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ABSTRACT This paper develops an effective approach for the 3D deployment of a heterogeneous set of
unmanned aerial vehicles (UAVs) acting as aerial base stations that provide maximum wireless coverage for
ground users in a given geographical area. This problem is addressed in two steps. First, in order to maximize
the utilization of each UAV, its optimal flight altitude is found based on the UAV’s transmit power which
provides maximum coverage radius on the ground. The UAVs are classified into separate groups based on
their transmit powers and optimal flight altitudes. Next, given a repository of UAVs belonging to different
classes, the proposed technique finds an optimal subset of the available UAVs along with their optimal 3D
placement to provide themaximumnetwork coverage for a given area on the groundwith theminimumpower
consumption. This optimization problem is proved to be NP-hard, for which a novel algorithm is proposed
to solve the problem. Simulation results demonstrate the effectiveness of the proposed solution and provide
valuable insights into the performance of the Heterogeneous UAV-supported small cell networks.

INDEX TERMS Unmanned aerial vehicle (UAV), heterogeneous UAV base stations (UAV-BSs), coverage
maximization, constrained circle packing.

I. INTRODUCTION
A. MOTIVATION
Recent years have witnessed increasingly more exercises and
usages of Unmanned Aerial Vehicles (UAVs), such as drones
and balloons for boosting the capacity and enhancing the
wireless coverage of terrestrial networks [1]. Indeed, with
advances in wireless networking technologies, UAVs can be
equipped with wireless transceivers which enable them to
communicate with ground devices as well as other UAVs.
Hence, UAVs can serve as flying base stations (BSs) to
form an ad-hoc network and provide on-demand wireless
coverage in a given geographical area [2]. This is partic-
ularly useful where the cellular network is either unavail-
able or needs to be assisted to provide the required capacity
and coverage. For example, Verizon has developed airborne
LTE service for delivering 4G-LTE service in ‘‘coverage-
denied environments’’ during an emergencymanagement and
disaster recovery exercise [3]. Moreover, the Aquila project
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by Facebook [4] and the Loon project by Google [5] lever-
age the UAV technology to create an aerial wireless net-
work which provides ubiquitous internet access to rural and
remote areas up to 4G-LTE speeds. In fact, by virtue of their
inherent attributes such as flexibility, mobility, and higher
altitude, UAVs have a higher chance of establishing line-of-
sight (LoS) communication links for ground users [6]. This
is particularly useful in situations where the ground nodes
are scattered or obstacles such as hills and large man-made
structures deteriorate the quality of links over ground-to-
ground communications. Thanks to such advantages, UAVs
are being increasingly utilized by wireless carriers such as
AT&T to enhance wireless coverage in hot spots such as
big concerts and stadiums where the cellular network is over
congested and needs further assistance to maintain its service
level [7].

Wireless networking with UAVs faces a number of techni-
cal challenges that are substantially different with the conven-
tional terrestrial networks. The key features that distinguish
UAV-based communication from conventional wireless net-
works include: a) dependency of coverage performance on
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the LoS propagation and elevation angle, b) highly dynamic
channels due to themobility of both the aerial base station and
the ground operators, and c) airframe shadowing caused by
the structural design and rotation of the UAV [8]. The major
design problems in UAV communication include 3D deploy-
ment of the UAVs, energy efficiency, resource allocation, and
cell association.

Recent studies on UAV communications have investigated
various design challenges, such as the air-to-ground (ATG)
transmission model [9]–[11], UAV deployment/placement
optimization, and various applications across different
domains [12]–[17]. In particular, the deployment problem
is of significant importance because it directly affects the
total coverage area, energy consumption, and the interference
generated by the UAV-BSs. In this paper, we aim to address
the effective deployment of a set of heterogeneous UAVswith
various transmit power and coverage radii acting as aerial
quasi-static BSs to maximize the coverage area while taking
into account the total energy consumption by the UAVs.

B. RELATED WORKS AND OUR CONTRIBUTION
Majority of the existing work on UAV communications
is devoted to the ATG channel modeling. For instance,
the authors in [9] provided a statistical generic ATG prop-
agation model for Low Altitude Platform (LAP) systems in
which the probability of LoS channel is derived as a func-
tion of the elevation angle. The work in [10] studies the
effects of shadowing and pathloss for UAV communications
in dense urban environments. As discussed in [11], due to
the pathloss and shadowing, the characteristics of the ATG
channel depend on the height of the aerial base stations.
A comprehensive survey on available ATG propagation
models can be found in [18].

To address the UAV deployment challenge, the authors
in [19] provide an analytical approach to optimize the altitude
of a single UAV for providing maximum coverage area on
the ground. In [20], a UAV-enabled small cell placement
optimization problem is investigated in the presence of a
terrestrial wireless network to maximize the number of users
that can be covered. The optimal flight altitude of a sin-
gle UAV-BS operating under the Rician fading channel is
derived in [21]. Despite providing valuable insight into UAV
communications, the works presented so far are limited by
considering only a single UAV. The problem of multiple UAV
deployment is much more challenging as the the distance
between the UAV-BSs and their relative positions affects the
overall coverage performance. Moreover, due to the presence
of interference between the received signal from different
UAVs, additional interference management/avoidance proto-
cols are necessary.

The authors in [22] proposed a novel energy-efficient
rechargeable UAV deployment strategy to provide seamless
connectivity in urban areas. The work in [23] investigated the
coverage of two UAV-BSs positioned at a fixed altitude and
study the effect of inter-cell interference on the total coverage.
The authors in [24] studied the use of multiple UAVs as

wireless relays in order to facilitate the communication
between ground sensor nodes. However, the work in [24] does
not consider the use of UAVs as aerial BSs. In [25], a method
for the positioning of identical UAV-BSs in wireless tempo-
rary networks is proposed in which the overlapping coverage
areas by different UAVs is allowed which necessitates the
use of inter-cell interference coordination (ICIC). The work
in [26] provides a framework for throughput analysis in a
multi-UAV enabled wireless network assuming that the UAVs
hover at the same altitude and share the same frequency band.
The authors then proposed a power controlmethod tomitigate
the co-channel interference for the ground users. Assuming a
fixed flight altitude for the UAVs, the horizontal 2D positions
of UAVs are optimized in [27] to minimize the number of
required UAV-BSs to cover a given set of ground users. The
optimal placement of multiple symmetric UAVs with the
assumption of having the same transmit power and altitude
is further studied in [28].

