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ABSTRACT Keyphrase extraction is the task of automatically extracting descriptive phrases or concepts that
represent the main topics in a document. Finding good keyphrases in a document can quickly summarize
knowledge for information retrieval and decision making. Existing keyphrase extraction methods cannot
be customized to each specific document, and cannot capture flexible semantic relations. In this paper,
a keyphrase extraction algorithm using maximum sequential pattern mining with one-off and general gaps
condition, called Ke-MSMING, is presented. Ke_MSMING first searches all keyphrase candidates from a
document using sequential patterns mining and the topic model, and then adopts supervisedmachine learning
to classify each keyphrase candidate as a keyphrase or not. Finally, Ke_MSMING selects top-N keyphrases
as the final keyphrases. Ke_MSMING not only uses baseline features and pattern features but also uses
centrality features obtained from the cooccurrence semantic network, and the cooccurrence networks can
yield powerful semantic relations for keyphrase extraction. Experimental results on two datasets demonstrate
that Ke_MSMING has better performance than other state-of-the-art keyphrase extraction approaches.

INDEX TERMS Keyphrase extraction, sequential pattern mining, general gap constraints, classification.

I. INTRODUCTION
Automatic keyphrase extraction is an important research
direction in text mining, natural language processing and
information retrieval. A keyphrase [1] is an ordered list of
words that captures the thematic or important points dis-
cussed in a document. It is the smallest unit of understanding
text, but it is important because a keyphrase gives us the
flexibility and ease to accurately characterize a document.
Many studies have been conducted to extract high-quality
keyphrases from documents.

Keyphrase extraction usually proceeds in three steps:
keyphrase candidate extraction, ranking/classification, and
postprocessing. In the candidate extraction step, potentially
important phrases are identified and extracted from the doc-
uments. In the ranking/classification step, these candidate
terms are either ranked according to some ranking func-
tion derived from the document structure or classified as to
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whether they represent key terms. In the postprocessing step,
top-k terms from the ranked list (or terms that are classified
as keyphrases) are semantically normalized to yield a set of
phrases so that each denotes a single concept.

The existing methods of ranking/classification mainly fall
into two categories: (1) unsupervised learning-based methods
and (2) supervised learning-based approaches. For unsuper-
vised learning-based approaches, keyphrase selection ranks
keyphrase candidates in terms of a specific measure. For
supervised learning-based approaches, keyphrase selection
is considered a binary classification problem, where each
phrase candidate in a document is determined as a keyphrase
or not. Studies [2], [3] have shown that semantic relations
in context can help improve the performance of keyphrase
extraction, so semantic relations are crucial in extracting a
complete keyphrase candidate set from documents.

The original work on keyphrase extraction simply treats
single words with high frequency as keyphrase candidates.
However, frequency alone cannot capture semantic relation-
ships in the document. Some studies, such as Kea [4], regard
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contiguous frequently occurring n-gram words as keyphrase
candidates. Although a keyphrase candidate has a few con-
tiguous frequently occurring words, it still ignores some
semantic relations in context [5]–[7]. KP-Miner [8] used
sequences of words that do not contain punctuation marks
or stop words as keyphrase candidates. However, to some
extent, KP-Miner cannot capture semantic relations in text,
which often results in unsatisfactory candidates for keyphrase
extraction.

Some studies treat the keyphrase candidate search as a
sequential pattern mining task, where single words of doc-
uments are viewed as characters of sequences and keyphrase
candidates are viewed as patterns. For example, Xie et al. [9]
proposed a method, sequential pattern mining with wildcards
to search keyphrase candidates.Wildcards capable of convey-
ing the semantic meaning of the text are inherently diverse
and flexible. Compared to other approaches, the method of
sequential pattern mining can discover a richer keyphrase
candidate set, which helps to improve the quality of keyphrase
extraction. However, sequential pattern mining usually needs
to manually set the appropriate gap constraints. Additionally,
they need to scan a document multiple times to search for
patterns. Wang et al. [10] proposed a novel algorithm called
KCSP for document-specific keyphrase candidates search
using sequential pattern mining with gap constraints. KCSP
scans a document once to search patterns with automatically
specified gap constraints. KCSP first searches all keyphrase
candidates from the document then ranks them with entropy
(called PF-H), and finally selects top-N keyphrase candidates
as final keyphrases. Although such a pattern-based method
can capture semantic relationships in the document, it only
uses pattern features of the document. Multiple discrimina-
tive features should be used to add inherent robustness and
improve the performance of keyphrase extraction models.

Unsupervised approaches are domain-independent and do
not require labeled training data, while supervised keyphrase
extraction allows for more expressive feature design and
has been reported to outperform unsupervised methods on
many occasions [11]. We found two main reasons for this.
First, usingmultiple discriminative features to rank keyphrase
candidates adds inherent robustness to the models. Second,
the supervision signal helps models to disregard noise. How-
ever, most supervised models cannot capture semantic rela-
tionships between words, and some studies [12]–[14] show
that semantic features improve the performance of keyphrase
extraction. Our general goal in this paper is to explore how
the fundamental keyphrase extraction method can extract
document-specific keyphrases with strong semantic relations.
For this purpose, we develop a supervised learning method
that uses baseline features, pattern features and word cen-
trality features, and it combines sequential patterns discov-
ered from each document with the topic model to extract
keyphrase candidates. Our method can extract high-quality
keyphrases from documents.

