be a complete fuzzy graph. Then all arcs in
G are strong and each vertex dominates to all other vertices.
We have the following.
Theorem 1: Let G be a complete fuzzy graph with

n ≥ 3 vertices. Then G has no total efficient dominating set.

FIGURE 1. A fuzzy graph G.

Theorem 2: Let Pn = v1v2 . . . vn be a path with n vertices,
then

γtef (Pn) =



∑k−1

i=0
[σ (v4i+2)+ σ (v4i+3)], if r = 0

0, if r = 1∑k

i=0
[σ (v4i+1)+ σ (v4i+2)], if r = 2

min{
∑k

i=0
[σ (v4i+1)+ σ (v4i+2)], if r = 3∑k

i=0
[σ (v4i+2)+ σ (v4i+3)]}.

where n = 4k + r, 0 ≤ r < 4.
Proof: Since Pn is a path, all arcs in Pn are strong. Let

D be a total efficient dominating set of Pn. We will discuss it
from the following cases.
Case 1: n ≡ 0(mod 4). Assume that n = 4k , where k ≥ 1.

In order to dominate vertex v1, it follows that v2 ∈ D. It is
obvious that v1 /∈ D. Then v3 ∈ D. So D = {v4i+2, v4i+3 :
i = 0, 1, . . . , k − 1} is the unique total efficient dominating
set of Pn. Hence, γtef (Pn) =

∑k−1
i=0 [σ (v4i+2)+ σ (v4i+3)].

Case 2: n ≡ 1(mod 4). It is obvious that Pn has no total
efficient dominating set. Hence, γtef (Pn) = 0.
Case 3: n ≡ 2(mod 4). Assume that n = 4k + 2, where

k ≥ 0. In order to dominate vertex v1, it follows that v2 ∈ D.
It is obvious that v3 /∈ D. Then v1 ∈ D. SoD = {v4i+1, v4i+2 :
i = 0, 1, . . . , k} is the unique total efficient dominating set
of Pn. Hence, γtef (Pn) =

∑k
i=0[σ (v4i+1)+ σ (v4i+2)].

Case 4: n ≡ 3(mod 4). Assume that n = 4k + 3, where
k ≥ 0. In order to dominate vertex v1, it follows that v2 ∈ D.
If v1 ∈ D, then D = {v4i+1, v4i+2 : i = 0, 1, . . . , k} is a
total efficient dominating set of Pn. If v1 /∈ D, then v3 ∈ D
and D = {v4i+2, v4i+3 : i = 0, 1, . . . , k} is a total efficient
dominating set of Pn. So Pn has exactly two total efficient
dominating sets. Hence, γtef (Pn) = min{

∑k
i=0[σ (v4i+1) +

σ (v4i+2)],
∑k

i=0[σ (v4i+2)+ σ (v4i+3)]}.
Theorem 3: Let Cn = v1v2 . . . vnv1 be a fuzzy cycle with

n vertices. Then
(1) If n ≡ i(mod 4) for i = 1, 2, 3, then Cn has no total

efficient dominating set.
(2) If n ≡ 0(mod 4), then γtef (Cn) =

min{
∑k−1

i=0 [σ (v4i+1) + σ (v4i+2)],
∑k−1

i=0 [σ (v4i+2) +
σ (v4i+3)],

∑k−1
i=0 [σ (v4i+3)+ σ (v4i+4)],∑k−2

i=0 [σ (v4i+4)+ σ (v4i+5)]+ σ (v1)+ σ (v4k )}, where
n = 4k , (k ≥ 1).
Proof: It is obvious that if n ≡ i(mod 4) for

i ∈ {1, 2, 3}, then Cn has no total efficient dominating
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set. Suppose that n ≡ 0(mod 4). Assume that n = 4k ,
where k ≥ 1. Let D1 = {v4i+1, v4i+2 : i = 0,
1, . . . , k − 1}, D2 = {v4i+2, v4i+3 : i = 0, 1, . . . , k −
1}, D3 = {v4i+3, v4i+4 : i = 0, 1, . . . , k − 1}, D4 =

