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ABSTRACT This work uses the binary target region for synthetic aperture radar (SAR) automatic target
recognition (ATR). Due to the differences of physical sizes and target shapes, the region residuals among
the same classes and those between different targets are distributed in different manners. The Euclidean
distance transform is then performed on the region residuals to further enhance such differences, which is
beneficial for correctly discriminating different targets. Based on the results, a similarity measure is formed
according to the distribution characteristics of the region residuals. In addition, the designed similarity
measure considers the possible variations of the target region caused by the nuisance conditions like noise
corruption, partial occlusion, etc. Owing to its robustness and comprehensiveness, the similarity measure is
applied to target recognition by comparing the test sample with different kinds of template classes. Experi-
ments are undertaken on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset
under standard operating condition (SOC) and some representative extended operating conditions (EOCs),
i.e., configuration variants, depression angle variation, noise corruption, resolution variation and partial
occlusion. Moreover, the proposed method is examined under reduced training size and possible azimuth
estimation errors for a comprehensive evaluation. The experimental results demonstrate the superiority of
the proposed method in comparison with several baseline algorithms in SAR ATR.

INDEX TERMS Synthetic aperture radar (SAR), automatic target recognition (ATR), binary target region,
Euclidean distance transform.

I. INTRODUCTION
Synthetic aperture radar (SAR) operates day and night
to produce high-resolution images for earth observation.
To properly analyze and interpretate SAR images for different
applications, the computer-aided systems are designed to
automatically process themassive data. Among all these tech-
niques, automatic target recognition (ATR) has been widely
researched for decades [1]. Like other image classification
problem, SAR ATR aims to assign the representative fea-
tures from the measured SAR images to a predetermined
set of classes using some decision engines [2]. In general,
features used for SAR ATR can be summarized into three
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categories. Geometrical features are common to see in SAR
ATR algorithms, which depict the target’s geometrical shape
or physical sizes, e.g., width and length. Typical geomet-
rical features include target region, contour, shadow, etc.
Park et al. generated several discriminative features from the
target’s binary target region, which are demonstrated effec-
tive for SAR ATR [3]. Region descriptors such as Zernike
moments [4], Krawtchouk moments [5] were used to analyze
the binary target region for target recognition. Anagnostop-
ulos employed the Elliptical Fourier Series (EFS) coeffi-
cients to approach the target outlines in SAR images, which
were classified by SVM afterwards [6]. The target shadow is
demonstrated effective for SAR target recognition by Papson
and Narayanan [7]. The second kind is the projection fea-
tures, which are obtained via projecting the original images
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to low-dimensional subspaces thus significantly reducing
the redundancy. With mature mathematical tools, extraction
of projection features became highly efficient [8]. Mishra
applied principal component analysis (PCA) and linear dis-
criminant analysis (LDA) to SAR ATR [9]. In [10], the non-
negative matrix factorization (NMF) was employed to extract
discriminative features for target recognition. With the devel-
opment of manifold learning, more projection features were
designed for the special applications in SAR ATR with good
performance [11], [12]. The compressive sensing theory pro-
vides a simple but effective dimensionality reduction method,
i.e., the random projection [13], [14]. The third category com-
prises of the scattering center features, describing the target’s
backscattering characteristics. In [15]–[18], the attributed
scattering centers (ASCs) were validated notably effective for
SAR target recognition because they could provide physical
descriptions of the local structures on the target. In compari-
son, the outstandingmerit of projection features boils down to
the high efficiency of feature extraction. However, they lack
clear physical meanings [8]. As a result, it is hard to evaluate
their robustness to the extended operating conditions (EOCs)
caused by the physical variations of the target such as con-
figuration variants and partial occlusion. For the geometrical
and scattering center features, they are capable of describing
the physical characteristics of the target. However, the main
disadvantage of these features is the complexity of feature
extraction. Specially, the scattering centers are more difficult
to extract than the typical geometrical features like target
region, shadow, etc. because of the complex scattering center
model [15]. Considering that EOCs are the main obstacle
to SAR ATR, geometrical and scattering centers have more
potential in these situations.