The key contributions of this paper are described as
follows:

• In this paper, we present a novel method that first com-
bines sequential patterns discovered from each docu-
ment with the topic model and then adopts supervised
machine learning to extract keyphrases. Discovered
sequential patterns can capture strong semantic relation-
ships between words, rather than the isolated meaning of
individual words. Additionally, topic models can effec-
tively obtain semantic information of documents and
select important topic words or phrases as keyphrase
candidates.

• Word cooccurrence networks and k-core analysis are
novel word centrality features in our study. Word
centrality measures on documents yield a powerful
set of features for keyphrase extraction and to the
best of our knowledge, they have never been used in
document-specific keyphrase extraction.

• We conducted extensive experiments on SemEval-
2010 and INSPEC datasets to evaluate the effectiveness
and efficiency of Ke-MSMING on the proposed prob-
lem.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 introduces sequential pattern
mining with wildcards. Section 4 proposes the techniques
for document-specific supervised keyphrase extraction with
strong semantic relations. Section 5 reports our experimental
results, and we conclude the paper in Section 6.

II. RELATED WORK
The proposed research is closely related to document summa-
rization, keyphrase extraction, and sequential pattern mining.
In the following, we review related work from these three
aspects.

A. DOCUMENT SUMMARIZATION
Document summarization is an important problem that has
many applications in information retrieval and natural lan-
guage processing. There are two types of summarization:
abstractive summarization and extractive summarization.
Extractive methods generate a summary for a document by
directly selecting salient sentences from the original docu-
ment. In contrast, abstractive methods synthesize information
from the input document to generate a summary using natural
language processing techniques.

Most extractive summarization approaches can be
broadly classified into feature-based approaches [15], [16],
graph-based approaches [17], [19] and semantic-based
approaches [20], [21]. For feature-based methods,
Ren et al. [16] presented a deep learning method to model
relationships among sentences for extractive summariza-
tion. They also exploited a set of surface features such as
sentence positions to enrich the knowledge of the method.
For graph-based approaches, they first produced a similarity
graph, in which each node represents a sentence. When
the cosine similarity value between a pair of sentences
exceeds a threshold, these two sentences are connected by
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an edge. Other improved graph-based algorithms have also
been proposed [18], [19], [22]. Semantic-based methods
consider semantics behind the document content to generate
accurate and readable summaries. Latent semantic analysis,
an approach that maps a document to a latent semantic space,
has also been shown to work well for document summariza-
tion [21].

There are some approaches for generating abstractive
summaries, e.g., sentence compression [23] and sentence
merging to rewrite the sentences [24]. After these studies,
the author [25] presented a method Opizer-A to generate
abstractive summaries of opinions. Opizer-A has two phases:
clustering of textual segments and text generation based on
templates.

B. KEYPHRASE EXTRACTION
Keyphrases provide semantic metadata that summarize and
characterize documents. Keyphrase extraction generates key-
words for academic journals, video, audio, and software, and
it is particularly important in the publishing industry for car-
rying out some important tasks, such as the recommendation
of new articles or books to customers, highlighting missing
citations to authors, and identifying potential reviewers for
submissions and the analysis of content trends [26]. Existing
work on keyphrase extraction can be divided into supervised
and unsupervised approaches.

Unsupervised learning-based approaches treat the
keyphrase selection as a ranking task, and they usually assign
a saliency score to each candidate phrase by considering var-
ious features and then extract keyphrases. KeyRank [10] uses
sequential pattern mining to extract proper keyphrases from
a document in English. The difference between KeyRank
and our work is two-fold. First, KeyRank uses unsupervised
approaches to extract keyphrases. Second, all the keyphrase
candidates in KeyRank are frequent words in the document.
Smires et al. [27] focused on the task of extracting keyphrases
from the current document. They used sentence embeddings
to extract keyphrases. You et al. [28] proposed an efficient
core word expansion algorithm to generate candidate phrases
and utilized three group features, position features, statistical
features and granularity-related features, to score phrases.

In supervised learning-based approaches, keyphrase selec-
tion is formulated as a classification task. Many learning
algorithms, such as support vector machines, naïve Bayes
and decision tree, are used to construct a classification
model. GenEx [29] and Kea [4] are two typical supervised
approaches for keyphrase selection. In GenEx, a set of fea-
ture parameters are tuned by a genetic algorithm to max-
imize the performance on a training dataset. Kea utilizes
naïve Bayes algorithm for domain-based keyphrase extrac-
tion. In this method, Kea uses two features, i.e., TF-IDF(term
frequency-inverse document frequency) values and the first
occurrence position of a keyphrase candidate. KeyEx [30]
also uses these two features. The different between KeyEx
and our work is three-fold. First, KeyEx uses baseline fea-
tures and pattern features to extract keyphrases. Second, all

the keyphrase candidates in KeyEx are frequent words of
the document. Third, KeyEx uses sequential pattern mining
with nonnegative gap constraints. Onan et al. [31] combined
classification algorithms with ensemble learning methods
to extract keyphrases. Yang et al. [32] proposed a weakly
supervised learning approach to extract keyphrases. They
considered users’ specific needs and used a few prespecific
seed keyphrases to guide the model.