{v4i+4, v4i+5 : i = 0, 1, . . . , k − 2} ∪ {v1, v4k}. Then fuzzy
cycle Cn has exactly four total efficient dominating sets Di
for i = 1, 2, 3, 4. Hence, γtef (Cn) = min{

∑k−1
i=0 [σ (v4i+1) +

σ (v4i+2)],
∑k−1

i=0 [σ (v4i+2) + σ (v4i+3)],
∑k−1

i=0 [σ (v4i+3) +
σ (v4i+4)],

∑k−2
i=0 [σ (v4i+4)+ σ (v4i+5)]+ σ (v1)+ σ (v4k )}.

Theorem 4: LetG be a complete bipartite fuzzy graphwith
partition V1 and V2. Then γtef (G) = min{σ (u) : u ∈ V1}) +
min{σ (v) : v ∈ V2}.

Proof: Since G is a complete bipartite fuzzy graph, all
arcs are strong arcs. Each vertex in V1 dominates all vertices
in V2 and each vertex in V2 dominates all vertices in V1.
Hence in a complete bipartite fuzzy graph, the total efficient
dominating sets are any set containing exactly two vertices,
one in V1 and the other in V2. Hence, γtef (G) = min{σ (u) :
u ∈ V1})+min{σ (v) : v ∈ V2}.

IV. BOUNDS ON TOTAL EFFICIENT DOMINATION
NUMBER
Since every total efficient dominating set of G is also a total
perfect dominating set of G, we have the following.
Proposition 1: For any connected fuzzy graph G,

if γtef (G) exists, then γtpf (G) ≤ γtef (G).
It is obvious that γtpf (G) = γtef (G) if and only if there

exists a γtpf -set D of G such that D is a total efficient domi-
nating set of G.

Let (u, v) be a strong arc of connected fuzzy graph G. Let
σ1 = min{σ (v) : v ∈ V } and σ2 = max{σ (v) : v ∈ V }.
Define τuv =

∑
w∈(NS (u)∪NS (v))\{u,v} σ (w). Let τ = min{τuv :

(u, v) is a strong arc of G }.
Theorem 5: Let G be a connected fuzzy graph. If γtef (G)

exists, then
(1) pσ1

1N (G)
≤ γtef (G) ≤

2pσ2
τ+2σ2

.

(2) γtef (G) =
2pσ2
τ+2σ2

if and only if there exists a γtef -set D
of G such that τuv = τ for any arc (u, v) ∈ E(G[D])
and σ (w) = σ2 for any w ∈ D.

(3) γtef (G) =
pσ1
1N (G)

if and only if there exists a γtef -set D
of G such that dN (w) = 1N (G) and σ (w) = σ1 for any
w ∈ D.
Proof: (1) Let D be a γtef -set of G. Then⋃

(u,v)∈E(G[D])(NS (u) ∪ NS (v)) \ {u, v}) = V − D. It
follows that

∑
(u,v)∈E(G[D])

∑
w∈(NS (u)∪NS (v))\{u,v} σ (w) =∑

w∈V−D σ (w) = p − γtef (G). That is p − γtef (G) =∑
(u,v)∈E(G[D]) τuv ≥ τ

|D|
2 . Since γtef (G) =

∑
w∈D σ (w) ≤

σ2|D|, it follows that |D| ≥
γtef (G)
σ2

. So, p− γtef (G) ≥ τ
|D|
2 ≥

τ
γtef (G)
2σ2

. That is γtef (G) ≤
2pσ2
τ+2σ2

.
Since D is a total efficient dominating set of G,⋃
u∈D NS (u) = V . So, p =

∑
v∈V σ (w) =

∑
u∈D∑

w∈NS (u) σ (w) ≤ |D|1N (G). Since γtef (G) =
∑

v∈D σ (v) ≥

σ1|D|, |D| ≤
γtef (G)
σ1

. Therefore, p ≤ |D|1N (G) ≤
γtef (G)
σ1

1N (G). So, γtef (G) ≥
pσ1
1N (G)

.

