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ABSTRACT Correct heartbeat classification from electrocardiogram (ECG) signals is fundamental to the
diagnosis of arrhythmia. The recent advancement in deep convolutional neural network (CNN) has renewed
the interest in applying deep learning techniques to improve the accuracy of heartbeat classification. So far,
the results are not very exciting. Most of the existing methods are based on ECGmorphological information,
which makes deep learning difficult to extract discriminative features for classification. Towards an opposite
direction of feature extraction or selection, this paper proceeds along a recent proposed direction named
feature enrichment (FE). To exploit the advantage of deep learning, we develop a FE-CNN classifier by
enriching the ECG signals into time-frequency images by discrete short-time Fourier transform and then
using the images as the input to CNN. Experiments onMIT-BIH arrhythmia database show FE-CNN obtains
sensitivity (Sen) of 75.6%, positive predictive rate (Ppr) of 90.1%, and F1 score of 0.82 for the detection
of supraventricular ectopic (S) beats. Sen, Ppr , and F1 score are 92.8%, 94.5%, and 0.94, respectively,
for ventricular ectopic (V) beat detection. The result demonstrates our method outperforms state-of-the-
art algorithms including other CNN based methods, without any hand-crafted features, especially F1 score
for S beat detection from 0.75 to 0.82. This FE-CNN classifier is simple, effective, and easy to be applied to
other types of vital signs.

INDEX TERMS Electrocardiogram, feature enrichment, short-time Fourier transform, convolutional neural
network.

I. INTRODUCTION
Electrocardiogram (ECG) signal has become a promising
source for monitoring the heart condition and function owing
to the availability of wearable wireless ECG sensors, which
are low cost, easy to use, and allow for long time recording.
Heartbeat classification based on ECG signals is a valuable
tool for the detection of arrhythmias. Arrhythmias can be
divided into harmless or life-threatening classes. It may incur
tachycardia, bradycardia, or even sudden cardiac arrest. The
diagnosis of arrhythmias depends on heartbeat classification.

The associate editor coordinating the review of this manuscript and

approving it for publication was Panagiotis Petrantonakis .

However, automatic heartbeat classification is difficult
because the variability in ECG signals can be significant
between different patients. Furthermore, the morphology and
rhythms of ECG signal generated by the same patient can be
quite different over time [1].

The existing studies mostly concentrated on feature extrac-
tion or selection for a small set of non-redundant, predic-
tive features for ECG representation. For example, Hermite
transform, discrete wavelet transform and, independent com-
ponent analysis were adopted in [2]–[5]. Various means
of feature extraction or selection were also combined or
sequentially used to optimize a set of discriminant fea-
tures for ECG arrhythmia classification [6]–[8]. Based on
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TABLE 1. The recording number for DS1 and DS2.

the computed ECG features, many classifiers have been
adopted, including mixture of experts (MOE) approach [1],
blocked-based neural network (BBNN) [2], hidden Markov
model [9], support vector machine [7], general regression
neural network [10], genetic algorithm-back propagation
neural network [11], deep belief networks [12], [13], and
artificial neural network (ANN) [3], [14]. However, these
methods need a certain amount of prior knowledge of the
signals or require some expert’s input. The identification
of characteristic points, such as P, Q, R, S, and T waves,
may also be required for these methods. However, in the
case of arrhythmia, these ECG features may not always
be clearly defined and thus the extraction of these features
becomes ambiguous. Moreover, the fixed and hand-crafted
features may not reflect the optimal representation of the
ECG signals. Thesemake them tend to perform inconsistently
when classifying new subjects’ ECG signals.

Recently, deep convolutional neural network (CNN) was
introduced to analyze ECG signals [15], [16], or electroen-
cephalogram (EEG) signals [17]. Unlike the conventional
machine learning approaches, CNN is capable of obtaining
useful representations from the raw data, and outputs the
classification results without any hand-crafted feature engi-
neering. However, 1-D signals were directly fed into CNN in
[15], [16], i.e., the convolution on the input layer was operated
on 1-D discrete vector. In such case, it is difficult for CNN to
extract discriminant patterns from the ECG signals with sim-
ilar morphology, because discrete time-series representation
is too squash for convolutional layers to discern. For example,
supraventricular ectopic (S) beats and normal (N) beats (in
sinus mode) usually share similar ECG morphology and S
beat is easy to be confused with N beat by not only conven-
tional machine learning methods but also CNN based deep
learning methods in [15], [16].