C. SEQUENTIAL PATTERN MINING
Sequential pattern mining is an important research area in
data mining. Sequential patterns have broad applications[33],
such as decision making [34], air quality monitoring [35],
and web recommender systems [36]. The sequential pat-
tern mining problem was first introduced by Agrawal and
Srikant [37] based on their study of customer purchase
sequences. The studies of sequential pattern mining have
also been extended to cover different types of sequential
patterns. Flores-Garrido et al. [38] proposed an algorithm
for mining frequent patterns in a single graph using inexact
matching. Pang et al. [39] presented an algorithm to mine
distinguishing sequential patterns from data where sequence
elements can be similar to each other, and the associated
patterns are called similarity-aware distinguishing sequential
patterns (simDSP). Yang et al. [40] proposed the kDSP-miner
algorithm to mine top-k distinguishing sequential patterns.
Zhang et al. [41] proposed the CCSpan algorithm to mine
closed sequential patterns.

In recent years, the problem of sequential pattern mining
with wildcards where a wildcard can match any item in the
alphabet has been studied. In [42], a heuristic algorithm,
named dynamically changing node property (DCNP), was
designed based on Nettree. The algorithm mines frequent
sequential patterns with wildcards and a one-off condition
from a sequence database. After this study,Wu et al. [43] pro-
posed sequential pattern mining with periodic gap constraints
using an incomplete Nettree structure. Liu et al. [44] intro-
duced the one-off condition that requires the same position
not to be shared by any two occurrences of a pattern.

In this paper, we also study the problem of mining sequen-
tial patterns with wildcards, but our focus is to apply such
patterns for keyphrase extraction. Intuitively, single words in
a document are the minimum meaningful and independent
units, and a document is an ordered list of words. There-
fore, some studies treat the keyphrase candidate search as
a task of sequential pattern mining with gap constraints,
where single words of documents are viewed as characters
of sequences, and keyphrase candidates are viewed as pat-
terns. Wang et al. [45] and Xie et al. [30] applied sequential
pattern mining with wildcards to search keyphrase candi-
dates (called KCSP and SPMW, respectively). KCSP utilizes
sequential pattern mining with gap constraints to extract fre-
quent sequential patterns. SPMW uses a depth-first pattern
growth strategy based on a data structure, the level instance
graph, to represent all instances of a pattern with a gap
constraint.
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TABLE 1. Comparison of sequential pattern mining algorithms.

We use a sequential pattern mining with gap constraints
algorithm, named MSAING, to search keyphrase candidates.
First, MSAING processes the pattern and sequence using a
reverse strategy to obtain the maximum number of matching
results. Second, it significantly reduces the time and space
overhead with a linear table structure in the matching pro-
cess and improves the matching rate using the backtracking
method. Finally, to further improve the efficiency of the
algorithm, it determines whether internal repetition exists in
the pattern according to the internal checking mechanism.
Please refer to our paper [44] for the specific algorithm
process.

Table 1 presents the sequential pattern mining algorithm
analyzed in this section, indicating for each one the year of
publication, pattern types, whether it uses a one-off condition,
the gap types, and whether it uses wildcards.

III. PROBLEM STATEMENT
In this paper, we formally define the problem of sequential
pattern mining with general gap constraints and one-off con-
ditions.

A sequence S is an ordered list of items, denoted by S =
{(s0s1 · · · si · · · sn−1|si ∈ 6, 0 ≤ i ≤ n − 1)}, where 6 is the
set of all possible items in the sequences and n is the length
of a sequence.

Since a document contains a set of paragraphs, and each
paragraph can be regarded as a sequence, a document can
be viewed as a sequence database, defined as SeqDB =
{S1, S2, · · · SN }. Additionally, single words of documents are
treated as characters of sequences, and keyphrase candidates
are viewed as patterns in this paper.

A wildcard is a symbol that matches any item in
6. A gap is a list of wildcards, whose size refers to
the number of wildcards. A pattern can be represented
as P = {(p0[min0,max0]p1 · · · [minj−1,maxj−1]pj · · ·
[minm−2, maxm−2]pm−1)|pj ∈

∑
}, where m is the length

of the pattern, and [minj,maxj] (minj < maxj) specifies the
minimal and maximal gap sizes between pj and pj+1.

TABLE 2. An example of sequence database SeqDB.

Definition 1 (Pattern Occurrence and Instance): Given
a pattern P = p0p1 · · · pm−1, a sequence S =

s0s1 · · · si · · · sn−1, and gap constraints g[mini,maxi], if there
exists a position sequence occ =< o0, o1, · · · , oj, · · · ,
om−1 > where 0 ≤ j ≤ m− 1, 0 ≤ oj ≤ n− 1 such that
(1) the othj character of the sequence matches with the jth

character of the pattern, that is Soj = pj
(2) any element of the position sequence occ is different

from each other oj−1 6= oj
(3) the gap between the adjacent two elements should

satisfy the gap constraint; that is{
minj−1 ≤ oj − oj−1 ≤ maxj−1, if oj−1 > oj
minj−1 ≤ oj − oj−1 − 1 ≤ maxj−1, if oj−1 < oj

then occ is an occurrence of the pattern P in the sequence S.
If occ =< o0, o1, · · · , oj, · · · , om−1 > is an occurrence of
P in Sj ∈ SeqDB, then (j, < o0, o1, · · · , oj, · · · , om−1 >) is
said to be an instance of P in SeqDB.
Definition 2 (One-Off Condition): Assume occ =