The decision engine (or in other words, the classifier)
determines the target type by exploiting the discrimination
in the extracted features. The great progress in the field
of pattern recognition has provided many advanced classi-
fiers for SAR ATR such as SVM [19]–[21], adaptive boost-
ing (Adaboost) [22], discriminative graphical models [2],
sparse representation-based classification (SRC) [23]–[26],
modified polar mapping classifier [27], etc. Owing to the
excellent classification performance of deep learning tech-
niques, they become the most popular tools in the field
of remote sensing image interpretation [28]. Various kinds
and structures of deep learning models were used with very
good performance [29]–[45]. In [30], Chen et al. developed
the famous all-convolutional networks (A-ConvNet) based
on the convolutional neural network (CNN) for SAR ATR.
Other architectures of deep networks were designed based on
the latest achievements in deep learning, e.g., ResNet [31],
cascade coupled CNN [32], gradually distilled CNN [33],
enhanced squeeze and excitation network (ESENet) [34],
multi-stream CNN [35]. In addition, some works tried to
enrich the available training samples. In [36], Ding et al. aug-
mented the available training samples by image translation
and noise addition. In [37], the noisy, multi-resolution, and
occluded samples were generated to train the designed CNN.

Transfer learning was employed to enhance deep learning
models based on the simulated samples from CADmodels as
reported in [38]. The decision fusion of multiple classifiers
was also used in SAR ATR such as the combination of SVM
and CNN [39], SRC and CNN [40], etc. It is believed that
the deep learning methods are actually data-driven so their
performance highly depends on the amount and coverage of
the available training samples. As a result, when the train-
ing and test sets have notable differences, the classification
performance may degrade significantly. Therefore, it is still
necessary that some traditional features or classifiers are
further studied and exploited, which could be used cooper-
atively with the deep learning models to improve the overall
recognition performance of SAR ATR.

In this study, we propose a SAR ATR method via match-
ing of binary target regions. The target region reflects the
geometrical shape and some details of the target. Therefore,
it could be employed to analyses the target’s local variations
resulted by the configuration variants, noise corruption, par-
tial occlusion, etc. as validated in previous works. In addi-
tion, as the region feature, the target region is more stable
than the point patterns (e.g., scattering centers). For a test
sample, its target region is matched with its counterparts
from different template classes. The resulted region residuals
reflect their differences. The region residuals of the same
class (denoted as the intra-class residuals) are distributed in
small and narrow patches whereas those between different
targets (denoted as the between-class residuals) are in bulky
shapes with large area. Hence, the distribution characteristics
of the region residuals can be effectively used to distin-
guish different classes of targets. However, such qualitative
descriptions may not be directly understood by the computer.
As a remedy, the Euclidean distance transform [46]–[48] is
employed to amplify and reflect such characteristics, which
can be quantitatively evaluated by the computer. After the
Euclidean distance transform, the intra-class residuals pro-
duce a gray image with lower intensities and the resulted gray
images of the between-class residuals contain higher-value
pixels. Consequently, the differences between the intra-class
residuals and between-class residuals are further enhanced.
By analyzing the results from Euclidean distance transform,
a similarity measure is defined to evaluate the correlations
between the test image and various kinds of template images.
The similarity measure considers the distribution of the
region residuals and the possible region deformations in a
comprehensive way. Therefore, it can robustly reveal the true
target label of the test sample. Compared with the projection
features, the binary target region has clear physical meanings
thus it is capable of sensing the local structural variations
occurred to the target. Unlike other region features-based
methods like [4]–[6], the proposed method directly matches
the binary target regions with no further feature construc-
tion. Therefore, more discriminability contained in the target
region can be maintained and exploited for target recognition.
Extensive experiments are undertaken on the public Moving
and Stationary Target Acquisition and Recognition (MSTAR)
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FIGURE 1. Procedure of the proposed target recognition method.

dataset under the standard operating condition (SOC) and
representative EOCs including configuration variants, large
depression angle variation, noise corruption, resolution vari-
ation, and partial occlusion. In addition, as a thorough evalua-
tion, the proposedmethod is examined under reduced training
size and possible azimuth estimation errors. According to the
experimental results, the proposed method achieved superior
performance over some baseline algorithms drawn from cur-
rent literatures.

The remainder of this paper is organized as three sec-
tions. Section 2 introduces the methodology of the proposed
method including the target region extraction, region match-
ing, similarity definition, and detailed implementation of tar-
get recognition. Experiments are undertaken on the MSTAR
dataset in Section 3 based on different experimental setups
for performance evaluation. Finally, some major conclusions
are summarized in Section 4 as well as some discussion

II. METHODOLOGY
Fig. 1 illustrates the main components and work flow of the
proposed method. The binary target region in SAR image is
first extracted using a classical target segmentation method.
Afterwards, the region matching is performed based on the
Euclidean distance transform. Finally, a similarity measure
is deduced with application to target recognition. Therefore,
the key techniques in the proposed method include the reli-
able region extraction, robust region matching and similarity
evaluation. In the followings, these techniques are described
and each step in the target recognition is also explained.