Inspired by feature enrichment (FE) [18] that proceeds
along an opposite direction of feature extraction or selection
and enriches extracted and compressed representations into
enriched formats with squashed dependent structure restored,
e.g., turn time series to two dimensional images by time-
frequency analysis, we develop a FE-CNN classifier in this
paper to exploit the advantage of deep learning for automatic
diagnosis of arrhythmia. To well capture the discriminative
pattern among the heartbeats, ECG signals are transformed
into images by discrete short-time Fourier transform (STFT),
and then the images that encode more detailed dependent
structural patterns are fed into a CNN based architecture for
the recognition of arrhythmia beats.

For common practice and benchmarking, the Asso-
ciation for the Advancement of Medical Instrumenta-
tion (AAMI) [19] provides criterion and suggests practices

for performance results of automated arrhythmia detection
algorithms, which requires at most the first five minute seg-
ment of the recording from each subject can be used as
training data. Nevertheless, only a few approaches follow
the AAMI standards to test the performance on the complete
benchmark data, e.g., [2], [3], [15].

We follow theAAMI recommendations to evaluate the pro-
posed method on a public benchmark dataset MIT-BIH [20].
Experiments demonstrate that the proposed method outper-
forms state-of-the-art algorithms in heartbeat classification.
In particular, our results obviously reduce the false alarm of
the existing S beat classification, which demonstrates that
feature enrichment indeedworks for facilitating deep learning
on ECG signals, and suggests that it could be used in other
related problems as well.

II. DATASET
The MIT-BIH dataset [20] is adopted as a source of ECG
signal to evaluate the performance of the proposed algorithm.
Each heartbeat is converted into five heartbeats recommended
by AAMI standard, i.e., beats originating in the sinus mode
(N), supraventricular ectopic (S) beats, ventricular ectopic
(V) beats, fusion (F) beats, or unclassifiable (Q) beats. S beats
are premature narrow QRS beats resembling the N beats and
V beats are wide bizarre QRS beats. S beats may indicate
atrial dilatation as in left ventricular dysfunction. Isolated V
beats are harmless, but are predictive of serious arrhythmias
associated with heart disease. F beats occur when electrical
impulses from different sources simultaneously act upon the
same region of the heart.

Specifically, theMIT-BIH dataset consists of 48 recordings
from 47 patients, where the recording 201 and 202 come
from the same male patient. Each recording has dura-
tion of 30 minutes, digitized at 360 Hz, and we only
use the lead II channel. As in [15], [21], we also use
44 recordings, by excluding the four recordings (102, 104,
107, and 217) which contain paced heartbeats. They are
divided into two groups, i.e., DS1 and DS2. The DS1 con-
tain 20 recordings of a number of waveforms and motion
artifacts that an arrhythmia detector might encounter in
routine clinical use, and the DS2 include complex and
clinically significant arrhythmias, e.g., ventricular, junc-
tional, supraventricular arrhythmias, and conduction abnor-
malities [22]. Table 1 gives the detailed recording number for
DS1 and DS2.

III. METHODOLOGY
A. OVERALL ARCHITECTURE
Fig. 1 shows the overall architecture of the proposed method
for ECG heartbeat classification. First, the noise is removed
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from raw ECG data to obtain preprocessed ECG. Then, 1-D
ECG is converted to 2-D image through feature enrichment
implemented by discrete STFT. The subtle features contained
in image are automatically extracted by convolutional neural
network. Fully-connected (FC) layer receives these features
for ECG type recognition.

B. PREPROCESSING
In real applications, ECG signal is contaminated by various
kinds of noises, including respiration signal, power line inter-
ference, and muscle contraction. The 4th order Chebyshev
type I bandpass filter is constructed for removing noises with
cutoff frequencies of 6 and 18Hz as used in [23]. Here, the fil-
ter is designed in both the forward and reverse directions to
avoid the phase shift.