(2) Suppose that γtef (G) =
2pσ2
τ+2σ2

. LetD be a γtef -set ofG.
Then all inequalities in the above proof must be equal. That is
τuv = τ for any arc (u, v) ∈ E(G[D]) and σ (w) = σ2 for any
w ∈ D. Conversely, suppose that there exists a γtef -setD ofG
such that τuv = τ for any arc (u, v) ∈ E(G[D]) and σ (w) = σ2
for any w ∈ D. Then p − γtef (G) =

∑
(u,v)∈E(G[D]) τuv =

τ
|D|
2 and γtef (G) =

∑
w∈D σ (w) = σ2|D|. So, p− γtef (G) =

τ
γtef (G)
2σ2

. That is γtef (G) =
2pσ2
τ+2σ2

.
(3) By a similar proof as that in (2), the result holds.
Theorem 6: For any fuzzy graph G, then γtef (G) = p if

and only if G = mK2, where m ≥ 1.
Proof: Suppose that G = mK2. Obviously γtef (G) = p.

Conversely suppose γtef (G) = p. We now prove that
G = mK2. Assume that G 6= mK2. Then there exists one
vertex u such that it has at least two strong adjacent vertices
in G. Let D be a γtef -set of G. Since γtef (G) = p, it implies
that V − D = ∅. Hence u ∈ D. It implies that u has at least
two strong adjacent vertices in D, which is a contradiction.
So G = mK2.
Definition 2: Let G = (σ,µ) be a fuzzy graph. The total

efficient domatic number dtef (G) of G is the maximum order
of a partition of the vertex set of G into total efficient domi-
nating sets of G.
By the definition on the total efficient domatic number,

we have the following.
Proposition 2: (1) For any fuzzy cycle C4k , k ≥ 1,

dtef (C4k ) = 2.
(2) For any complete bipartite fuzzy graph Km,n, 1 ≤ m ≤

n, dtef (Km,n) = m.
Theorem 7: Let G = (σ,µ) be a connected fuzzy graph.

If γtef (G) exists, then dtef (G) ≤
p

γtef (G)
.

Proof: Assume that dtef (G) = d . Let D1,D2, . . . ,Dd
be the partition of the vertex set of G such that Di is a total
efficient dominating set of G, where 1 ≤ i ≤ d . It follows
that γtef (G) ≤

∑
u∈Di σ (u) for 1 ≤ i ≤ d . Since V =⋃d

i=1 Di, it follows that
∑d

i=1 γtef (G) ≤
∑d

i=1
∑

u∈Di σ (u) =∑
u∈V σ (u) = p. So, d ≤ p

γtef (G)
. That is dtef (G) ≤

p
γtef (G)

.

V. ALGORITHM
It is well known that the total efficient domination problem
is NP-hard in general. A polynomial-time algorithm was
designed to determine the minimum fuzzy cardinality of the
total efficient dominating set of a fuzzy tree T or decide that
T has no total efficient dominating set. One vertex of P2 is
defined as the center. Let K1,r denote a star with r leaves,
and let S(r, s) denote a double star with two support vertices
such that one support vertex is adjacent to r leaves and the
other support vertex is adjacent to s leaves. Let S(T ) denote
the support vertex set of T .
Proposition 3: Let T = (σ,µ) be a connected fuzzy tree.

Let u and v be two support vertices of T .
(1) If d(u, v) = 1 and γtef (G) exists, then u and v belong to

every total efficient dominating set of T .
(2) If d(u, v) = 2, then T has no total efficient dominating

set.
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(3) Suppose that d(u, v) = 3 and γtef (G) exists. Let
P = uwtv be the path in T between u and v. Then w
and t do not belong to any total efficient dominating
set of T .