Most existing results on multiple UAV deployment, as dis-
cussed above, consider the scenario of implementing identi-
cal or symmetrical UAVs in which the UAVs either have the
same altitude or same transmit power. Moreover, the number
of UAVs to be deployed in a given area is assumed to be
known in advance. In practice, however, one might have a
repository of various types of UAVs with different capabil-
ities which are to be deployed in a given area to provide
wireless coverage. In this context, the exact number and the
type of UAVs that need to be deployed depend on the target
area. For example, having a large set of UAVs, one may
need to use only a few UAVs in order to cover a small area
of interest. Otherwise, the efficiency of resource allocation
may drop significantly due to over allocation of resources,
i.e., UAV-BSs. Moreover, such over allocation of resources
may lead to excessive interference between the UAVs, which
in turn, deteriorates the overall quality of service (QoS).

The main contribution of this paper is to develop an effi-
cient technique for deployment of a heterogeneous set of
UAVs to provide maximum network coverage for an area of
interest. In particular, given a set of heterogeneous UAVswith
various transmit power, we propose an efficient algorithm
for 3D placement of the UAVs as aerial quasi-static BSs in
order to maximize the wireless coverage in a given area.
The advantage of the proposed method is that rather than
deploying all available UAVs, we use as many UAVs as are
needed to provide network coverage while maintaining the
desired quality of service (QoS). In this way, the number and
the type of UAVs are design factors to be determined based
on the size and shape of the area of interest. To develop the
proposed technique, we first capture the characteristics of the
ATG channel. Next, in order to utilize the maximum potential
of the UAVs, we find the optimal flight altitude for each UAV
as a function of its transmit power and environmental fac-
tors. We then determine the minimum number of UAVs and
their optimal placement to provide maximum coverage, while
minimally utilizing the available resources (total UAV power
transmit) and avoiding inter-cell interference to reduce the
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network overhead. Due to the complexity of this optimization
problem, a closed form solution cannot be found. In order
to solve this problem, we propose a novel evolutionary algo-
rithm which, given the coverage radii of the available UAVs
in the repository, determines the type, number, and horizontal
position of UAVs to be deployed in order to maximize the
total coverage. The simulation results are provided to demon-
strate the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section II
presents the system model and describes the air-to-ground
channel model. The optimal flight altitude of each UAV is
derived in Section III. Section IV formulates an optimiza-
tion problem which simultaneously determines the optimal
resource allocation strategy, i.e., selection of the UAVs, and
the optimal horizontal position of the UAVs for maximum
wireless coverage. Section V presents the proposed algorithm
for optimal selection and horizontal placement of UAVs.
Simulation results are provided in Section VI while
Section VII draws some conclusions.

II. SYSTEM MODEL
Consider a heterogeneous repository of UAVs in which the
UAVs are of various types depending on their transmit power.
Let U = {Ui}Ni=1 denote the set of N available UAVs in the
repository while Pti represent the transmit power of UAV Ui.
Considering a 2D geographical area located in an urban envi-
ronment, our aim is to allocate available resources, i.e., the
UAVs, to provide wireless coverage over the area of interest.
The type and number of UAVs to be deployed depends on
the size and shape of the area that needs to be covered.
Without loss of generality, consider the area of interest to be
a rectangular area with the length L and width W as shown
in Figure 1. In this paper, we consider a quasi-stationary
low altitude platform (LAP) such as quadrotor UAVs. Note
that although the LAP is stationary, the UAVs can hover at
different altitudes to achieve their maximum possible cover-
age radius according to their transmit power. In this regard,
we seek to optimize the location of the UAV-supported cells

FIGURE 1. System Model: a set of heterogeneous UAVs provide wireless
coverage in a rectangular area with length L and width W . The UAVs
hover at different altitudes, depending on their transmit power and
environmental factors.

in order to provide maximum coverage with minimum energy
consumption using the available UAVs in the repository.

In order to analyze the wireless coverage of the UAVs,
we first study the ATG channel propagation model. The
ATG propagation model is substantially different from the
terrestrial propagation model as it posses a higher chance of
line-of-sight (LoS) connectivity. As discussed in [9] and [19],
the radio signal from a LAP base station (LAP-BS) reaches
its destination in accordance to two main propagation groups.
The first group corresponds to receiving a LoS signal while
the second group corresponds to receiving a strong non-
LoS (NLoS) signal due to reflections and diffractions. These
groups can be considered separately with different probabili-
ties of occurrence which depend on the environmental factors
such as the density and height of buildings, and the elevation
angle. In this work, we adopt the model presented in [19] for
characterizing the ATG channels for LAP systems.

Radio signals emitted by a LAP-BS propagate in free space
until reaching the ground receivers. The main attenuation that
a LAP signal incurs is the free space pathloss (FSPL) which
is given by:

FSPL = 20 log
(4π fcd

c

)
, (1)

in which fc is the carrier frequency and c is the speed of light.
In addition, d =

√
h2 + r2 is the distance between the UAV

hovering at altitude h and the ground receiver located at radial
distance r from the UAV in the 2D plane as shown in Figure 1.