A. TARGET SEGMENTATION
Target segmentation is first performed to extract the binary
target region. The target segmentation in our work is con-
ducted based on the basic idea of the method in [22],
which was also used in some relevant literatures [5], [11].
We perform the target semination in this paper according to
Algorithm 1.

Algorithm 1 Target Segmentation Algorithm
Input: SAR image I
1. Normalize the image intensities in I as Ī via the standard
histogram equalization.
2. Smooth the normalized image as Ī∗ using a 3× 3 mean
filter.
3. Preliminarily segment Ī∗ with a threshold T1.
4. Remove the false alarms in the preliminary binary region
by morphological opening operation [49], [50].
5. Connect the target region from Step 4 by morphological
closing operation.
Output: The binary target region in I .

Fig. 2 gives an intuitive illustration on the target segmenta-
tion algorithm. In this case, the threshold for preliminary seg-
mentation is set to be T1 = 0.8. Fig. 2 (a) shows a BMP2 SAR
image in the MSTAR dataset and the normalized image via
the standard histogram equalization is shown as Fig. 2 (b).
After the mean filter, the result is shown in Fig. 2 (c),
in which the image intensities are smoothed. The preliminary
threshold segments the smoothed image as the binary regions
in Fig. 2 (d), in which some false alarms are existing due to the
background clutters. The followingmorphological operations
remove these false alarms (Fig. 2 (d)) and connect the target
region to obtain the final binary target region (Fig. 2 (e)).

A further validation of the target segmentation is con-
ducted under noise corruption and resolution variance as
shown in Fig. 3 and 4, respectively. In Fig. 3, the image
in Fig. 2 (a) is contaminated by the additive complexGaussian
noise (AWGN) [51], [52] with a signal-to-noise ratio (SNR)
of 0dB. In this case, the target pixels still have relatively
higher intensities as shown in Fig. 3 (a). Therefore, it is
predictable that the target region can be segmented with a
relatively high precision. Next, the morphological operations
effectively reduce the false alarms brought by the noises
and connect the fractured target region. Fig. 3 (b) shows the
segmented target region, which shares a quite similar shape
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FIGURE 2. Target segmentation procedure: (a) Original image; (b) normalization via the standard histogram equalization;
(c) smoothing by mean filter; (d) preliminary segmentation; (e) morphological opening operation; (f) morphological
closing operation.

FIGURE 3. Target segmentation of noisy SAR image: (a) image at the SNR
of 0dB; (b) segmented target region.

FIGURE 4. Target segmentation under resolution variance: (a) image at
the resolution of 0.5m; (b) segmented target region.

with the original one in Fig. 2 (f). Fig. 4 illustrates the target
segmentation under resolution variance. Fig. 4 (a) shows a
SAR image with the resolution of 0.5m generated from the
original image with the resolution of 0.3m. Under this situa-
tion, the dominant target region with higher intensities can be

maintained as intuitively shown in Fig. 4 (a). Then, the target
region can be separated out with high precision using the
threshold segmentation and following morphological opera-
tions. By comparing the results in Fig. 2 (f), Fig. 3 (b) and
Fig. 4 (b), it shows that the target region can keep robust
under noise corruption and resolution variation. In addition,
it can also sense the target’s variations caused by partial
occlusion. These merits will definitely contribute to the better
ATR performance under different operating conditions.

B. SIMILARITY MEASURE BASED ON REGION RESIDUALS
After the target segmentation, the binary target regions of
the test image and its counterpart in a certain template class
as denoted as F and G, respectively. The region residuals R
between the two regions are calculated as equation (1).

R = |F − G| (1)

Fig. 5 shows the region residuals between a BMP2 image
(shown in Fig. 2 (a)) and its corresponding template images
from the MSTAR dataset. It shows that the intra-class residu-
als have amuch smaller number of nonzero elements than that
of the between-class region residuals. Denote the numbers
of the nonzero pixels in F , G and R as NF , NG and NR,
respectively, a preliminary similarity measure is defined as
equation (2) to evaluate the similarity between F and G.

C0 = 1−
NR

NF + NG
(2)

Due to the differences of the physical sizes and target
shapes, the intra-class residuals are often distributed in nar-
row regions with small areas. In contrast, the between-class
residuals are often bulky shaped with large areas as shown
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FIGURE 5. Region residuals between a BMP2 target and its corresponding templates: (a)BMP2; (b)BTR70; (c)T72;
(d)ZSU23/4; (e)ZIL131; (f)T62; (g) BTR60; (h)D7; (i) BRDM2; (j) 2S1.

in Fig. 5. Then, according to the similarity measure in equa-
tion (2), a test image is assumed to share the largest simi-
larity with its corresponding template class. However, this
similarity measure only takes the area of the residuals into
consideration while neglecting the distribution characteristics
of the residuals. In addition, there are possible corruptions in
the target region due to noise corruption, partial occlusion,
etc. Therefore, a more robust similarity measure should be
further designed to fully make use of binary target region to
improve the classification performance.