In the following, three types of trees were defined. Let T1
be a tree obtained from a vertex x, a double star S(r, s), and l
vertex disjoint stars K1,r1 , . . . ,K1,rl by joining an edge from
x to a support vertex of S(r, s) and joining an edge from x to a
leaf of each starK1,ri , where l ≥ 0 and ri ≥ 2 for i = 1, . . . , l.
Let T2 be a tree obtained from a vertex x, a star K1,r with

r ≥ 1 , and l vertex disjoint stars K1,r1 , . . . ,K1,rl by joining
an edge from x to a center of K1,r and joining an edge from
x to a leaf of each star K1,ri , where l ≥ 1 and ri ≥ 2 for
i = 1, . . . , l.
Let T3 be a tree obtained from a vertex x and l vertex

disjoint stars K1,r1 , . . . ,K1,rl by joining an edge from x to a
leaf of each starK1,ri , where l ≥ 1 and ri ≥ 2 for i = 1, . . . , l.
The difference among them is as follows: T1 − x contains

exactly one double star and l vertex disjoint stars such that
vertex x is joined to a leaf of each star, where l ≥ 0. T2 − x
contains exactly one starK1,r such that x is joined to its center
and l vertex disjoint stars such that vertex x is joined to a leaf
of each star, where l ≥ 1. T3−x contains only l vertex disjoint
stars such that vertex x is joined to a leaf of each star, where
l ≥ 1.
Given a tree T , if T is isomorphic to Ti , then T is called a

Ti-type tree, where i = 1, 2, 3.
In Fig. 2, G1 is T1-type tree with l = 1, G2 is T2-type tree

with l = 2 and G3 is T3-type tree with l = 2.

FIGURE 2. Three types of Tree.

Proposition 4: Let T = (σ,µ) be a connected fuzzy tree
rooted at vertex r . Let v be a vertex with the longest distance
from r . Let u,w, x be the parent of v, u,w, respectively. Let
Tx denote the subtree of T induced by x and its descendants.
If T has a total efficient dominating set, then Tx is a Ti-type
tree, where i ∈ {1, 2, 3}.

Proof: Since u is a support vertex and d(u, x) = 2,
it follows that x is not a support vertex by Proposition 3. Let
C(x) denote the children set of vertex x. For any w ∈ C(x),
w is adjacent to at most one support vertex in Tx . Hence each
component of Tx − x is a double star or a star with at least
two vertices. We will discuss it from the following cases.
Case 1: Tx − {x} contains a double star S(r, s). Without

loss of generality, we can assume that both u andw are support
vertices of S(r, s). By Proposition 3, Tx−{x} contains exactly
one double star. Otherwise, T has two support vertices with
distance two and T has no total efficient dominating set,
which is a contradiction. Similarly, vertex x is not adjacent

to a support vertex. Hence, any other component of Tx − {x}
is a star with at least three vertices and vertex x is joining to
a leaf of the star. Therefore, Tx is a T1-type tree.
Case 2: Tx − {x} does not contain a double star S(r, s).

Since vuwx is a path in Tx , NS (w) = {x, u}. Then Tx − {x}
contains at least a star with at least three vertices such that x
is joining to one leaf of the star by an edge.

Suppose that Tx − {x} contains a star K1,r with r ≥ 1
such that x is joining to the center of K1,r by an edge. By
Proposition 3, Tx − {x} contains exactly one star such that
x is joining to the center of K1,r by an edge. Otherwise, T
has two support vertices with distance two and T has no total
efficient dominating set, which is a contradiction. Hence, any
other component of Tx−{x} is a star with at least three vertices
and vertex x is joining to a leaf of each star. Therefore, Tx is
a T2-type tree. If Tx − {x} does not contain a star K1,r with
r ≥ 1 such that x is joining to the center of K1,r by an edge,
then it is obvious that Tx is a T3-type tree.
Suppose that T has a total efficient dominating set D.

If T has T1-type subtree Tx , then every support vertex of Tx
belongs to D. For each star component of Tx − x, its support
vertex is dominated by exactly one leaf of T . If T has T2-type
subtree Tx , then every support vertex of Tx belongs to D, and
each support vertex of Tx is dominated by exactly one leaf
of T .
Proposition 5: Suppose that Tx is a T1-type subtree of

tree T . Let T ′ = T − Tx , where x is joining to a vertex y
of T ′ by an edge. Then T has a γtef -set D if and only if T ′

has a γtef -set D′ such that y /∈ D′. Furthermore, γtef (T ) =
γtef (T ′)+ γtef (Tx).