C. FEATURE ENRICHMENT
Recently proposed in [18],1 feature enrichment is to tackle
the problem that the conventionally extracted, compressed
representation of the raw data is difficult for deep learn-
ing to learn the structural and discriminative information.
For examples, the tasks like traveling salesman problem
and portfolio management are usually formulated in dis-
crete, symbolic, and conceptual representations. Similar to
financial time series, ECG signals are not good as direct
input into deep network such as CNN. In a direction oppo-
site to the feature extraction or selection which is usually
required for conventional machine learning models, feature
enrichment aims to enrich the simplified representation by
restoring the structural information with details. Applying
this FE principle, we turn the ECG time series into images
through discrete STFT, for an image representation to encode
dependent structures implied in the ECG vector represen-
tation. Subtle variation in different heartbeats can be repre-
sented in a way easy to be captured by CNN, facilitating the
subsequent detection of ectopic heartbeats. The details are
given below.

Same as in [15], [16], ECG signals are segmented into
identical length for further analysis by CNN. A beat is thus
segmented into 351 samples with center at the R peak as it
corresponds to normal heartbeat rate. The timing information
of R peak is provided by experts in the dataset. Note there are
many R peak detection algorithms available with accuracy
better than 99%.

STFT is a time-frequency analysis suited to non-stationary
signals. It provides information about changes in frequency
over time. In practice, the signal is multiplied by a window
function which is non-zero for a short period of time such
that a longer time signal is divided into shorter segments of
equal length. The Fourier transform of each shorter segment
is taken as the window is sliding along the time axis, resulting
in a two-dimensional representation of the signal both in time

1See the last paragraph of its subsection ‘‘Deep learning, path consistency,
and domain knowledge embedding’’.

and frequency as (1),

STFT (m, n) =
N−1∑
k=0

x(k)w(k − m)e−j2πnk/N , (1)

where w(k) is the Hamming window function, and x(k) is
the signal to be transformed. It is noticed that STFT (m, n)
is essentially the discrete Fourier transform (DFT) of
x(k)w(k − m). It indicates the variation of the phase and
frequency magnitude of the signal over time. The time index
m is normally considered to be slow time. In this study,
the length of window function is selected as 128. Zero-
padding is used to increase frequency resolution and then the
spectrogram is computed by 4096-points (N = 4096) DFT.
The first row of Fig. 2 illustrates a typical example of the
ECG signals of five classes of heartbeats, i.e., N, S, V, F,
Q, and it could be observed that different classes of beats
may share similar ECGmorphology, especially N, S, V beats,
making it hard to distinguish them just from morphological
waveform. The second and the third rows of Fig. 2 show the
corresponding image representations by discrete STFT. It can
be seen that the discriminant patterns become more obvious
than the original ECG signals, more suitable for convolutional
layer to work. Only the frequencies within 0.3-20 Hz are
maintained for further processing since DFT components of
the preprocessed ECG multiplied by the window function
mainly lie in this range. The final image is a 224×224 matrix
containing both time and frequency response information.

D. CNN ARCHITECTURE
We design a network architecture to take the image repre-
sentations of ECG signals which are normalized to be zero
mean and unit standard deviation as input and then classify
beats into N, S, V, F, Q classes. This FE based CNN for ECG
heartbeat classification is shortly called FE-CNN classifier.
In order to make optimization of the deep neural network
tractable, the shortcut connection is applied which propagates
information well in deep neural networks, inspired by [24].
The architecture is given in Fig.3, with its BasicBlock illus-
trated on the right side.

The BasicBlock is composed of two-layer convolution
module. For every layer of BasicBlock, rectified linear
unit (ReLU) [25] follows 2-D convolution (Conv2D) oper-
ation, and then batch normalization (BN) [26] is applied
to every feature map. The Conv2D represents the layer is
convolved with kernel size (3, 3) using (2), where f is kernel.

y =
2∑
i=0

2∑
j=0

x(i, j)f (i, j) (2)

In addition, there are convolution and identity shortcuts that
connect input and output. Convolution shortcut represents a
1 × 1 convolutional shortcut connection. Identity shortcut
denotes the input is directly added to F(xl). It should be
noted that the filter number of the first and second Conv2D
and strides of the first Conv2D in BasicBlock are given in
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FIGURE 1. The overview of the proposed method. Raw ECG is preprocessed to remove noise, then ECG is converted to image by feature
enrichment, and the subtle features are extracted by CNN, finally ECG type is classified by fully-connected layer.