C. RESIDUALS PROCESSING USING EUCLIDEAN
DISTANCE TRANSFORM
Distance transform [46]–[48] has been widely used in image
processing, such as the skeleton extraction and shape match-
ing. For a binary image A = [axy] with M rows and N
columns, where axy denotes the pixel at the location of
(x, y). Those pixels with axy = 1 are the target points,
denoted as T =

{
(x, y)|axy = 1

}
. On the contrary, pixels

with axy = 0 represent the background points, denoted as
B =

{
(x, y)|axy = 0

}
. The distance transform of A is a gray

image recording the minimum distance between each target
point in T and all the background points. As for the Euclidean
distance transform, the distance measure is chosen to be the
Euclidean distance. Then, for the target point (i, j) ∈ T ,
its corresponding intensity in the gray image is calculate as

equation (3).

dij = min {D [(i, j), (x, y)] , (x, y) ∈ B} (3)

where D [(i, j), (x, y)] =
√
(i− x)2 + (j− y)2 denotes the

Euclidean distance. Fig. 6 shows the corresponding Euclidean
distance transforms of the region residuals in Fig. 4.

According to the distribution characteristics of the
region residuals, the Euclidean distance transform of the
between-class residuals have more pixels with higher values
than that of the intra-class residuals as shown in Fig. 6, where
all the subfigures are shown in the same dynamic range. The
values of the pixels in these subfigures can be referred to
the color bars at the bottom. Denote the Euclidean distance
transform of the region residuals as I , the similarity measure
is designed as equation (4) by modifying equation (2).

C1 = 1−
Sum(I )
NF + NG

(4)

As a practical consideration, the target is probably to be
occluded by the nearby obstacles such as trees or buildings.
Consequently, the target region is severely deformed. Assum-
ing the occlusion always occurs from a fixed direction, then
most of the intra-class residuals are still in narrow distri-
butions with quite a few bulky regions. Such property can
be reflected by the values of the pixels on the ridge of the
Euclidean distance transform. The intensities of the ridge
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FIGURE 6. Euclidean distance transforms corresponding to the region residuals in Fig. 2: (a) BMP2; (b)BTR70; (c)T72;
(d)ZSU23/4; (e)ZIL131; (f)T62; (g) BTR60; (h)D7; (i) BRDM2; (j) 2S1.

TABLE 1. Evaluation of different similarity measures.

pixels in the Euclidean distance transform actually reflect the
width of the residual at a certain position. Therefore, the vari-
ance of the ridge pixels embodies the regularity of the resid-
ual distributions. The resulted variance of the correct target
classes is lower than that from the incorrect class even there
may be some region deformations. Consequently, the ridge
pixels of the Euclidean distance transform of between-class
residuals varies more intensively than that of the intra-class
residuals. Therefore, the variance of the normalized ridge
pixels σ 2 is calculated to incorporate into the final similarity
measure as follow:

C2 = C1 ∗ exp(−σ 2/2) (5)

By performing the three similarities measures on the resid-
uals in Fig. 5, the similarities between the BMP2 image
and the ten template classes from the MSTAR dataset are
summarized in Table 1. Compared with similarities at C0,
those at C1 decrease disproportionately. The similarity of the

true class (BMP2) has the lowest decrease compared with the
other classes. The similarities by C2 share a similar trend
with those by C1. Consequently, the differences between
the intra-class similarities and between-class similarities are
enhanced, which is beneficial for the correct target recog-
nition. To evaluate the three similarity measures quantita-
tively, a judgment variable is defined as equation (6), which
describes the difference between the maximum similarity and
the remaining ones. A larger J indicates that the similarity
measure is more robust for target recognition because it can
reflect the differences between the true class and confusing
targets more significantly. According to the results in Table 1,
C2 is assumed to be the most effective for target recognition
with the highest J . In addition, it takes the possible variations
in the target region into consideration, which may be caused
by severe noise corruption, partial occlusion, etc.

Sk = max([Si])

J = Sk −mean([Sj]) j 6= k (6)

VOLUME 7, 2019 154403



C. Shi et al.: Target Recognition of SAR Images Based on Matching and Similarity Evaluation Between Binary Regions

FIGURE 7. Optical images of the ten targets.

TABLE 2. Template/training and test sets used for SOC recognition problem.