Proof: Let D be a γtef -set of T . Since every support
vertex in Tx belongs to D, it follows that x, y /∈ D by
Proposition 3. Let D′ = D ∩ V (T ′) and D′′ = D ∩ V (Tx).
Then D′′ is a total efficient dominating set of Tx and D′

is a total efficient dominating set of T ′ such that y /∈ D′.
Hence γtef (T ′) + γtef (Tx) ≤

∑
v∈D′ σ (v) +

∑
v∈D′′ σ (v) =∑

v∈D σ (v) = γtef (T ). Let D′ be γtef -set of T ′ such that
y /∈ D′, and D′′ be γtef -set of Tx . Then D′ ∪D′′ is a total effi-
cient dominating set of T . Hence γtef (T ) ≤

∑
v∈D′∪D′′ σ (v) ≤

γtef (T ′)+ γtef (Tx). So γtef (T ) = γtef (T ′)+ γtef (Tx). Hence
all inequalities above must be equal. So, T has a γtef -set D if
and only if T ′ has a γtef -set D′ such that y /∈ D′.
Proposition 6: Suppose that Tx is a T2-type subtree of

tree T . Let T ′ = T − Tx , where x is joining to a vertex y
of T ′ by an edge. Then T has a γtef -set D if and only if T ′

has a γtef -set D′ such that y /∈ D′. Furthermore, γtef (T ) =
γtef (T ′)+ γtef (Tx).

Proof: Let D be a γtef -set of T . Since every support
vertex in Tx belongs to D, it follows that x, y /∈ D by
Proposition 3. Let D′ = D ∩ V (T ′) and D′′ = D ∩ V (Tx).
Then D′′ is a total efficient dominating set of Tx and D′

is a total efficient dominating set of T ′ such that y /∈ D′.
Hence γtef (T ′) + γtef (Tx) ≤

∑
v∈D′ σ (v) +

∑
v∈D′′ σ (v) =∑

v∈D σ (v) = γtef (T ).
Let D′ be γtef -set of T ′ such that y /∈ D′, and D′′ be

γtef -set of Tx . It follows that x /∈ D′′ by Proposition 3.
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Then D′ ∪ D′′ is a total efficient dominating set of T . Hence
γtef (T ) ≤

∑
v∈D′∪D′′ σ (v) ≤ γtef (T

′)+γtef (Tx). So γtef (T ) =
γtef (T ′) + γtef (Tx). Hence all inequalities above must be
equal. So, T has a γtef -set D if and only if T ′ has a γtef -set D′

such that y /∈ D′.
Proposition 7: Suppose that Tx is a T3-type subtree of

tree T . Let T ′ = T − Tx , where x is joining to a vertex y
of T ′ by an edge. Then T has a total efficient dominating set
if and only if T ′ has a total efficient dominating set.

Proof: Suppose T has a total efficient dominating setD.
It is obvious that every support vertex in Tx belongs to D.
By Proposition 3, x /∈ D. Then D ∩ V (T ′) is a total efficient
dominating set of T ′. So T ′ has a total efficient dominating
set.

Suppose that T ′ has a total efficient dominating set D′.
Let S(Tx) = {u1, . . . , ul} be the support vertex set of Tx .
For each support vertex ui, assume that u′i and u

′′
i are two

vertices adjacent to ui, where u′i is a leaf and u
′′
i is not a leaf.

If y ∈ D′, let D = D′ ∪ {ui, u′i : i = 1, . . . , l} . If y /∈ D′, let
D = D′ ∪ {u1, u′′1} ∪ {ui, u

′
i : i = 2, . . . , l}. In any case, D is a

total efficient dominating set of T . So T has a total efficient
dominating set.
We use a labeling algorithm, which appears in [9] for the

first time and is afterwards widely used in the literature for
solving the domination-related problem in [10] and [11]. To
obtain a polynomial time algorithm for obtaining the total
efficient dominating set of a tree, a vertex data structure
should be designed as follows.