(j, < o0, o1, · · · , ok , · · · , om−1 >), occ, = (j,, <
o,0, o

,
1, · · · , o

,
q, · · · , o

,
m−1 >) is two different instances of

a pattern P in SeqDB. If the positions of any two elements
in these two instances are not the same, we say that the two
instances satisfy the one-off condition.
Definition 3 (Support): The support of a pattern P in a

sequence database SeqDB is defined as the maximal size of
all possible instance sets in which any two instances satisfy
the one-off condition. The support of P is denoted by Sup(P).
If the support of P is not less than a given support threshold,
we say that P is a frequent pattern.
Definition 4 (General Gap Constraints): If pattern P exists

a gap constraint {∃mini < 0|0 ≤ i ≤ m − 1}, then the
gap constraint is called a general gap constraint; otherwise,
the gap constraint is a nonnegative gap constraint.
Example 1: Table 2 shows a sequence database SeqDB =
{S1, S2, · · · SN }. Given a pattern P = ac and a general gap
constraint g[−2,2], (1,<2,1>), (1,<4,6>) are two instances
of P in S1, while (1,<4,1>) and (1,<5,1>) are not instances
ofP because they do not satisfy the gap constraint. (1,<5,6>)
does not satisfy the one-off condition, because position 6 has
been used in (1,<4,6>). The support of P in S1 is 2. In total,
there are ten instances of P in SeqDB satisfying the general
gap constraint and the one-off condition: (1, <2,1>), (1,
<4,6>), (2, <0,1>), (2, <4, 3>), (2, <5,6>), (3, <3,1>),
(3,<4,2>), (3,<5,6>), (4,<0,2>), (4,<4,3>). The support
of P in SeqDB is 10.
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In this paper, we search all keyphrase candidates from
the document using the sequential pattern mining algorithm
where all documents are split into paragraphs. Thus, a doc-
ument can be viewed as a sequence database consisting of
paragraphs. The alphabet is the set of distinct words in the
document. Since the frequency of some important words may
be relatively low, it is unreasonable to consider only the
frequency of the words. Thus, before using sequential pattern
mining, we use a topic model to filter important words and
how to use the topic model is discussed in Section 4.

IV. DOCUMENT-SPECIFIC KEYPHRASE EXTRACTION
The keyphrase extraction process can be divided into
three major steps: preprocessing, sequential pattern min-
ing, and classification for keyphrase extraction. In addi-
tion, these three steps of the keyphrase extraction algorithm
Sp_MSMING are explained in the following subsections, A,
B and C. In subsection D, we expand the basic keyphrase
extraction algorithm Sp_MSMING into an improved algo-
rithm Ke_MSMING based on the LDA topic model. Sequen-
tial pattern mining aims to search all keyphrase candidates
from the document.

A. PREPROCESSING
The main purpose of the preprocessing step is to transform
each document into a sequence database for pattern mining.
The preprocessing task includes removing special characters
in the document, paragraph segmentation, stemming of text,
removal of noisy symbols and deleting stop words. For exam-
ple, we first remove variables, equations and the information
about authors in the preprocessing step. Second, we segment a
document into several paragraphs and regard each paragraph
as a sequence according to the segmentation of the raw doc-
ument. That is, we segment a document into two paragraphs
if the original document has two paragraphs. Then, we delete
the suffix of some words, such as the character ‘s’ in the word
‘tables’, and the string ‘ing’ in the word ‘interesting’. Finally,
we remove stop words according to the list of stop words,
which is often used in the preprocessing step.

We use the Porter stemmer [46] for stemming, and all
characters are changed to lowercase. Stemming gives better
results for keyphrase extraction method.

B. SEQUENTIAL PATTERN MINING
In this section, we devise an efficient algorithm MSMING
(Maximum Sequential pattern Mining wIth oNe-off and
General gaps condition) [44] to search all keyphrase can-
didates from the document. Sequential pattern mining algo-
rithmMSMING extracts a complete keyphrase candidate set.
Since wildcards provide gap constraints with great flexibil-
ity for mining patterns, the keyphrase candidates can cap-
ture semantic relations in the document. However, existing
sequential pattern mining-based approaches use nonnega-
tive gap constraints. In this paper, MSMING uses general
gap constraints. Compared with nonnegative gap constraints,
general gap constraints are more flexible. To enhance the

diversity of the expression of a document, keyphrases tend
to appear in the document with different forms, and the
order of the words in keyphrases often changes. For example,
the keyphrase ‘data mining’ may appear several times in a
document with different forms, such as ‘mining of the data’
and ‘data mining’. Sequential pattern mining with general
gap constraints regards ‘mining of the data’ as an appearance
of the pattern ‘data mining’, while sequential pattern mining
with nonnegative gap constraints does not. Therefore, sequen-
tial pattern mining with general gap constraints can increase
the quality of keyword extraction.

Furthermore, we use a new data structure linear table
to embed the pattern support calculation into the pattern
growth procedure. Different from the level instance graph
used in [30], the linear table represents all instances of a
pattern with the gap constraint, and it can not only ensure
the completeness of mined patterns but also reduce time and
space complexity.

Given a sequence database SeqDB = {S1, S2, · · · , SN },
pattern P = p0p1 · · · pm−1, and the gap constraint
g[mini,maxi](mini ≤ maxi), the linear table of P is defined
as a 2-tuple (P, S), where S is the sequence. A length-m
pattern P is divided into m rows, with the ith (1 ≤ i ≤ m)
row corresponding to the element pi−1. A length-n pattern
S is divided into n columns, with the jth(1 ≤ j ≤ n)
column corresponding to the element sj−1. Assume W1 and
W2 are two respective words of pi−1 and pi; if W1 appears
at the position sj−1 of the sequence S, then (pi−1, sj−1) is
1. If W2 is in the same sequence at the position sj, then
(pi, sj) is 1; otherwise, (pi, sj) is 0. If both (pi−1, sj−1) and
(pi, sj) are 1, and the gap between sj−1 and sj satisfies
the gap constraint, then there is an edge from (pi, sj) to
(pi−1, sj−1).