FIGURE 2. Morphological waveforms and the corresponding discrete STFT images with respect to N beat (a), S beat (b), V beat (c), F beat (d),
Q beat (e).

overall CNN architecture, and stride of the second Conv2D
is (1,1). The strides of first Conv2D all are (1, 1) if they are
not given in overall CNN architecture. Convolution shortcut
is used when strides are not (1, 1) in BasicBlock to make
dimension match between xl and F(xl), otherwise identity
shortcut is adopted. The BasicBlock with the same param-
eters is multiplied by a number to represent the times of
the BasicBlock repeated. For example, BasicBlock (filter:
128, strides:(2,2))×2 means filter number for both Conv2D
and strides for the first Conv2D are 128, (2,2), convolution
shortcut is adopted, and this block is repeated 2 times. It can

be inferred accordingly for the remaining BasicBlocks. The
padding is the same if it is not given in the proposed CNN
and pooling sizes are (3,3) for all.

IV. EXPERIMENTAL RESULTS
In this section, we will first present the training procedure
of the proposed method. Then, we will present the per-
formance metrics for the test and evaluation of the pro-
posed FE-CNN classifier for heartbeat classification. Finally,
we will compare the overall results achieved by the pro-
posed algorithm with several state-of-the-art techniques in
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FIGURE 3. The details of the proposed FE-CNN classifier. The overall CNN architecture is shown in the left which primarily contains one 31-layer
CNN for feature extraction and one FC layer for type classification, whereas the BasicBlock mainly composed of two convolutional layers with
shortcut connection is shown in the right. BasicBlock (filter: 64)×5 means the filter numbers for Conv2D is 64, strides of the convolution is (1, 1),
identity shortcut is adopted and this block is repeated 5 times.

this field and analyze the impact of image sizes on FE-CNN
for heartbeat classification.

A. TRAINING
The data used for training a patient-specific classifier are
composed of two parts: common part and patient-specific
part as [2], [3], [15], [21]. The common part comes from
DS1 and is used for each patient. Common part consists
of a total of 593 representative beats, including 191 type-
N beats, 191 type-S beats, and 191 type-V beats, and all
13 type-F beats and 7 type-Q beats, which are randomly
selected from each class from DS1. It contains a relatively
small number of typical beats from each type of beats and
is favorable to construct classifier to learn other arrhythmia
patterns which are not included in the patient-specific data.
For patient-specific part, we follow the AAMI recommen-
dations, it contains all the beats from the first 5 minutes of
the corresponding patient’s ECG recording as [2], [3], [15],
[21]. The remaining 25 minutes of data in DS2 are used as
the testing data.

We trained the FE-CNN classifier with Adam [27] algo-
rithm using an open source toolbox Keras with Tensor-
Flow [28] as backend. During the training procedure, we used
learning rate of 0.00035, batch size of 30 and epochs
of 12 based on common data and learning rate of 0.00035,
batch size of 12 and epochs of 12 based on patient-specific
data to train CNN.

B. PERFORMANCE METRICS
Four statistical indicators are adopted to evaluate the per-
formance of the FE-CNN classifier, i.e., classification

accuracy (Acc) which is the ratio of the number of correctly
classified beats among the total number of beats, sensitiv-
ity (Sen) which is the rate of correctly classified beats to all
true events, specificity (Spe) which is the rate between cor-
rectly classified non-events and all non-events, and positive
predictive rate (Ppr) which is the rate of correctly classified
events in all recognised events. Also, we adopt area under the
curve (AUC) of receiver operating characteristic (ROC) and
F1 score which is the harmonic mean of the Sen and Ppr .
Mathematically, the metrics are calculated as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
, (3)

Sen =
TP

TP+ FN
, (4)

Spe =
TN

TN + FP
, (5)

Ppr =
TP

TP+ FP
, (6)