Let r and v be two vertices with the longest path in T .
Root the tree T at vertex r . The height of T is the maximum
distance between r and all other vertices. Let h be the height
of T . The i-th level Ai (0 ≤ i ≤ h) is the set of vertices
of T which are at distance i from the root. For such a rooted
tree T with n vertices, we can number the vertices of T with
v1, v2, . . . , vn as follows. We go on every level starting from
level h to level 1.
For each i (1 ≤ i ≤ h), the vertices were traversed on level i

in arbitrary order, from left to right.
Finally, the parents of all vertices of T were listed (the

vertex vn has no parent and is represented as p(vn) = 0), and
thus, T can be represented by a data structure called a vertex
parent array. The vertex vn is called the root of T . For any
vertex x, let Tx denote the subtree of T induced by vertex x
and its descendants. Let C(x) = NS (x) ∩ V (Tx).

Suppose that Tx is a T1-type tree. Let u0 and w0 be two
support vertices of S(r, s). If l ≥ 1, then let ui be the center
of the star K1,ri , for 1 ≤ i ≤ l. Assume that NS (ui)∩NS (x) =
{wi} for 0 ≤ i ≤ l.

Suppose that Tx is a T2-type tree. Let u0 be the center of
K1,r , and ui be the center of the star K1,ri for 1 ≤ i ≤ l.
Assume that NS (ui) ∩ NS (x) = {wi} for 1 ≤ i ≤ l.

Suppose that Tx is a T3-type tree. Let ui be the center of the
star K1,ri for 1 ≤ i ≤ l. Assume that NS (ui) ∩ NS (x) = {wi}
for 1 ≤ i ≤ l.

In the following, we can assume that every Ti-type tree can
be relabeled as above.

Algorithm 1 Computes the Total Efficient Domination
Number of a Fuzzy Tree T
Input: A rooted tree T represented by its vertex parent

array [v1, v2, · · · , vn].
A pair of membership functions σ and µ of a fuzzy tree T .

Output: Total efficient domination number of the fuzzy
tree T .
I ← ∅;
for all v ∈ V (T ) do
l(v)← 0; l(v)← 0;
end for
While there exists a vertex v such that d(v, vn) ≥ 4 do
Choose a vertex v such that d(v, vn) is maximum.

Let u,w, x, y be the parent of v, u,w, x, respectively.
Consider the subtree Tx of T .

If Tx is not Ti-type tree, where i ∈ {1, 2, 3} then return
γtef (T ) = 0.

If Tx is T1-type tree then
I ← I ∪ {y}; S ← S(Tx);
If there exists a vertex ui such that C(ui) ⊆ I (1 ≤ i ≤

l) or S∩I 6= ∅ or y is a support vertex then return γtef (T ) = 0.
else
For i=1 to l do

Choose a vertex vi ∈ C(ui) \ I such that
σ (vi)+ L(vi)+

∑
t∈C(ui)\(I∪{vi}) L(t) = min{σ (w)+ L(w)+∑

t∈C(ui)\(I∪{w}) L(t) : w ∈ C(ui) \ I };
S ← S ∪ {vi};
end for
T ← T − Tx ;

L(y)← L(y)+
∑

w∈S (σ (w)+L(w))+
∑

w∈V (Tx )\S L(w);
end if

end if
If Tx is T2-type tree then
I ← I ∪ {y}; S ← S(Tx);
If there exists a vertex u ∈ S such that C(u) ⊆ I or S ∩

I 6= ∅ or y is a support vertex then return γtef (T ) = 0.
else
For i=0 to l do

Choose a vertex vi ∈ C(ui) \ I such that
σ (vi)+ L(vi)+

∑
t∈C(ui)\(I∪{vi}) L(t) = min{σ (w)+ L(w)+∑

t∈C(ui)\(I∪{w}) L(t) : w ∈ C(ui) \ I };
S ← S ∪ {vi};
end for
T ← T − Tx ;