Algorithm 2 Target Recognition Algorithm
Input: SAR image I
1. Estimate the target azimuth of I using themethod in [22].
2. The template set finds these template images with the
most approaching azimuths with the estimated one.
3. Extract the binary target regions of the test image and
the selected template images.
4. Calculate the similarities between the test target region
and template target regions according to equation (6).
5. Decide the target label as the template class with the
maximum similarity.
Output: The target label of I .

D. TARGET RECOGNITION
The defined similarity measure in equation (6) is used for
target recognition in this work. By comparing the similarities
calculated from different classes of templates, the target label
of the test sample is classified as the one with the highest
similarity.

The azimuth estimation method in [22] directly performs
on the binary target region thus suitable to be used in this

paper. In the practical application, considering the azimuth
estimation errors, the template samples are selected in an
azimuth range of [−3◦, 3◦] around the estimated one. The
average of the similarities of the selected samples from a cer-
tain class is used as the final similarity for target recognition.

III. EXPERIMENTS
A. PREPARATION
In order to validate the effectiveness of the proposed method,
experiments are undertaken on the MSTAR dataset, which
is widely taken as the benchmark for evaluating SAR ATR
algorithms. The dataset includes SAR images measured from
10-class ground targets: BMP2, BTR70, T72, ZSU23/4,
ZIL131, T62, BTR60, D7, BRDM2, and 2S1, which can be
categorized as tank, armored car, cannon, truck, and bull-
dozer. The optical images of the ten targets are displayed as
Fig. 7. Table 2 presents the template/training and test sets
for SOC. SAR images at 17◦ depression angle are used as
the reference samples while those at 15◦ are classified. The
original MSTAR images have a fixed resolution of 0.3m ×
0.3m with 128 × 128 pixels.
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FIGURE 8. Similarity distributions of the 3-class test samples under different types of similarity. (a) C0 (b) C1 (c) C2.

TABLE 3. Reference methods to be compared with the proposed one.

For comparison, several baseline SAR ATR algorithms
from public literatures are used as reference methods.
The descriptions of the reference methods are summarized
in Table 3 including the features and decision engines. For
simplicity, each of them is given an abbreviation according to
the features or classifier. The Zernike [4] and EFS [6] meth-
ods were both applied on the binary target regions, which first
extracted features to represent the binary target region and
ten used SVM to perform target classification. The SVM [19]
and SRC [23] methods were performed on the 60-dimension
PCA features, which were the most prevalent classifiers used
in SAR ATR so far. The ASC matching method in [18] was
employed for comparison, where a similarity measure was
defined to evaluate the similarity between two ASC sets for
SAR ATR. Three deep learning-based methods are chosen
including A-ConvNet [30], ResNet [31], and ESENet [34],
which designed different architectures for target classifica-
tion of SAR images. By comparison with these classical or
latest works in SAR ATR, the effectiveness and robustness of
the proposed method can be quantitively evaluated.

In the followings, the recognition performance of the pro-
posed method is first evaluated under SOC. Afterwards,
several typical EOCs including configuration variants, large
depression angle variance, noise corruption, resolution vari-
ation, and partial occlusion are setup to test the robustness
of the method. Finally, we test the proposed method under
reduced training size and possible azimuth estimation errors.

B. RECOGNITION UNDER SOC
Under SOC, the operating conditions of the test samples
are similar with those of the template/training samples.

Therefore, it is predictable that the target recognitionmethods
could achieve relatively good performances under SOC. The
3-class recognition and 10-class recognition problems are two
classical experimental setups based on the MSTAR dataset.

1) 3-CLASS RECOGNITION PROBLEM
The 3-class recognition is first considered, where the three
targets, i.e., BMP2, BTR70 and T72 are used. For each target,
only one serial is used, i.e., 9563 for BMP2, c71 for BTR70,
and 132 for T72. Therefore, it is a pure SOC in this condition
because the test and template samples only have a small
depression angle difference of 2◦. Fig. 8 shows the similarity
distributions of the 3-class test samples under different types
of similarity measures defined in this paper, i.e., C0, C1
and C2. The coordinates in Fig. 8 represent the similarity
with the corresponding target class. It is clear that each of
the three similarity measures can correctly discriminate the
three classes with high probabilities. As we intuitively shown
in Fig. 8, the similarity measures C1 and C2 have comparable
separability for the three targets, which is consistent with
the results in Table 1. In comparison, C0 has the lowest
discriminability for separating the three targets.