Apart from FSPL, the radio signals emitted by a LAP-BS
incur additional loss due to shadowing and scattering, which
is caused by the obstacles in the environment and can be
best modeled as a Lognormal distribution [19]. In this work,
we use the mean value of LoS rather than its instantaneous
characteristics as the planning for deployment of stationary
LAP-BSs should be done based on the expected and long term
variations of the channel. The total mean pathloss model for
ATG channel is therefore given by

PL(dB) = FSPL(dB)+ ηξ (dB), (2)

where ηξ represents the excessive pathloss due to shadowing
and scattering in which the subscript ξ refers to the propaga-
tion group such that ηξ ∈ {ηLoS , ηNLoS}. Each propagation
group happens with a specific probability which depends
on the environment. The values of ηLoS and ηNLoS should
be found experimentally and ηNLoS is typically much larger
than ηLoS [9]. black As the excessive pathloss, ηξ , takes on
two values, i.e., ηLoS and ηNLoS with probabilities PLoS and
PNLoS = 1− PLoS, it can be modeled as a Bernoulli random
variable with parameter PLoS as given in [9],

ηξ ∼ Bernoulli (PLoS) , (3)

where PLoS is the probability of having a LoS link and
PNLoS = 1 − PLoS is the probability of having a NLoS link.
As shown in [9], the probability of receiving LoS signal from
UAV-BSUi for a ground user located at (X ,Y ) depends on the
altitude of the UAV-BS, hi, and its horizontal distance to the
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user that is equal to ri =
√
(X − xi)2 + (Y − yi)2, in which

(xi, yi) is the location of the UAV-BS at the 2D plane. The LoS
probability is given by [9]:

PLoS(hi, ri) =
1

1+ α exp
(
− β(arctan

( hi
ri

)
− α)

) , (4)

in which α and β are constant values which depend on the
environment. Since we cannot determine whether the link is
LoS or NLoS as a priori, we consider the spatial expectation
of the pathloss over LoS and NLoS links,

PL(dB) = FSPL(dB)+ ηLoS(dB)PLoS + ηNLoS(dB)PNLoS.

(5)

By substituting (1) and (4) into (5), and letting di =
√
h2i + r

2
i

to be the distance between the UAV Ui and the user, we have

PL(dB) = 20 log(di)+
A

1+ α exp(−β(θ − α))
+ B, (6)

in which A = ηLoS(dB) − ηNLoS(dB) and B = ηNLoS(dB) +
20 log( 4π fcc ).

III. OPTIMAL FLIGHT ALTITUDE FOR MAXIMUM
UTILIZATION OF DEPLOYED UAVS
Despite the conventional terrestrial BSs, the coverage radii of
the UAV-BSs are not known in advance and depend on their
altitude. Therefore, in order to utilize the maximum potential
of the UAVs, here we obtain the optimal flight altitude for
each UAV which results in the largest coverage radius on
the ground. More specifically, given a UAV-BS Ui ∈ U
with transmit power Pti , we find its optimal flight altitude hi,
which maximizes the size of the covered area. We define the
service threshold in terms of the minimum allowable received
signal power for a successful transmission. Any point in the
area is covered if its received signal power is greater than a
threshold ε.
Remark 1: As it is presented in the Section IV, the cov-

erage areas of the UAVs do not overlap and thus, there is
no inter-cell interference among the UAV-BSs. Consequently,
using the signal-to-noise (SNR) measure for defining the
service threshold is equivalent to the signal-to-noise-plus-
interference (SINR) criterion.

Having defined the expected pathloss in (6), the received
signal power at a ground receiver located in radial distance ri
from the ground image of the UAV is given by

Pr (dB) = Pti (dB)− PL(dB), (7)

which requires to be greater than ε, i.e., Pr ≥ ε. This is
equivalent to having

PL(dB) ≤ Pti (dB)− ε. (8)

Proposition 1: The coverage area of a UAV-BS with trans-
mit power Pti (dB) hovering at a fixed altitude hi is a circular
disk.

Proof: According to the equation (8), for a given trans-
mit power Pti (dB), the wireless coverage for a ground point

only depends on the average pathloss PL(dB) which is expe-
rienced in that point. However, the pathloss PL(dB) in (6) is a
function of a UAV’s altitude hi and its horizontal distance to
the ground user ri. Hence, for a fixed hovering altitude hi, all
the ground users at the radial distance ri experience the same
pathloss. It is equivalent to saying that the locus of the points
on the 2D area that experience the same pathloss is a circle
centered at the ground image of the UAV. Thus, the coverage
region of a UAV-BS is a circular disk. �
We define the coverage radius for a UAV-BS Ui with

transmit power Pti as the radial distance in which the received
signal power on a ground receiver reaches the threshold ε,
i.e.,

Ri , ri|PL(dB)=Pti (dB)−ε, (9)

in which Ri is the coverage radius of UAV-BS Ui. Using (6),
the above condition can be re-written as:

20 log(di)+
A

1+ α exp(−β(arctan
( hi
Ri

)
− α))

+B+ ε − Pti = 0, (10)

where di =
√
h2i + R

2
i . The equation in (10) shows that Ri

is an implicit function of hi. However, as it is shown in [19],
the equation in (10) is a unimodal function and has only one
stationary point which corresponds to the maximum coverage
radius. Let h∗i denote the optimal flight altitude which results
in the maximum coverage radius. We find h∗i by taking partial
derivative from the expression in (10) as:

∂Ri
∂hi
= 0, (11)

which yields the following equation:

hi
Ri
+

9 ln(10)αβA exp
(
−β[arctan

( hi
Ri

)
− α]

)
π
[
α exp

(
−β[arctan

( hi
Ri

)
− α]

)
+ 1

]2 = 0. (12)

Numerically solving the equations in (10) and (12) gives us
the optimal flight altitude h∗i and the corresponding coverage
radius Ri of the UAV-BS Ui ∈ U as a function of its transmit
power Pti and environmental parameters.