L(y)← L(y)+
∑

w∈S (σ (w)+L(w))+
∑

w∈V (Tx )\S L(w);
end if

end if
If Tx is T3-type tree then
S ← S(Tx);
For i=1 to l do

If C(ui) \ I 6= ∅ then
Choose a vertex vi ∈ C(ui) \ I such that

σ (vi)+ L(vi)+
∑

t∈C(ui)\(I∪{vi}) L(t) = min{σ (w)+ L(w)+∑
t∈C(ui)\(I∪{w}) L(t) : w ∈ C(ui) \ I };

S ← S ∪ {vi};
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Algorithm 1 (Continued.) Computes the Total Efficient
Domination Number of a Fuzzy Tree T

end if
end for
If there exists wi such that wi ∈ I then
If C(ui) ⊆ I or ui ∈ I then return γtef (T ) = 0
else
T ← T − Twi ; I ← I ∪ {x};

L(x) ← L(x) +
∑

w∈{ui,vi}(σ (w) + L(w)) +∑
w∈V (Twi )\{ui,vi}

L(w);
end if

end if
If there exist ui and uj such that C(ui) ∪ C(uj) ⊆ I and

i 6= j then return γtef (T ) = 0.
If there exists ui such that C(ui) ⊆ I and C(uj) * I for

j 6= i then
I ← I ∪ {y}; T ← T − Tx ;

L(y) ← L(y) +
∑

w∈S∪{wi}(σ (w) + L(w)) +∑
w∈V (Tx )\(S∪{wi}) L(w);

end if
If for any ui such that C(ui) * I then
T ← T − Tx ;

L(y)← L(y)+
∑

w∈S (σ (w)+L(w))+
∑

w∈V (Tx )\S L(w);
L(y)← L(y)+min{

∑
w∈(S\{vi})∪{wi}(σ (w)+ L(w))+∑

w∈V (Tx )\((S\{vi})∪{wi}) L(w) : i = 1, 2, . . . , l};
end if

end if
end while
If T is a P1, then return γtef (T ) = 0.
If T is a P2, then if V (P2)∩I 6= ∅, then return γtef (T ) = 0

else γtef (T ) = σ (u)+ σ (v)+ L(u)+ L(v).
If T is a star with center vertex u, then if u ∈ I or NS (u) ⊆

I , then return γtef (T ) = 0 else Choose v ∈ NS (u) such that
σ (v) + L(v) +

∑
t∈NS (u)\(I∪{v}) L(t) = min{σ (w) + L(w) +∑

t∈NS (u)\(I∪{w}) L(t) : w ∈ NS (u) \ I };
γtef (T ) =

∑
w∈{u,v}(σ (w)+ L(w))+

∑
w∈NS (u)\{v}) L(w).

If T is a double star, then if S(T ) ∩ I 6= ∅, then return
γtef (T ) = 0 else γtef (T ) =

∑
w∈S(T )(σ (w) + L(w)) +∑

w∈V (T )\S(T ) L(w).
return γtef (T )

Theorem 8: Algorithm 1 produces the minimum fuzzy
cardinality of a total efficient dominating set of a tree T in
O(n2) time.

Proof: We now discuss the running time of the
Algorithm 1. At each iteration of the ‘‘while’’ loop of the
algorithm, it take O(|V (Tx)|) time to decide Tx is Ti-type
tree for i = 1, 2, 3. If Tx is T1-type tree or T2-type tree,
we need O(|V (Tx)|) time to give a label of the vertex y. If Tx
is T3-type tree, we need at most O(|V (Tx)|dN (x)) time to
give a label of the vertex y. Since dN (x) ≤ 1N (T ), we need
O(|V (Tx)|1N (T )) time to give a label of the vertex y. Since