Table 3 shows an example of MSMING. Given a sequence
S = bcabaac, a pattern P = ac and the gap constraint
g[−2, 2]. Table 3 has two rows, and three elements in the first
row are 1; they are (p0, s2), (p0, s4) and (p0, s5), which means
that the letter ‘a’ appears three times in S, and the locations are
2, 4, and 5, respectively. Two elements in the second row are
1; they are (p1, s1) and (p1, s6), which means that the letter ‘c’
appears at locations 1 and 6. These two elements in the second
row satisfy the gap constraint g [−2, 2] with two elements
in the first row. Therefore, there are two edges (p1, s1) →
(p0, s2) and (p1, s6) → (p0, s4), as shown in Table 3. Two
occurrences (2, 1) and (4, 6) of the pattern P are found. When
searching from element (p1, s6), the occurrence (p1, s6) →
(p0, s5) is not considered because position (p1, s6) was used
in occurrence (p1, s6) → (p0, s4). The detailed MSMING is
described in Algorithms 1 and 2.

Algorithm 1 describes the process for obtaining the set
of frequent sequential patterns FP, that is, the keyphrase
candidates set. From step 2 to 6, each frequent pattern P with
length 1 is selected from SeqDB. Thereafter, from step 7 to
13, the set of frequent sequential patterns with prefix P are
discovered. The support of a sequential pattern is calculated
by calling algorithm 2, as shown in steps 4 and 9.
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TABLE 3. An example of MSMING.

Algorithm 1 MSMING
Input: SeqDB, g = [min,max], min _ sup
Output: the set of frequent sequential patterns FP
1. 6 = {the set of patterns whose length is 1 in SeqDB}
2. for each e ∈ 6 do
3. P = e;
4. sup = Cal_sup(S,P, g); //calculate the support of

pattern P
5. if (sup >= min _ sup) //whether P is a frequent pattern
6. FP = FP ∪ P;
7. for each e ∈ 6
8. P, = P ◦ e;
9. sup, = Cal_sup (S,P,, g);

10. if (sup, >= min _ sup)
11. FP = FP ∪ P,;
12. end if
13. end for
14. end if
15. end for

The main process for calculating support is illustrated in
Algorithm 2. Steps 2 to 4 create a linear table. Steps 5 to 7 use
general gap constraints and one-off conditions to determine
whether a pattern has an occurrence in the sequence. During
the course of searching the occurrence of a pattern, we use a
left-first pattern growth strategy. Steps 8 to 13 count the num-
ber of occurrences of patterns, and set the value of the used
position in the linear table to true according to the one-off
condition.

1) TIME COMPLEXITY
The main process for sequential pattern mining (MSMING)
is illustrated in Algorithm 2. Steps from 2 to 4 create a linear
table, and the time complexity is O(n + lmg), where n is
the length of the sequences, m is the average length of the
pattern, g = max{maxi−mini}(0 ≤ i ≤ m − 2), and l is
the max length of the linear table. Steps from 5 to 7 count
the number of patterns, whose time complexity is O(m2g).
The total time complexity of MSMING is O(n + kmg(l +
m)), k denotes the frequency at which Pm−1 appears in the
sequences.

2) SPACE COMPLEXITY
We need O(lm) to create a linear table. Therefore, the space
complexity is O(lm), where l is the max length of the linear
table and m is the average length of the pattern.

Algorithm 2 Cal_sup(S,P, g)
Input: P = p0p1 · · · pm−1, g = [min,max], S =
s0s1 · · · sn−1
Output: occurrence |P|
1. for i = 0 to i < n
2. if (si = pm−1) then//whether create linear table
3. create linear table; // create linear table
4. flag_table = true;
5. if (flag_table)
6. occ= left-first pattern growth strategy of the table; //

use general gap constraints and one-off conditions
7. end if
8. if (occ)
9. occurrence = occurrence ∪ occ; //count the number

of patterns
10. for j = 0 to m− 1
11. used[occj] = true; //use one-off condition to set

value of the used position true
12. end for
13. end if
14. end if
15. end for
16. return occurrence |P| //output the support of pattern P

C. CLASSIFICATION FOR KEYPHRASE EXTRACTION
1) FEATURES EXTRACTION
In this subsection, we use the discovered sequential patterns
to formulate a supervised classification task for keyphrase
extraction. The keyphrase extraction problem is consid-
ered a binary classification problem, where each candidate
keyphrase in a document is determined as a keyphrase or not.

To train document-specific keyphrase extraction models,
Xie et al. [30] proposed integrating two types of features
into the learning process: (1) baseline features and (2) pattern
features. The former features are commonly used in existing
methods, and the latter are collected from the mined patterns.
However, baseline features and pattern features only show the
statistical information of the words or the patterns, but they
cannot describe the centrality features of the words. Word
centrality features are features defined on word cooccurrence
semantic networks [47], and they can capture the semantic
connections between words.

For each document, we design a cooccurrence semantic
network. The network is constructed by adding all the unique
words as nodes and drawing edges between the adjacent
words in position. Centrality measures on such cooccurrence
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FIGURE 1. Process for designing the cooccurrence semantic network.

semantic networks can yield a powerful set of features for
keyword extraction. Fig. 1 shows the process of designing the
cooccurrence semantic network.

The original document is given in subgraph (a), and the
document in subgraph (b) has been preprocessed by removing
stop words and stemming. From the document in subgraph
(b), by counting the cooccurrence of words, we can construct
a coword matrix, as shown in subgraph (c). Based on the
matrix in (c), we obtain the cooccurrence semantic network
shown in (d).