By comparing the similarities between the test samples
and different template classes, the results of the proposed
method for the 3-class recognition are summarized in Table 4.
All the three targets can be recognized with the PCCs (per-
centage of correct classification) higher than 98% with an
average of 98.81%. The PCCs of different methods for the
3-class recognition are listed in Table 5 for comparison. The
A-ConvNet, ResNet, and ESENet achieve the first three high-
est PCCs mainly because of the good feature learning and
classification abilities of deep learning models when the test
samples are obtained under similar conditions with the train-
ing ones. With a PCC of 98.81%, the proposed one is more

TABLE 4. Results of the proposed method for 3-class recognition.
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TABLE 5. PCCs of different methods for 3-class recognition.

TABLE 6. PCCs and time consumptions of different methods for 10-class recognition.

effective than the remaining methods. Compared with the
Zernike and EFSmethods, it is clear that the proposedmethod
could make better use of the discriminability of the binary
target region to effectively improve the ATR performance.

2) 10-CLASS RECOGNITION PROBLEM
A more challenging problem under SOC, i.e., the 10-class
recognition is undertaken in this part. A classical experimen-
tal setup is used for this experiment. In the template/training
set, BMP2 and T72 only contain one serial, i.e., 9563 and 132,
respectively. However, all the serials of the two targets are
contained in the test set. Therefore, there are some configura-
tion variances between the template and test sets. Fig. 9 gives
the results of our methods for 10-class recognition. We can
see that all the targets can be classified with PCCs over
95%. BMP2 and T72 are recognized with the lowest PCCs
mainly because of the configuration variance in the test set.
The average PCC is calculated to be 98.13%, indicating that
the proposed method could maintain very good performance
for recognizing the 10 classes of targets. A further compar-
ison with the reference methods is given in Table 6 includ-
ing the classification accuracy and time consumptions. It is
notable that the deep learning methods including A-ConvNet,
ResNet, and ESENet have slightly lower PCCs than the

FIGURE 9. Recognition results of the proposed method for 10-class
recognition.

proposed method. Due to the configuration variance, the deep
learning models have relatively lower capability to classify
the different configurations in the test set thus impairing
the overall performance. The time consumptions of different
methods are calculated as the average time for classifying one
MSTAR image. In comparison, the efficiency of the proposed
method is lower than SVM, SRC mainly because of the time
consumptions occurred during target segmentation. For the
deep learning models, the major time consumptions lie in the
training of the complex networks. For the Zernike and EFS
methods, they needed further feature construction based on
the binary target region so more time was consumed. The
ASC matching method consumes notably higher time than
other methods because the precise extraction of ASCs is a
very difficult work.

According to the results under 3-class and 10-class prob-
lems, the proposed method could achieve very high recog-
nition rates with good efficiency. Therefore, the proposed
method is assumed to be capable of handing the multi-class
recognition problem under SOC.

C. RECOGNITION UNDER EOCS
In fact, many SAR ATR applications occur under EOCs
due to the variations of the background environment, SAR
sensors and target itself under the real-world conditions [1].
Therefore, the robustness to various EOCs is a highly desired
merit of an ATR method [2]. In this subsection, the pro-
posed method is evaluated under some representative EOCs,
i.e., configuration variants, large depression angle variance,
noise corruption, resolution variation, and partial occlusion.

1) CONFIGURATION VARIANTS
A certain target may be modified to have different con-
figurations [53]. Fig. 10 shows the optical images of two

FIGURE 10. Illustration of different configurations from T72 tank: (a) A04;
(b) A05.
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TABLE 7. Test samples with configuration variance.

configurations from T72 tank, i.e., A04 and A05, which have
some modifications such as the fuel barrels. In this exper-
imental setup, the template/training set comprises images
of four targets (BMP2, BRDM2, BTR70, and T72) at 17◦

depression angle. For BMP2 and T72, only one serial is used,
i.e., 9563 for BMP2 and 132 for T72. The test samples are
summarized in Table 7, which have different configurations
with the template/training ones. The results of the proposed
method under configuration variance are presented in Table 8.
The different configurations of BMP2 and T72 can be rec-
ognized with an average PCC of 97.46%. Table 9 compares
the performances of different methods under configuration
variants. We can see that the proposed method defeats the
reference methods significantly. The same target with differ-
ent configurations may have some local modifications, but
the whole target shape can be kept. Therefore, the proposed
region matching method can still work with high effective-
ness. Similarly, the Zernike and EFS methods, which also
perform on the target region, achieve better performance than
SVM, SRC and, the deep learning-based methods. The ASC
method analyzes the local characteristics of the target thus
ranking second in all the methods.