F1 = 2
Sen× Ppr
Sen+ Ppr

, (7)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. Acc measures the over-
all accuracy of the proposed method on all types of beats.
The other metrics measure the capability of the system per-
formance to respective certain events. Complementary to
the AUC, the F1 score, ranging from 0 to 1, is especially
useful for multi-class prediction to optimize both Sen and
Ppr simultaneously when the sample sizes of classes are
imbalanced [29].
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C. COMPARISON WITH OTHER METHODS
The 24 recordings of testing dataset in DS2 from the
MIT-BIH arrhythmia database are used to evaluate the perfor-
mance of the proposed FE-CNN for heartbeat classification.
The results are comparedwith all existing works [2], [3], [15],
[21] that use the same training and testing data and conform
to the AAMI recommendations.

Table 2 summarizes the confusion matrix by FE-CNN for
all testing beats in DS2. The Kappa coefficient is calculated
as 0.89 according to Table 2, whereas the Kappa coefficients
for [2], [3], [15], [21] are 0.79, 0.77, 0.82, 0.86, respec-
tively, according to their confusion matrices. Thus, FE-CNN
achieves the highest Kappa coefficient, which indicates bet-
ter consistency between the classification result and ground
truth.

TABLE 2. Confusion matrix of the ECG beat classification results for the
24 test recordings in the MIT-BIH arrhythmia database.

The performance metrics of FE-CNN as well as previous
state-of-the-art works [2], [3], [15], [21], [30] are computed
in Table 3. It can be viewed that FE-CNN generally outper-
forms other methods in most of the indicators. Especially,
FE-CNN improves Ppr of S beats from the previous best
82.9% [30] to 90.1%. In terms of Sen, our method is a little bit
below, but still comparable to, the highest one, and better than
most of the other methods. Considering both Sen and Ppr
simultaneously as F1 score, FE-CNN improves the previous
best 0.75 [21] to 0.82 for S beat.

TABLE 3. The comparative performance for V beat and S beat
classification between the proposed method and former studies
(24 testing recordings).

To explicitly show the effect of feature enrichment, we also
implement two baselines for comparisons. One baseline
(Baseline1) is implemented by feeding ECG signals directly

into the network in Fig. 3 with input layer modified accord-
ingly. The Baseline1 is similar to Kiranyaz et al.’s method
[15], but there are still two differences, i.e., the Base-
line1 employs a newly designed CNN network architecture
but removes the 1-D DFT that is fused with the ECG series
as input in Kiranyaz et al.’s method [15]. Comparing the
Baseline1 with Kiranyaz et al.’s method [15] in Table 3, for V
beat, the F1 score of Baseline1 is slightly lower than Kiranyaz
et al.’s network that has the best Sen score among all themeth-
ods, but for S beat the Baseline1 shows better performance
than Kiranyaz et al.’s network for all evaluation indicators,
especially a much higher F1 score. The results indicate that
the proposed network architecture in Fig. 3 is more powerful
to learn ECG representations for S beat recognition, possibly
due to shortcut connections which make information well
propagated through deep neural networks.

Another baseline (Baseline2) is implemented by still keep-
ing the network input as a vector, but the vector is formed
by concatenating the frequency values in each time window
which is calculated by feature enrichment using discrete
STFT. It can be observed from Table 3 that the Baseline2 out-
performs the Baseline1, which indicates that it is helpful for
ECG recognition by introducing distinguishable information
through feature enrichment. The Baseline2 is still not so good
as FE-CNN, meaning that the 2-D image input works better
than the 1-D vector input for CNN.

The method in [30], which aims to detect atrial fibrilla-
tion by combining STFT and general convolutional layers,
is also implemented for comparison. It can be observed from
Table 3 that, for V beat classification, the method in [30]
is comparable to the Baseline2 but surpassed by FE-CNN,
whereas for S beat detection FE-CNN show advantage over
the method in [30] in terms of Sen and Ppr . The ROC curves
for V and S beats are plotted for further comparisons in Fig. 4.
The corresponding AUCs for V beat in regard to FE-CNN,
Baseline1, Baseline2, and [30] are 0.990, 0.967, 0.974, 0.969,
respectively, and they are 0.945, 0.876, 0.919, 0.898 for S
beat, respectively. FE-CNN again outperforms the method
in [30], indicating that the feature enriched residual network
is more suitable for ECG classification.