Word cooccurrence networks and k-core analysis are novel
word centrality features in our study. For each document,
a word cooccurrence network is constructed by adding all
the word types (i.e., unique words) as nodes, and drawing
an edge between the words that occur in the same sequence
satisfying given gap constraints. Word centrality measures on
documents can yield a powerful set of features for keyword
extraction, and to the best of our knowledge, they have never

TABLE 4. Features used to train the keyphrase extraction model.

been used in document-specific keyword extraction. In this
paper, the word centrality features we focus on include degree
and coreness. We integrate three types of features into the
learning process: (1) baseline features, (2) pattern features,
and (3) centrality features, as shown in Table 4.

2) KEYPHRASE EXTRACTION MODEL
We experimented with a number of different machine learn-
ing schemes, and we chose the naïve Bayes technique [48]
to train the keyphrase extraction model because it is simple
and yields good results in Kea [4]. During the classification
phase, the model determines the overall probability that each
candidate is a keyphrase, and then selects the top-k candidates
as extracted keyphrases. The detailed keyphrase extraction
algorithm based on sequential patterns, named Sp_MSMING
is described in Algorithm 3.

The main process of extracting keyphrases is illustrated in
Algorithm 3. The Sp_MSMING mainly fall into two stages:
training phase (steps 1 to 15) and classification phase (steps
16 to 30). Step 3 transforms the document d ′ into SeqDB.
Step 4 calls MSMING (Algorithm 1) to mine all frequent
patterns. Steps 6 to 9 extract the baseline and pattern features
of patterns. Steps 10 to 11 extract the centrality features.
Step 12 combines baseline and pattern features with centrality
features. Step 15 trains the keyphrase extraction model by
using naïve Bayes on the training set. The classification phase
is similar to the training phase. However, in step 27, the clas-
sifier calculates the probability of keyphrase candidates. Step
30 ranks keyphrase candidates according to their probability
value and selects top-k candidates with the highest probability
as keyphrases.

D. KEYPHRASE EXTRACTION BASED ON TOPIC MODEL
In the step of classification for keyphrase extraction, base-
line features, pattern features, and centrality features are
the statistical or centrality information of frequency words.
However, these words may not capture the topics of a docu-
ment. In some documents, the most important words do not
appear frequently. If we only consider the statistical or cen-
trality information of frequency words during the course of
keyphrase extraction, some important words will be missed,
and the extracted keyphrases will not embody the topics of
the document [49]. To improve the correctness of keyphrase
extraction, before using sequential pattern mining, we apply
latent Dirichlet allocation (LDA) [50], [51] to obtain the word
distribution over topics. The generation step is performed in
two smaller steps: training and inference.
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Algorithm 3 Sp_MSMING
Input: the training set D with keyphrases labeled; the
document d for extracting keyphrases; g = [min,max],
min _ sup
Output: the keyphrases extracted from document d
1. // Training phase:
2. for each document d , ∈ D do
3. transform d , into a sequence database; // transform d’

into SeqDB
4. FP, → MSMING; // use general gap constraints and

the one-off condition to mine frequent patterns
5. for each keyphrase candidate kc, ∈ FP, in d , do
6. BF ,kc → extract baseline features from FP, for each

keyphrase candidate kc, in d ,;
7. BF ,[] = BF ,[] ∪ BF ,kc; // extract baseline features
8. PF ,kc → extract pattern features from FP, for each

keyphrase candidate kc, in d ,;
9. PF ,[] = PF ,[] ∪ PF ,kc; // extract pattern features

10. CF ,kc → extract centrality features from FP, for each
keyphrase candidate kc, in d ,;

11. CF ,[] = CF ,[] ∪ CF ,kc; // extract centrality features
12. F ,[] = BF ,[] ∪ PF ,[] ∪ CF ,[]; //combine features
13. end for
14. end for
15. Sp_MSMING ← train keyphrase extraction model

from D by using naïve Bayes on training set F ,[]; //train
keyphrase extraction model

16. // Classification phase:
17. transform d into a sequence database; // transform d into

SeqDB
18. FP → MSMING; // use general gap constraints and

one-off condition to mine frequent patterns
19. for each keyphrase candidate kc ∈ FP in d do
20. BFkc → extract baseline features from FP for each

keyphrase candidate kc in d ;
21. BF[] = BF[] ∪ BFkc; // extract baseline features
22. PFkc → extract pattern features from FP for each

keyphrase candidate kc in d ;
23. PF[] = PF[] ∪ PFkc; // extract pattern features
24. CFkc → extract centrality features from FP for each

keyphrase candidate kc in d ;
25. CF[] = CF[] ∪ CFkc; // extract centrality features
26. F[] = BF[] ∪ PF[] ∪ CF[]; //combine features
27. p(kc) ← calculate probability of kc being a

keyphrase by exploiting the trained naïve Bayes clas-
sifier Sp_MSMING;

28. P[] = P[] ∪ p(kc);
29. end for
30. keyphrases ← select top-k keyphrase candidates with

the highest probability value from P[] as keyphrases;
//extract keyphrases

Training. Given a corpus D consisting of M documents,
LDA assumes that each word W is connected with a latent
topic Z . Each topic Zk , k ∈ {1, 2, · · · ,K } is related to a

FIGURE 2. The model of Ke_MSMING.

multinomial distribution θm, and each θm is chosen from a
Dirichlet prior distribution with parameter α. Sample a topic
Zk according to distribution θm, and then sample a word
according to topic-word distribution φk , which is drawn from
a Dirichlet prior distribution with parameter β. After training,
we obtain a word-topic weight matrix and a document-topic
distribution matrix used for the inference.