2) LARGE DEPRESSION ANGLE VARIANCE
The view angle between the SAR sensor and target are always
changing with the moving of the platform. Consequently,
the test samples may have different depression angles with
the template/training ones. As illustrated in [20], [54], SAR
images measured at different depression angles tend to have
notably different shapes and shadows. Then, it is a chal-
lenging but crucial issue is to enhance the robustness of the
SAR ATR methods to large depression angle variance. In

FIGURE 11. Illustration of 2S1 SAR images at different depression angles.
(a) 17◦ (b) 30◦ (c) 45◦.

the present test, the images of three targets (2S1, BRDM2,
and ZSU23/4) at 17◦ depression angle are included in the
template/training set. The test samples with large depres-
sion angle variance are listed in Table 10. Fig. 11 shows
SAR images of 2S1 at 17◦, 30◦, and 45◦ depression angles,
respectively. The PCCs of different methods are presented
in Table 11, which are compared at different depression
angles.When the depression angle is 30◦, the test samples can
still maintain relatively high resemblance with the training
ones as shown in Fig. 11. Consequently, all the methods still
achieve high PCCs over 95%. However, when the depression
angle changes to 45◦, all the performance degrades severely.
As shown in Fig. 11, the target region and shadow deform
significantly at 45◦ depression angle compared with those
at 17◦. As a result, the global features, e.g., PCA features,
extracted from the whole image intensities contain more con-
fusion information, which may impair the ATR performance.
That is why SVM and SRC have the very low PCCs. For
the deep learning models, the images for training have many
differences with the test ones especially at the depression
angle of 45◦. As a result, its performance is much worse
than the proposed method in this condition. In comparison,
the highest PCCs at both depression angles are achieved
by our method, indicting its superior performance when the
depression angle changes greatly.

3) NOISE CORRUPTION
Considering the noises during SAR data acquisition, the SAR
images to be classifiedmay be contaminated by severe noises.
To properly test the proposed method under noise corruption,

TABLE 8. Results of the proposed method under configuration variants.

TABLE 9. PCCs of different methods under configuration variants.
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FIGURE 12. Noisy SAR images at different SNRs: (a) Original image; (b) 10dB; (c) 5dB; (d) 0dB; (e) −5dB; (f) −10dB.

TABLE 10. Test samples from different depression angles.

different levels of the AWGN [51], [52], [55] are added into
the test samples used in the 10-class recognition problem.
Some exemplar noisy SAR images are shown in Fig. 12,
which are simulated at different SNRs. We can see that more
target characteristics are corrupted with the deterioration of
noises, causing bigger obstacles to the correct classification.
Fig. 13 plots the average PCCs of different methods with the
change of SNR. It clearly shows that the proposed method
works most robustly under noise corruption. Although con-
taminated by the noises, the target pixels with high intensities
can still be separated out with appropriate precision as shown
in Fig. 2. Therefore, the target regions can still be matched
for effective ATR. Moreover, the designed similarity measure
can keep robust to possible region deformations thus better
coping with the noise corruption.

FIGURE 13. Performances of different method under noise corruption.

4) RESOLUTION VARIANCE
Due to the variation of SAR sensors, the test SAR images
are possible to have some resolution variances with the tem-
plate/training ones [41], [44]. To improve the applicability
and generality of the SAR ATR system, the recognition

TABLE 11. Comparison of different methods under different depression angles (%).
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FIGURE 14. Simulated SAR images at different resolutions: (a) Original image; (b) 0.4m × 0.4m; (c) 0.5m × 0.5m; (d) 0.6m ×

0.6m; (e) 0.7m × 0.7m.

FIGURE 15. Performances of different method under resolution variation.

method should keep robust under resolution variance. In this
experiment, the test samples in 10-class recognition prob-
lem are employed to simulate SAR images of different
resolutions via the procedure described in [56]. Then, the
multi-resolution SAR images are classified for performance
evaluation. Fig. 14 shows SAR images of different resolu-
tions. When the resolution decreases, some details on the
target become more and more blurry, including the target
contour and scattering centers. The PCCs of all the methods
at different resolutions are plotted in Fig. 15. The proposed

method achieves the highest PCC at each resolution, indi-
cating its highest robustness to resolution variance. With
large resolution differences, the PCA features change greatly.
As a result, the performances of SVM and SRC decrease
sharply. The deep learning models trained by the images at
a fixed resolution can hardly handle the images at different
resolutions. At low resolutions, the target region can still be
observed with significant differences with the background
pixels as validated in Fig. 3. Therefore, the proposed region
matching can still be performed smoothly with good recog-
nition performance.