Having found the optimal flight altitude and coverage radii
for the available UAVs in the repository, we assign a profile P
to each UAV as a tuple containing its transmit power, flight
altitude, and coverage radius:

Pi , (Pti , h
∗
i ,Ri), i = 1, . . . ,N . (13)

Next, we discuss the problem of optimal resource alloca-
tion (selection of UAVs) and the horizontal placement of the
UAV-BSs.

IV. OPTIMAL SELECTION AND HORIZONTAL
PLACEMENT OF UAVS
In this section, we investigate the joint problem of resource
allocation and coverage maximization for a heterogeneous
set of UAVs. Given a 2D area on the ground, our aim is to
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select the best subset of the available UAVs to provide wire-
less coverage in the area with minimal energy consumption.
Furthermore, we want to optimize the 2D location of the
UAVs in the horizontal plane in order to maximize the total
coverage while avoiding interference. To provide the maxi-
mum coverage in a geographical region with minimum total
transmit power, one needs to answer the following questions:
• How many and which types of the UAVs should be
deployed to provide maximum coverage?

• What is the optimal placement of UAVs?
These questions can be formulated as the following optimiza-
tion problem:

maximize
Ii,xi,yi

N∑
i=1

Ii
(
πR2i − ϑP

t
i

)
, (14)

s.t. Ii ∈ {0, 1}, i ∈ {1, 2, · · · ,N } (15)

−
W
2
+Ri ≤ xi ≤

W
2
−Ri, i ∈ {1, 2, · · · ,N }|Ii = 1

(16)

−
L
2
+Ri ≤ yi ≤

L
2
−Ri, i ∈ {1, 2, · · · ,N }|Ii = 1

(17)√
(xi − xj)2 + (yi − yj)2 ≥ Ri + Rj,

i, j ∈ {1, 2, · · · ,N }|i 6= j, Ii = Ij = 1. (18)

where N is the total number of available UAVs in the reposi-
tory. In addition, Ii is an indicator function which equals to 1
if UAV Ui ∈ U is selected for covering the region and equals
to 0 otherwise. It governs the resource allocation strategy for
a given area of interest. Moreover, in (14), ϑ is the weighting
factor, where setting ϑ = 0 results in coverage maximization
problemwithout considering energy efficiency. The objective
function in (14) makes a trade-off between the covered area
and the total transmission power. The constraint in (15) states
that the indicator function can only take on 0 and 1 while
constraints in (16) and (17) ensure that the coverage circle of
UAV Ui with radius Ri does not extend outside the rectangle,
thereby prevents its transmission to be wasted covering out-
side of the desired area. Finally, the constraint in (18) avoids
overlap between the cells to reduce the risk of interference
between the cells.

Due to its non-convexity, non-linear constraints, and a high
number of unknowns, the optimization problem stated in
(14)-(18) is very challenging to solve. However, it has an
analogy with the so called circle packing (CP) problem [29].
In the CP problem, the task is to arrange a given number of
circles, say K circles, on a surface such that no overlapping
occurs. The goal is to maximize the packing density, which
is defined as the proportion of the surface covered by the
circles. The problem is known to be NP-hard [29], and hence,
there does not exist a polynomial time algorithm to solve it
optimally. There are some studies in the literature to tackle
the CP problem, most of which focus on packing equal circles
into a container and are heavily influenced by the congruence
of the circles. Nevertheless, the optimization problem in (14)

has three distinctive differences with the CP problem which
mandate devising a solution tailored to the specific properties
of the problem in hand:

1) Unlike the CP problem, which primarily aims at maxi-
mizing the coverage, in the formulated problem in (14),
in addition to the coverage maximization, there is a
penalty term ϑ which assigns a price, i.e., transmit
power, to a circle, i.e., UAV-BS’ coverage disk, which
is to be minimized;

2) Different from the CP problem, the number of coverage
circles are not known a priori. In fact, the indicator
function Ii|Ni=1 determines whether a coverage circle is
used to pack the desired surface or not;

3) In contrast to the CP problem, the radii of the cover-
age circles are predetermined and fixed as they are a
function of the UAV-BS’ transmit power.

Next, we propose a novel algorithm to solve the problem
stated in (14)-(18).

V. PROPOSED ALGORITHM
In order to solve the optimization problem in (14)-(18),
we develop an evolutionary-based approach which finds the
best strategy for arranging the coverage circles in the desired
2D surface. For this purpose, we first develop a novel algo-
rithm called Maximal Density Positioning (MDP) to pack
an ordered set of the coverage circles into the rectangular
surface satisfying the non-overlapping and maximal density
conditions. Then, we propose an evolutionary algorithm to
intelligently search through the feasible arrangements found
by theMDP algorithm to find the solution which results in the
highest utility according to the objective function presented
in (14).

A. MAXIMAL DENSITY POSITIONING (MDP)
Given the N circles with various radii, there are N ! possi-
ble ways of storing their radii in an ordered N -tuple. Let
R = {R1,R2, . . . ,RN } denote the set of all coverage circles
and φ : R 7→ R is a permutation over the set R which is a
bijection function from R to itself,

φ =
[
φ(R1), φ(R2), . . . , φ(RN )

]
. (19)

For instance, a particular permutation of the set {R1,R2,R3}
can be written as: φ =

[
R2,R3,R1

]
, in which φ(R1) = R2,

φ(R2) = R3, and φ(R3) = R1. We denote the set of all
permutations of the set R with 1 = {φ1, φ2, . . . , φN !}.
Given a particular permutation φk , we aim at placing the

coverage circles in the rectangular surface so that the arrange-
ments satisfies the following conditions:
• Circles must be placed in the rectangular surface in the
order of their indices, starting from index 1;

• Circles must be completely inside the rectangle based on
the constraints in (16) and (17);

• Circles should not overlap with one another according
to constraint in (18);
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• To acquire the maximum packing density, circles should
be tangent either to other circles in the rectangle or the
rectangle borders.