Inference. Given a document d, we first choose the top-
k closest topics of d. The closest topics of d are those that
have the highest values in the document-topic distribution
matrix. For each topic, we select the top-n words, which
have the highest weights in the word-topic weight matrix.
As a result, the number of topical words for each document
is |k|∗|n|. The topical model allows our model to select
salient words or phrases that contain important topics in the
document.

Based on LDA and sequential pattern mining, we pro-
pose a keyphrase extraction method Ke_MSMING, which
can capture strong semantic relations between words and
obtain meaningful topics corresponding to contexts for each
extraction. The algorithm model is shown in Fig. 2.

In general, Ke_MSMING can be divided into two stages:
training and classification. The training phase mainly con-
structs the classifier. First, the document is preprocessed; that
is, the words are processed by the stop words list and the
Porter stemmer [46], and each document is converted into a
sequence database SeqDB. Second, before using sequential
pattern mining, we use the topic model to filter important
candidate words. The filtered candidate words capture the
topical meaning of the text. Third, the general gap sequence
pattern mining algorithm MSMING is used to calculate the
frequency of the words, and other features of the frequent
patterns are obtained. Then, for each document, we design
a cooccurrence semantic network, construct a cooccurrence
network by adding all the word types (i.e., unique words) as
nodes, and draw an edge between the words that occur in the
same sequence to satisfy the given gap constraints. Finally,
the naïve Bayes classifier is used to train and construct the
classifier.

The classification phase mainly verifies the performance
of the classifier constructed in the training phase. In the
classification phase, the effectiveness of the algorithm is
calculated by comparing the extracted keyphrases with the
real keyphrases.
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V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The sequential pattern mining algorithm is implemented
in Microsoft Visual Studio 2013 with the language of
C++. Other algorithms are implemented in Java. All
algorithms are implemented on a PC with an Intel(R)
Core(TM)i3-4170 CPU @ 3.70 GHz, 8.0 GB of memory,
running the Windows 7 OS.

B. EXPERIMENTAL DATASETS AND EVALUATION METRICS
To comprehensively experimentally evaluate the performance
of our methods on document-specific keyphrase extraction,
we conduct experiments on two datasets. One dataset is
INSPEC [52], which contains 2,000 abstracts (1,000 for train-
ing, 500 for development, and 500 for testing). For each
abstract, there are two sets of keyphrases: controlledmanually
assigned keywords and uncontrolled manually assigned key-
words. The other dataset is the keyphrase extraction bench-
mark dataset SemEval-2010, which was published by the
ACL SemEval workshop [53]. The dataset includes 244 arti-
cles (144 for training and 100 for testing). For each article,
there are three sets of keyphrases provided: author-assigned
keyphrases, reader-assigned keyphrases, and combined (both
author- and reader- assigned) keyphrases.

To evaluate the predictive performance of keyphrase
extraction methods, precision (P), recall (R), and the
F1-measure are utilized as the evaluation metrics. They are
defined as follows:

P =
#correct
#extracted

(1)

R =
#correct
#labeled

(2)

F1 =
2 ∗ P ∗ R
P+ R

(3)

where #correct denotes the number of correctly extracted
keyphrases, #extracted is the number of extracted keyphrases,
and #labeled denotes the number of labeled keyphrases. The
values of P and R are between 0 and 1. The closer the value
is to 1, the higher the precision or recall rate will be. The
F1 value is the harmonic mean of P and R.

C. BASELINE
In the experiment, we compare the performance of
Ke_MSMING with different keyphrase extraction methods
(supervised based approach KeyEx [30], unsupervised based
approaches KeyRank [45] and TextRank [47]). These meth-
ods are also the compared methods in [10].

D. FEATURE ANALYSIS
For comparison, we divide the baseline features, pattern fea-
tures and centrality features into five different groups:

I: sup∗len+ pos
II: sup∗len+ degree
III: sup∗len+ coreness
IV: closedNum + pos
V: TFIDF + pos

FIGURE 3. The precision of five groups of features with respect to
different numbers of keyphrases.

FIGURE 4. The recall of five groups of features with respect to different
numbers of keyphrases.

In order to prove that the composite features are superior to
the baseline features, we divide features into five groups. The
pattern features occur in the first four groups. The centrality
features are in the second and third groups. The baseline
features are in the first, fourth and fifth groups. The features
in the last group are only baseline features, and the first
four groups are the composite features. The pattern features
combine with baseline features or centrality features to form
composite features. The following experimental results show
that the composite features are superior to the baseline fea-
tures. We first compare the five different features groups on
the dataset SemEval-2010 in terms of P, R, and F1 scores, and
the results are shown in Fig. 3, Fig. 4 and Fig. 5, respectively.
Then, we further compare the baseline features, the baseline
and pattern features, and the baseline, pattern and central-
ity features on SemEval-2010 dataset in terms of P, R, and
F1 scores, and the results are shown in Fig. 6, Fig. 7 and Fig. 8,
respectively. They report the performances of different groups
of features with respect to different numbers of extracted
keyphrases.