Algorithm visits each Tx of T once and 1N (T ) ≤ n − 1,
it follows that theAlgorithm 1 can be computed inO(n2) time.
For the correctness of the algorithm, it is sufficient to

consider T with a vertex v such that d(v, vn) ≥ 4. Other-
wise, the algorithm obviously produces the minimum fuzzy
cardinality of a total efficient dominating set of T . Choose
a vertex v such that d(v, vn) is maximum. Let u,w, x, y be
the parent of v, u,w, x, respectively. Consider the subtree
Tx of T . By Proposition 4, if Tx is not Ti-type tree for
i ∈ {1, 2, 3}, then T has no total efficient dominating set and
γtef (T ) = 0. Without loss of generality, we can assume Tx
is Ti-type tree for i ∈ {1, 2, 3}. By Propositions 5, 6, 7, it is
sufficient to prove that we obtain a minimum fuzzy cardi-
nality of a total efficient dominating set of Tx or Tw. So the
proof of Theorem 8 is followed from the following three
cases.
Case 1: Tx is T1-type tree. Let D be a γtef -set of T . Then

S(Tx) ⊆ D and |D ∩ C(ui)| = 1 for every ui ∈ S(Tx),
where 1 ≤ i ≤ l. Hence if there exists a ui such that
C(ui) ⊆ I (1 ≤ i ≤ l) or S(Tx) ∩ I 6= ∅ or y is a support
vertex, then T has no total efficient dominating set of T . For
each ui, since we choose a vertex vi ∈ C(ui) \ I such that
σ (vi)+ L(vi)+

∑
t∈C(ui)\(I∪{vi}) L(t) = min{σ (w)+ L(w)+∑

t∈C(ui)\(I∪{w}) L(t) : w ∈ C(ui)\I }, it follows that we obtain
a minimum fuzzy cardinality of a total efficient dominating
set of Tx .
Case 2: Tx is T2-type tree. Let D be a γtef -set of T . Then

S(Tx) ⊆ D and |D ∩ C(ui)| = 1 for every ui ∈ S(Tx),
where 0 ≤ i ≤ l. Hence if there exists a ui such that
C(ui) ⊆ I (0 ≤ i ≤ l) or S(Tx) ∩ I 6= ∅ or y is a support
vertex, then T has no total efficient dominating set of T . For
each ui, since we choose a vertex vi ∈ C(ui) \ I such that
σ (vi)+ L(vi)+

∑
t∈C(ui)\(I∪{vi}) L(t) = min{σ (w)+ L(w)+∑

t∈C(ui)\(I∪{w}) L(t) : w ∈ C(ui)\I }, it follows that we obtain
a minimum fuzzy cardinality of a total efficient dominating
set of Tx .
Case 3: Tx is T3-type tree. Let D be a γtef -set of T . Then

S(Tx) ⊆ D. If y ∈ D, then |D ∩ C(ui)| = 1 for every ui ∈
S(Tx), where 1 ≤ i ≤ l. If y /∈ D, then there exists i such
that wi ∈ D and |D ∩ C(uj)| = 1 for every uj ∈ S(Tx), where
1 ≤ j ≤ l and j 6= i. Hence if there exists a ui such that
C(ui) ∪ {wi} ⊆ I (1 ≤ i ≤ l) or S(Tx) ∩ I 6= ∅ or C(ui) ∪
C(uj) ⊆ I (i 6= j), then T has no total efficient dominating set
of T . By a similar way as Case 2, in any cases, we obtain a
minimum fuzzy cardinality of a total efficient dominating set
of Tx or Twi for some (1 ≤ i ≤ l).
At each iteration of the ‘‘while’’ loop of the algorithm,

we find a minimum fuzzy cardinality of a total efficient
dominating set of Tx or Tw. If y ∈ I , then it is saved to
L(y). If y /∈ I , then it is saved to L(y). So by the parameters
L(y) and L(y), we know the minimum fuzzy cardinality of
a total efficient dominating set in the deleted subtree of Ty.
If d(v, vn) ≤ 3, then the tree is P1,P2, a star or a double
star. It is easy to obtain its minimum fuzzy cardinality of a
total efficient dominating set. Hence Algorithm 1 produces
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the minimum fuzzy cardinality of a total efficient dominating
set of a tree T .

VI. CONCLUSION
This study proposed some new results on the total efficient
dominating set of fuzzy graphs. The natural extension of
this research work is to research on other types of fuzzy
graphs. Furthermore, the fixed-parameter tractability of the
total efficient domination problem of fuzzy graphs is our
future research direction.
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