Let [−W
2 ,−

L
2 ], [

W
2 ,−

L
2 ], [

W
2 ,

L
2 ], and [−W

2 ,
L
2 ] be the

coordinates of the rectangular area in the 2D Cartesian plane.
Given an ordered tuple of circles φk , the Maximal Density
Positioning (MDP) algorithm finds a feasible solution for the
optimization problem in (14)-(18). Before proceeding with
the procedure of MDP, we first need to define the locus of the
center for a circle as follows.
Definition 1: Consider a rectangle with length L and

widthW within which there exists a set of circles C satisfying
the conditions stated in (16), (17), and (18). The locus of
the center (LoCi) for a circle with radius Ri is the set of all
points (xi, yi) at which its center can be placed while all the
conditions in (16), (17), and (18) are still satisfied. Formally,

LoCi = {(xi, yi)
∣∣ | xi |≤| W2 − Ri |,

| yi |≤|
L
2
− Ri |,√

(xi − xj)2 + (yi − yj)2 ≥ Ri + Rj,

∀j ∈ C, Ij = 1}. (20)

Given a particular permutation φ, MDP finds the LoC1 for
the first circle with radius φ(R1) which is a smaller rectangle
inside the rectangular surface with its edges having a distance
φ(R1) from the boundaries, as shown in Figure. 2.a. If LoC1
is not an empty set, it then places the the center of the first
circle on the lower left-most corner of the LoC1 and flags
its corresponding indicator function, as shown in Figure. 2.b.
If the LoC1 is empty, it assigns 0 to the corresponding indica-
tor function, removes the circle R1 from the list, and proceeds

FIGURE 2. An illustration of MDP algorithm for packing two circles with
radii 2 and 1 in a 10 × 10 square: (a) the LoC for the first circle with
radius 2. The red point shows the lower left-most corner on the locus.
(b) The first circle in packed in the square. (c) The LoC for the second
circle with radius 1. (d) Both circles are placed in the square. They are
tangent to one another and the square’s edges.

to the next circle in φk . Having already placed k circles in
the desired surface, for the (k + 1)th circle with radius Rk+1,
it first computes its LoCk+1. Then, if LoCk+1 6= ∅, it selects
the lower left-most point on the LoCk+1 to place the circle.
If the locus is empty, i.e., LoCk+1 = ∅, then it is not possible
to insert the circle according to the mentioned constraints.
Consequently, it removes all the remaining circles with the
same size from the ordered tuple φ and proceeds to the next
circle in the list. It stops when there are no more circles
remaining in the list. Finally, the MDP algorithm produces
two subsets of φ: (a) a subset S of the circles that are placed
into the area, and (b) a subset U of the circles that cannot
be fitted in the area. Figure 2 illustrates an example of MDP
when packing a tuple of two circles with radii φ = [2, 1] in
a 10× 10 square. Algorithm 1 shows the pseudocode for the
proposed MDP algorithm.

Algorithm 1 Maximal Density Positioning (MDP)
Data: 8 = [φ(R1), φ(R2), . . . , φ(RN )] and the

dimensions of rectangle [W ,L]
Result: A feasible solution to the optimization problem

in (14)-(18)
1 Initialization: S ← ∅ and U ← ∅
2 for i← 1 to N do
3 if φ(Ri) /∈ U then
4 Compute LoCi
5 if LoCi 6= ∅ then
6 Find (ai, bi), the lower leftmost point on

LoCi
7 (xi, yi)← (ai, bi)
8 Ii← 1
9 Append φ(Ri) to S

10 else
11 for j← i to N do
12 if φ(Rj) = φ(Ri) then
13 Append φ(Rj) to U
14 Ij← 0
15 end
16 end
17 end
18 else
19 continue
20 end
21 end
22 return S and U

Proposition 2: The MDP algorithm yields a 2D arrange-
ment of the coverage circles inside the desired area which
is a feasible solution to the optimization problem expressed
in (14)-(18).

Proof: By construction, given an ordered list of cir-
cles 8, the MDP algorithm places a circle with radius Ri
inside the rectangle if and only if LoCi 6= ∅. According to
Definition 1, if there exists a point (xi, yi) ∈ LoCi, then plac-
ing the center of Ri at (xi, yi) does not violate the constraints
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in (16), (17), and (18), and thus, the arrangement is a feasible
solution to the optimization problem in (14). �

Complexity Analysis: The overall complexity of the
MDP algorithm mainly depends on calculating LoCi, i.e., the
locus of center for circle φ(Ri), in line 4 of Algorithm 1.
For i = 1, the computation of LoC1 is trivial as shown
in Figure 2. However, for i ≥ 2, the computation of LoCi
requires solving at most

(i−1
2

)
+ 4(i− 1) quadratic equations.

To see this, assume that there are already i− 1 circles placed
in the rectangle. In order to prevent any overlap between
φ(Ri) and the first circle in the rectangle with radius φ(R1),
the LoCi should not contain any points within the circle with
radius φ(R1) + φ(Ri). The same reasoning applies to all the
other circles which are already placed in the rectangle. Thus,
to compute the LoCi, we need to find the intersection points
between i − 1 circles with radii {φ(R1) + φ(Ri), φ(R2) +
φ(Ri), . . . φ(Ri−1)+φ(Ri)}. Computing the intersection points
of i − 1 circles requires solving

(i−1
2

)
quadratic equations.