More detailed observations from Table 3 are as follows.
First, the values of Sen and Ppr for V beat detection are
higher than those for S beat detection. One possible reason
is that S type is not well characterized in the training set
due to the fact that the number of training samples is much
smaller in S beat class than in N beat class. Therefore, more S
beats are misclassified into N class. Another possible reason
is that the morphologies of the beats, in particular, S beats,
vary significantly from one beat to another under different
circumstances or among different patients, and thus the beats
in the first 5 minutes from patient-specific data and the beats
from common data which are selected randomly can not suc-
cessfully represent S beats even in time-frequency domain.
For several patients, there are no S beats belonging to patient-
specific part in the training dataset, and hence S beats in the
testing data can be wrongly classified into other classes, such
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FIGURE 4. The comparative ROC curves for several methods with respect
to V and S beats.

as N beats, owing to their strong resemblance to the pattern
of N beats. The algorithms which are not consistent with
AAMI standards use the S beats from specific patient after the
first 5 minutes, and it is why these algorithms perform better
than those in accordance with AAMI standards, as verified
by Chen et al. [7]. Meanwhile, Sen and Ppr for V beat
detection are both high above 92%, probably because V beats
are usually well distinguished from other beat types.

The AAMI also suggests that the recognition of V beat and
S beat can be addressed separately. In agreement with their
recommendations, for V beat detection, the testing dataset
contains 11 recordings (200, 202, 210, 213, 214, 219, 221,
228, 231, 233, and 234) and for S beat detection, the testing
dataset contains 14 recordings (200, 202, 210, 212, 213, 214,
219, 221, 222, 228, 231, 232, 233, and 234). Following the

TABLE 4. The comparative performance for V beat and S beat
classification between the proposed method and previous studies
(11 recordings for testing V beat detection and 14 recordings for
testing S beat detection).

above procedure, the corresponding results are summarized
in Table 4 for comparisons. Our FE-CNN again performs the
best with respect to most indicators, except for two cases.
For S beat detection in Table 4, the method by [21] has the
highest Sen value, whereas our method achieves the highest
Ppr . Considering both Sen and Ppr by F1 score, our method
is the best. Also, it should be noted that the method in [21]
adopts beat selection to yield common part, which is an
unfair advantage over the other methods including FE-CNN
without beat selection. Compared to [15] in terms of F1 score,
the Baseline1 is slightly not so good as the method in [15] for
V beat classification but becomes better for S beat detection.
The performance is improved by enriching the 1-D input
with discrete STFT by the Baseline2, and further improved
by FE-CNN. Therefore, we have demonstrated that FE-CNN
achieves generally high performance for heartbeat classifi-
cation in ECG signal. The improvement compared with the
state-of-the-art works largely comes from the classification
of S beats, for which the corresponding Ppr scores are low in
other works [1]–[3], [15], [21].

D. IMPACT OF IMAGE SIZE ON CLASSIFICATION
We conduct experiments by varying the window length and
the number of spectrogram points to study their impact on
the performance of FE-CNN. The image sizes are changed
according to different values of window length and the num-
ber of spectrogram points. We report the results for S and V
beat detection on all 24 testing recordings in DS2 in Table 5.
Generally, Acc and Spe are not very sensitive to the values of
image size, whereas Sen and Ppr change in a coupled way
as the image size varies. Increasing in Sen and decreasing in
Ppr usually happen at the same time, and vice versa.
The Sen is a very important indicator of the relative amount

of false negatives. For the case of disease diagnosis, false-
negative patients might miss the best time for appropriate
treatment. To obtain the best Sen score, the image size of
FE-CNN could be set at 214 × 214. Then, the obtained
Sen score 94.8% for V beat is very close to 95.0% which
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TABLE 5. V beat and S beat classification performance with different
image sizes on 24 testing recordings.

in Table 3 is the highest Sen by Kiranyaz et al.’s method [15],
whereas the obtained Sen score 77.1% for S beat is better than
76.8% which in Table 3 is the highest Sen by Zhai et al.’s
method [21].