5) PARTIAL OCCLUSION
Occlusion is also a common situation in SAR ATR. In this
experiment, the partially occluded SAR images are first gen-
erated based on the 10-class test samples according to the
occlusion model in [56], [57]. A certain percentage of the
target region is removed from the original image from 8 direc-
tions. Considering the symmetry, Fig. 16 only shows 20%
occluded binary target regions from 4 directions. The average
PCCs of all the 8 directions for individualmethods at different
occlusion levels are plotted in Fig. 17. The designed similarity
measure considers the possible region deformations includ-
ing the partial occlusion. Therefore, it works most robustly
among all the methods. In the ASC method, a one-to-one
correspondence is built between the test ASC set and template
ASC set thus it also has good capability of sensing the local
variations like partial occlusion.
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FIGURE 16. 20% occluded target region form different directions: (a) original target region; (b) direction 1; (c) direction 2;
(d) direction 3; (e) direction 4.

FIGURE 17. Performances of different methods under partial occlusion.

D. RECOGNITION UNDER REDUCED TRAINING SIZE
Unlike optical image recognition, where a large amount of
resources are available, the training samples in SAR image
interpretation is notably limited [24]. Therefore, it is desired
that the target recognition methods should maintain robust
under reduced training size. As a simulation, this paper
randomly selects 1/2, 1/3, 1/4, 1/5 and 1/6 of the tem-
plate/training samples from each of the ten targets. Then, all
the methods are tested under reduced training size. In order to

FIGURE 18. Performances of different methods under reduced training
size.

overcome the randomness, the random selection is repeated
for 10 times to obtain an average PCC. Fig. 18 compares
the performance of different methods under reduced training
sizes.With the highest PCC at each training size, the proposed
method is validated to be the most robust. It is also clear that
the performance of SVM and deep learning models degrades
sharply with the decrease of the training samples. The clas-
sification capabilities of deep learning models are closely
related to the coverage of training samples. SRC performs
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FIGURE 19. PCCs of the proposed method under azimuth estimation
errors.

relatively well under reduced training size mainly because of
the merit of the sparse representation as reported in [58].

E. RECOGNITION UNDER AZIMUTH ESTIMATION ERRORS
There are possibly some azimuth estimation errors during the
implementation of the proposed target recognition method.
SAR images are sensitive to the azimuth. Accordingly, the tar-
get azimuth can be estimated based on the binary target
region, which can be effectively used to select the correspond-
ing template samples. However, it is still a difficult problem
to obtain high-precision estimations. To test the stability of
the proposed method to azimuth estimation errors, some dis-
turbances are added to the estimated azimuth. Fig. 19 shows
the PCCs of the proposed method for the 10-class recog-
nition in the azimuth error interval of [−5◦, 5◦], which is
widely adopted as the state-of-the-art precision of the azimuth
estimation on MSTAR images. It shows that the proposed
method maintains relatively high PCCs in the azimuth error
interval. When the azimuth error is within 3◦, the PCC keeps
higher than the average PCC of the whole interval (marked
by the blue line in Fig. 19). The reasons are mainly from two
aspects. On the one hand, in the proposedmethod, the average
similarity in an azimuth interval of [−3◦, 3◦] is adopted as
the final one thus weakening the negative influences of the
azimuth estimation error. On the other hand, it is assumed the
region features have better robustness to the azimuth change
than the global features, scattering centers, etc. Therefore,
the binary target region used in the proposed method also
contributes to the superior performance of our method.

IV. CONCLUSION
This paper proposes a SAR ATR method based on the
matching of target regions via Euclidean distance trans-
form. According to the distribution characteristics of the
intra-class region residuals and between-class region resid-
uals, the Euclidean distance transform is employed to

enhance the differences between the intra-class targets
and between-class targets. A robust similarity is designed
afterwards for target recognition, which comprehensively
considers the distribution of the region residuals and the pos-
sible region deformations caused by noise corruption, partial
occlusion, etc. Based on the similarity measure, the test sam-
ple is determined to be the class with the highest similarity.

To properly evaluate the proposed method, extensive
experiments are undertaken on the MSTAR dataset. Exper-
imental results reveal several conclusions as follows. First,
the proposed method achieves very good performance under
SOC due to the higher discriminability of the designed sim-
ilarity measure. Second, the proposed method significantly
outperforms other state-of-the-art SAR ATR methods under
various EOCs because of the clear physical meanings of
target region as well as the consideration of possible region
deformations. Third, the proposed method maintains very
good performance under reduced training size and possible
azimuth estimation errors. Therefore, the proposed method
has much potential to be used in the practical applications.
Actually, the practical SAR ATR system may be a combina-
tion of different features and classifiers, which work cooper-
atively to improve the ATR performance. Then, the proposed
method can be used in a SAR ATR system to jointly work
with other ATR methods such as the CNN.
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