Moreover, to ensure that φ(Ri) is inside the rectangle, i.e., sat-
isfying the boundary conditions in (16) and (17), we need
to compute the intersection points of the mentioned circles
with the horizontal and vertical lines x = −W

2 + φ(Ri),
x = W

2 − φ(Ri), y = −
L
2 + φ(Ri), and y =

L
2 − φ(Ri), which

requires solving 4 × (i − 1) quadratic equations. Therefore,
we need to solve

(i−1
2

)
+ 4(i − 1) quadratic equations to

find the intersection points in iteration i. Next, we need to
check if there exist some intersection points that are not
within any of thementioned circles. In the worst case scenario
that every two circles intersect at two points, we have 2

(i−1
2

)
intersection points and since there are (i−1) circles, we need
to check 2(i−1)

(i−1
2

)
conditions. Therefore, the total number

of operations for computing the LoCi in iteration i is equal to
(2i− 1)

(i−1
2

)
+ 4(i− 1).

Having computed LoCi, if LoCi 6= ∅ we select the lower
leftmost intersection point as the center of φ(Ri) and proceed
to the next circle in the list (lines 5 to 9 of Algorithm 1).
However, if LoCi = ∅, we add the circle φ(Ri) and all the
remaining circles with the same radius to the listU in order to
prevent repeated calculations for similar circles that cannot be
fitted into the rectangle (lines 11 to 16 of Algorithm 1). In the
worst case scenario, we have LoCi 6= ∅ for all i. Therefore,
in the worst case scenario, lines 11 to 16 of Algorithm 1
will not be executed, and instead, the algorithm calculates
LoCi for all circles, as stated in lines 5 to 10. In addition
to finding LoCi, there are two ‘‘assignment’’ functions in
lines 7 and 8 and an ‘‘append’’ function in line 9 which are of
O(1) complexity. Moreover, the ‘‘find’’ function in line 6 is
of linear complexity over a list of 2

(i−1
2

)
intersection points.

Thus, the lines 5 to 10 require 2
(i−1

2

)
+ 3 operations in each

iteration. The total number of operations is given by:
N∑
i=2

[
(2i+ 1)

(
i− 1
2

)
+ 4i− 1

]
=

N∑
i=2

[
i3 −

5
2
i2 +

9
2
i
]
=

1
4
N 4
+ g(N ), (21)

where g(N ) is a polynomial of degree 3. Thus, assuming
that the quadratic equations can be solved in constant time,
the complexity of the MDP problem can be written asO(N 4).
It can be seen that the MDP algorithm has a polynomial time
complexity which translates into a good scalability.

Using MDP, we can find all the feasible solutions for
the optimization problem stated in (14)-(18) and then find
the best solution which maximizes the objective function
through exhaustive search. However, computing all the fea-
sible solutions is computationally expensive. In the next
section, we propose a evolutionary-based algorithm which
uses only a fraction of the feasible solutions to find the
optimal solution of the problem.

B. THE BEST FEASIBLE SOLUTION
To find the optimal solution, one can search over all feasi-
ble solutions and check which one maximizes the objective
function in (14). However, as the number of UAVs increases,
the input size, i.e., the number of feasible solutions, grows
in factorial time. Thus, the exhaustive search method is not a
practical solution. In this section, we propose a more effective
evolutionary-based algorithm to find the optimal solution of
optimization problem in (14). As discussed in the previous
section, for any permutation φ of the available coverage
circles, the MDP algorithm partitions φ into two mutually
exclusive subsets S and U corresponding to the fitted cov-
erage circles and left-out coverage circles, respectively. Let
X‖Y denote the concatenation of two ordered lists X and Y .
Adopting the terminology of Genetic Algorithm [30], we
define a candidate solution as follows:
Definition 2: For any permutationφk ∈ 1, k = 1, . . . ,N !,

a candidate solution9k , Sk‖Uk is defined as the concatena-
tion of (i) a feasible solution Sk to the optimization problem,
and (ii) a set Uk = φk \ Uk of the circles that cannot be
positioned inside the area of interest. Each item, i.e., coverage
circle, in the candidate solution φk is called an individual.

The order of an individual in the candidate solution is
the order in which it is considered by the MDP algorithm.
Each candidate solution9k corresponds to a unique layout in
which the first |Sk | individuals constitute a feasible solution
to (14), where |Sk | denotes the cardinality of the list Sk .

Since the objective of the optimization problem
in (14)-(18) is to maximize the coverage area while mini-
mizing the total power transmit using the available UAVs,
we define the following utility function for each candidate
solution:

5(9k ) =
|Sk |∑
i=1

πR2i − ϑP
t
i (22)

in which |Sk | is the number of coverage circles in the feasible
solution Sk while the Ri and Pti represent the corresponding
coverage radius and transmit power, respectively.

To intelligently search through the space of feasible
solutions, we first generate a set of candidate solutions and
then, by introducing some dynamic rules we let the candidate
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solutions evolve toward achieving higher utility values.
Consider a set of K < N ! permutations φ1, φ2, . . . , φK
of the set R, where K is the population size. Using the
MDP algorithm, we transform these permutations to candi-
date solutions. Let ϒ = {91, 92, . . . , 9K } denote the set of
candidate solutions. At each time step t , the set of candidate
solutions ϒ t evolves in order to contain candidate solutions
with higher utility.
Definition 3: For each candidate solution 9k , k = 1,

2, . . . ,K , the selection probability is defined as the relative
utility of9k compared to thewhole set of candidate solutions:

Pr(9k ) =
5(9k )∑K
i=15(9i)

. (23)

Note that Pr(9k ) ≥ 0 and
∑K

k=1 Pr(9k ) = 1. Thus, the equa-
tion in (23) defines a probability distribution over the set of
candidate solutions ϒ .
Consider parameter 0 < µ < 1 as a design factor which

determines what percentage of the current population will
move to the next population set unchanged. Assume that
(1 − µ) × K candidate solutions in ϒ t will be randomly
selected according to the probability distribution in (23)
and transferred to the next set of candidate solution ϒ t+1.
Since the probability distribution in (23) assigns a higher
selection probability to the candidate solutions with higher
utility, ϒ t+1 is expected to contain better candidate solutions
compared toϒ t . The remaining µ×K candidate solutions in
ϒ t will be evolved based on the following dynamic rules:
• Crossover: In the remaining µ×K candidate solutions,
we randomly select µ×K

2 pairs of candidate solutions
according to (23). Let 9 t

i and 9
t
j be a pair of candidate

solutions in time step t . Let a and b be two randomly
selected integers such that 1 ≤ a < b ≤ N . Considering
two indices a and b, the candidate solution 9 t+1

i inherit
a subsequence [a, . . . , b] of its individuals from9 t

i . The
individuals of 9 t

j are then used in their order of appear-
ance to successively fill the remaining empty indices of
9 t+1
i . If an individual of 9 t

j is already in 9 t+1
i , it is

rejected, else it is positioned in the first empty index of
9 t+1
i . A similar procedure is applied to compose 9 t+1

j
from 9 t

i and 9
t
j .