The Ppr is also important in clinical diagnosis, indicating
the relative amount of false positives. The false-positive cases
are healthy persons that are wrongly diagnosed to have the
disease. Unnecessary further diagnosis or treatment might be
conducted on the false-positive healthy persons, which not
only results in extra time and medical cost for the healthy
persons, but also leads to unnecessary workload for limited
medical resources. To obtain the best Ppr score, the image
size of FE-CNN could be set at 248×248. Then, the obtained
Ppr scores, i.e., 95.1% for V beat and 94.4% for S beat,
are better than the highest ones (i.e., 94.5% and 90.1%,
respectively) in Table 3 both by FE-CNN using 224× 224.
The F1 score is the tradeoff between Sen and Ppr by con-

sidering their harmonic mean. In terms of F1 score, FE-CNN
is slightly getting better or at least equally good as the image
size grows, and the F1 scores of FE-CNN in Table 5 are all
better than those by other methods in Table 3.
To summarize, the image size, determined by the window

length and the number of spectrogram points, mainly affects
the values of Sen and Ppr for FE-CNN. The F1 score is
relatively stable as the image size changes. The image size
is a hyperparameter for training FE-CNN, and it could be
adjusted according to the favor over Sen or Ppr in practical
use while keeping the F1 score at a high level.

V. DISCUSSION
It is very challenging to identify arrhythmia beat due to large
variation and similar pattern among different types of beats.
In order to differentiate them from each other, 1-D CNN was
used in [15] to automatically extract ECG representations for
classification. It shows superior performance than MOE [1],
BBNN [2], and ANN [3] with manually extracted features as
input. The performance is further improved by 2-DCNN [21].

We propose to use feature enrichment to introduce discrim-
inant information to describe ECG beats, which is imple-
mented by discrete STFT that converts 1-D morphological
waveform into 2-D image. The images represent ECG beats
from two dimensions with the variation of frequency over
time and are good at encoding dependent structural patterns
such as topological information, neighborhood information
and so on. The recognition of arrhythmia beat becomes better

because the image patterns show to be more discrimina-
tive. Compared to the existing works [2], [3], [15], [21],
[30], our method achieves the comparable performance for
V beat detection, and shows advantage for S beat detection
in terms of Ppr and F1 score. Additionally, it deserves a
further investigation on automatically determining an appro-
priate image size for the tradeoff between Sen score and Ppr
score, and explainability on misclassified samples can be fur-
ther explored according to explainable artificial intelligence
framework [31], e.g., Local Interpretable Model-Agnostic
Explanations.

Feature enrichment is a general strategy for making deep
learning more efficient for problem solving tasks in simpli-
fied representations. As suggested in [18], turning ECG time
series into images is just one possible direction, which is
suitable for exploiting the powerful performance of deep net-
works, whereas other possible directions include a manifold,
a convex set, or a cluster of points, in high dimensional space.
Therefore, there is still room to explore other possibilities for
further improvements and to generalize to other data in the
field of health care, for accurate and early diagnosis of life-
threatening diseases.

It should be noted that the common data for all the experi-
ments in this paper are selected randomly. However, beatmor-
phology shows significant variations from person to person
and even in the same person under different circumstance,
and hence it can potentially improve classifier performance
through covering the most representative beats into the com-
mon data intentionally instead of random selection as dis-
cussed in [15], [21], [32].

VI. CONCLUSION
We have proposed to use feature enrichment to enhance
the advantage of deep learning for patient-specific heartbeat
classification, serving as a valuable tool for the detection of
arrhythmias which are the electrical disorders of the heart.
Evaluations on theMIT-BIH arrhythmia database have shown
that feature enrichment indeed improves the performance of
deep learning.

We develop FE-CNN classifier with ECG signals enriched
into images by discrete STFT. Compared to previous methods
[2], [3], [15], [21], our FE-CNN classifier largely reduces
false alarms and improves F1 score for S beat detection, while
still maintaining comparable performance for V beat detec-
tion. Actually, Acc, Sen, Spe, and Ppr for V beat detection are
all well above 92%. These results support that this FE-CNN
classifier is an effective and promising tool for automatic
heartbeat classification without explicit ECG feature extrac-
tion or postprocessing.
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