• Mutation: To increase the diversity of the solution set in
each time step, we assume that the candidate solutions
9 t
i , i = 1, 2, . . . ,K , are subject to a process of mutation

with small probability ξ in which, two randomly selected
individuals of 9 t

i are swapped to create 9
t+1
i .

In each time step t , the feasible solution with the highest
utility value is denoted by9 t∗. The procedures of evaluation,
selection, and reproduction are repeated until the utilities of
best feasible solutions in two consecutive iterations are within
a small distance δ of each other, i.e., |5(9 t∗)−5(9 t+1∗)| ≤
δ, or the maximum number of iterations is reached. The max-
imum number of iterations is denoted by T . Note that small
values of δ results in more accurate answer with possibly a
greater number of required iterations. Algorithm 2 shows the
pseudocode for the proposed evolutionary algorithm.

Complexity Analysis and Convergence: In order to find
the time complexity of the proposed evolutionary algorithm,
we first need to characterize the complexity of the crossover
and mutation operators. As shown in [31], the time com-
plexity of partially mapped crossover operation for a list of
N elements is O(N ). Furthermore, as the mutation operator
involves swapping two elements in a N-tuple, its time com-
plexity is also O(N ) [32]. Let c1N and c2N denote the num-
ber of ‘‘constant-time’’ operations required by the crossover
and the mutation operators, respectively, where c1 and c2
are positive real numbers. Note that as the asymptotic time
complexity is concerned, the lower order terms are dropped.

The proposed evolutionary algorithm is composed of two
main stages. Given a population of K candidate solutions,
in each iteration, it first computes the utility of each candidate
solution according to the utility function in (22), and selects
the solution with the maximum utility as a potential output
(Lines 3 to 6 of Algorithm 2). Note that computing the
utility function in (22) for a list of N circles requires 4N
arithmetic operations. Next, it generates a new population
of candidate solutions evolved from the current population
(Lines 8 to 21 of Algorithm 2). Since the first stage involves
the computation of utility function (22) for a population of
size K , it requires c3KN constant-time operations in which c3
is a positive real number. The second stage mainly involves
performing the crossover and mutation over the population
of size K of N -tuples which requires c1KN and c2KN oper-
ations, respectively. Furthermore, similar to the first stage,
it requires the utility function in (22) to be evaluated for the
newly generated population which needs c3KN operations.
In conclusion, each iteration of Algorithm 2 requires per-
forming c1KN + c2KN + 2c3KN constant-time operations.
Since the maximum number of iterations is equal to T , in the
worst case scenario, Algorithm 2 requires (c1+c2+2c3)KNT
operations. Therefore, the complexity of Algorithm 2 can be
written asO(KNT ). Note that both the population size K and
the maximum number of iterations T are design factors with
a linear effect on the time complexity of the algorithm. Thus,
they can be adjusted to meet the desired trade-off between the
solution accuracy and the time complexity of the algorithm.

The convergence of Algorithm 2 is guaranteed by the
parameter T which determines the maximum number of
allowed iterations. As specified in line 2 of Algorithm 2,
the proposed algorithm may converge before reaching T
iterations if |5(9 t ) − 5(9 t+1)| ≤ δ, which means that
two consecutive generations of candidate solutions produce
roughly the same utility.

VI. SIMULATION RESULTS
For simulations, we consider the UAV-based communications
over 2 GHz carrier frequency, i.e., fc = 2 GHz, in an urban
environment with parameters α = 9.61, β = 0.16, and
(ηLoS , ηNLoS ) = (1 dB, 20 dB) [9]. We assume that the
minimum allowable received signal power for a successful
transmission is ε = −60 dBm. We also consider a repository
of 16 UAVs in which there are four different types of UAVs
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Algorithm 2 Proposed evolutionary algorithm to find the best feasible solution to (14)-(18)
Data: ϒ = {91, 92, . . . , 9K }, µ, ξ , δ, T
Result: 9∗, 5∗

1 Initialization: t ← 0, 5← 0, ϒ t
← ϒ

2 while |5(9 t )−5(9 t+1)| > δ or t ≤ T do
3 forall the 9i ∈ ϒ

t do
4 Compute the utility 5(9i) according to (22)
5 end
6 5(9 t )← max(5(9i))

∣∣K
i=1

7 # Create generation t + 1 of candidate solutions:
8 Select (1− µ)× K members of ϒ t according to (23) and insert them into ϒ t+1;
9 Select µ× K members of ϒ t according to (23); pair them up; perform crossover; insert the resulting candidate

solutions to ϒ t+1;
10 forall the 9j ∈ ϒ

t+1 do
11 Select a random number q in range [0, 1];
12 if q ≤ ξ then
13 Select two random individuals in 9j and swap their positions;
14 end
15 end
16 forall the 9j ∈ ϒ

t+1 do
17 Compute the utility 5(9j) according to (22)
18 end
19 5(9 t+1)← max(5(9j))

∣∣K
j=1

20 t ← t + 1
21 end
22 return The feasible solution 9∗ with the highest utility value

with transmit powers of 35 dBm, 39 dBm, 43 dBm, and
50 dBm and there are four identical UAVs of each kind. The
goal is to provide wireless coverage for a 10 Km × 10 Km
area. The simulation parameters are summarized in Table 1.

TABLE 1. Simulation parameters.

Note that for this scenario, we have approximately
16!

4!4!4!4! ≈ 6.3×107 unique permutations. Using an exhaustive
search method, we have to check the utility of each and every
one of these permutations by the MDP algorithm to find
the best solution. However, using the proposed evolutionary
algorithm, we consider a population size of only 300 unique
permutations and we run a Monte Carlo simulation of 100
times to smooth out the randomness effect of the population
selection.

Figure 3 shows the optimal flight altitude along with the
maximum coverage radius as a function of transmit power by
numerically solving equations (10) and (12), simultaneously.
As it is seen in Figure 3, by increasing the transmit power,
both the optimal flight altitude and the maximum coverage

FIGURE 3. Optimal flight altitude and the corresponding cell radius for
UAV-BSs with various transmit power in an urban environment.

radius will increase with a similar rate. It is observed that for
large values of Pt , the optimal altitude may exceed beyond
the physical constraints for LAP systems which requires
imposing a constraint on h for practical scenarios. Moreover,
using Figure 3, we can obtain the profile of the UAVs as
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defined in (13). Since there are four different types of UAV in
the repository, we have four distinctive UAV profiles: P1 =

(35 dBm, 0.36 Km, 0.4 Km), P2 = (39 dBm, 0.57 Km,
0.64 Km), P3 = (43 dBm, 0.91 Km, 1 Km), and P4 =

(50 dBm, 2.04 Km, 2.41 Km), in which the first, second,
and third element refer to their transmit power, optimal flight
altitude, and coverage radius, respectively.

Figure 4 illustrates the optimal resource allocation and 3D
placement of the UAVs for providing maximum coverage
without inter-cell interference in the area of interest. It can
be seen that only 13 UAVs out of the 16 available UAVs
are deployed in the area since deploying more UAVs would
unavoidably cause an interference. Indeed, only a single UAV
with transmit power 43 dBm is employed while the UAVs in
other groups are all utilized.

FIGURE 4. The optimal 3D placement of the UAVs for maximum coverage
area while avoiding inter-cell interference.

Depends on the size and shape of the area of interest as well
as the properties of available UAVs. The optimal deployment
in Figure 4 yields 88.52% coverage percentage in the area.

FIGURE 5. The coverage percentage and the number of deployed UAVs for
different network sizes.

Figure 5 shows the coverage percentage and the number
of deployed UAVs as a function of the network size for a
square area. Clearly, the number of deployed UAVs is not
a monotonically increasing function of the size of the area.
This is due to the heterogeneity of the UAVs and the dis-
parity between their coverage radii. Interestingly, based on
the available UAVs in the repository, the maximum coverage
percentage is achieved for a 10 Km× 10 Km area using only
13 UAVs. However, as the side length of the area increases
to 11 Km, all the 16 UAVs can be deployed without any
inter-cell interference. Therefore, increasing the side length
beyond 11 Km accentuates the resource deficiency as the
coverage percentage monotonically decreases. The type of
deployed UAVs along with their optimal placement is shown
in Table 2. For example, for a 3 Km × 3 Km area, a total
of 6 UAVs are deployed in which 4 UAVs are of the same
type with profile P1 are placed at the horizontal locations
(2.26 Km, 0.4 Km), (0.4 Km, 2.26 Km), (2.43 Km, 1.18 Km),
and (1.18 Km, 2.43 Km). Furthermore, a single UAV with

TABLE 2. Horizontal location of the UAVs.
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profile P2 and one UAV with profile P3 are also deployed
at the horizontal locations (2.19 Km, 2.19 Km) and (1 Km,
1 Km), respectively. This arrangement of the UAVs is the
optimal arrangement satisfying the constraints in (15)-(18)
and yields 71.54% coverage area.
Figure 6 shows the total power usage by the UAV-BSs as

a function of the size of the area for two different values
of the weighting factor ϑ in (14). It can be seen that as the
size of the region of interest increases, the required total
transmission power will increase as well in order to cover
the area. As mentioned before, setting ϑ = 0 is equivalent
to maximizing the total coverage area by the UAVs without
considering the energy efficiency. However, by increasing ϑ
from 0 to 0.02, the power consumption noticeably decreases.
This is due to the fact that increasing ϑ favors deploying
UAVs with smaller transmit power according to the utility
function in (22). However, smaller transmit power results in
smaller coverage radius as well. Therefore, the weighting fac-
tor ϑ captures the trade-off between the power consumption
and the desired coverage percentage which depends on the
shape and size of the area as well as the characteristics of the
available resources in the repository.

FIGURE 6. Total power consumption versus the size of the area for
different values of weighting factor ϑ .

VII. CONCLUSION
This paper developed an effective method for resource allo-
cation and optimal 3D placement of a set of heterogeneous
UAVs acting as flying base stations to provide wireless
coverage for ground users in an area. First, we derived
the optimal flight altitude of the UAVs as a function of
their transmit power and environmental parameters. Then,
to provide the maximum wireless coverage with the available
UAVs, we formulated an optimization problem which jointly
determines the optimal resource allocation strategy along
with the location of the UAVs. The problem is known to
be NP-hard, for which we proposed a novel algorithm to

solve the optimization problem. The proposed algorithm
is composed of two modules. The first module, i.e., the
(MDP) algorithm, finds the set of all feasible solutions to
the optimization problem. The second module exploits an
evolutionary algorithm to intelligently search through the set
of feasible solutions and find the best arrangement of the
UAVs for maximum coverage. Finally, simulation results are
provided, which show the effectiveness of the developed 3D
cell-planning and performance of the proposed algorithm.
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