The results in Figs. 3-5 suggest several key observations.
The first four groups perform significantly better than the last
group. It appears that pattern features and centrality features
are both more important than baseline features. Second, when
the number of extracted keyphrases increases, the precision of
the five curves decreases (see Fig. 3). In addition, we notice
that the recall of the five curves increases when the number of
extracted keyphrases varies from 3 to 25 (see Fig. 3) because,
with the increment of the number of extracted keyphrases,
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FIGURE 5. The F1-measure of five groups of features with respect to
different numbers of keyphrases.

FIGURE 6. The precision of five groups of features with respect to
different numbers of keyphrases.

FIGURE 7. The recall of five groups of features with respect to different
numbers of keyphrases.

more correct keyphrases are extracted, which increases the
recall value. However, the growth rate of the number of cor-
rectly extracted keyphrases is less than that of the number of
extracted keyphrases. As a result, the precision decreases. The
F1-measure is a combined measure integrating both precision
and recall values. F1-measures of the five curves increase
when the number of extracted keyphrases is small (see Fig. 5),
and then slightly decreases with the increase in the number of
extracted keyphrases.

Baseline features and pattern features are commonly used
in existing methods. However, they only show the statisti-
cal information of the words or patterns. Centrality features
can accurately capture their semantics in the context of the
document, and therefore can improve keyphrase extraction
quality. Fig. 6, 7 and 8 report the performances of each group

FIGURE 8. The F1-measure of five groups of features with respect to
different numbers of keyphrases.

FIGURE 9. The F1-measure of whether using LDA or not with respect to
different numbers of keyphrases.

FIGURE 10. The F1-measure of different classifiers with respect to
different numbers of keyphrases on the dataset SemEval-2010.

of features in the SemEval-2010 dataset. We notice that the
curve of the baseline and pattern features is much better
than the baseline curve. The baseline, pattern and centrality
features curve always performs better than the baseline and
pattern features curve, which is reasonable because compared
with the pattern and centrality features, baseline features do
not contain enough characteristics to distinguish keyphrases
from nonkeyphrases.

E. TOPIC MODEL ANALYSIS
Fig. 9 reports the F1-measure using (or not) the LDA topic
model on the SemEval-2010 dataset. We notice that the
performance of Ke_MSMING (using the LDA topic model)
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FIGURE 11. The F1-measure of different methods with respect to
different numbers of keyphrases on the dataset SemEval-2010.

is much better than that of the Sp_MSMING (not using
the LDA topic model). Before sequential pattern mining,
Ke-MSMING uses the LDA topic model to train the docu-
ments and selects salient words or phrases that contain impor-
tant topics in the document. While Sp_MSMING extracts
keyphrase candidates directly with sequential pattern mining,
the keyphrases extracted by Ke-MSMING embody more top-
ical information of the documents and the F1-measure value
is higher than Sp-MSMING.

F. CLASSIFICATION ALGORITHM COMPARISON
Fig. 10 reports the performance of Ke_MSMING using dif-
ferent classification algorithms, including naïve Bayes, J48,
random forest, and SVM. We use the open source machine
learning software Weka [54]. It can be seen from Fig. 10 that
the highest (best) classification F1-measure value is obtained
by the naïve Bayes classifier, and this is in accordance with
the result in reference [4].

G. COMPARISON WITH OTHER KEYPHRASE EXTRACTION
METHODS
The experimental results on the dataset SemEval-2010 and
INSPEC are shown in Fig. 11 and Fig. 12. From Fig. 11 and
Fig. 12, we can see that Ke-MSMING performs significantly
better than TextRank, KeyRank and KeyEx. The main reason
is Ke-MSMING exploits LDA and sequential pattern mining
to obtain keyphrase candidates and uses several features, such
as baseline features, pattern features and centrality features
to train the keyphrases extraction model. The keyphrases
extracted with Ke-MSMING capture more semantic meaning
of the documents.

In Fig. 11, when the number of extracted keyphrases
is 7, Ke-MSMING performs significantly well. However,
in Fig. 12, it achieves the optimal value when the number
of extracted keyphrases is 5, mainly because the dataset
INSPEC only contains titles and abstracts, whereas the
dataset SemEval-2010 contains whole documents.

To compare the experimental results of the proposed algo-
rithmwith those of its comparison algorithms in two datasets,
student’s t-test with a saliency level of 5% is adopted.
When Ke-MSMING is compared with other algorithms, the

TABLE 5. P-value of Student’s T-test results (Bold indicates that P-value
is greater than 0.05).

FIGURE 12. The F1-measure of different methods with respect to
different numbers of keyphrases on the dataset INSPEC.

FIGURE 13. The F1-measure with respect to different numbers of support
threshold on the dataset SemEval-2010.

performance of Ke-MSMING is inferior to or equal to that of
its comparison algorithms and is taken as a zero hypothesis.
In addition, the performance of Ke-MSMING is better than
that of the contrast algorithms and is taken as an alterna-
tive hypothesis. From Table 5, it can be seen that only one
P-value of Ke-MSMING and each comparison algorithm on
two datasets is greater than 0.05 (i.e., supporting the original
hypothesis). Comprehensive analysis shows that the perfor-
mance of Ke-MSMING is better than other algorithms.

H. PARAMETER ANALYSIS
In this experiment, we examine the influence of several
parameters, including the support threshold, the maximal
gap size, the topic number and the number of extracted
keyphrases on keyphrase extraction performance. For this
purpose, we test our method varying the value of one param-
eter, but fix all the other parameters values.

The resulting F1-measure of the support threshold and
that of the maximal gap size are summarized in Fig. 13 and
Fig. 14, respectively. We first let the maximal gap size be
9 and then vary the support threshold from 2 to 8, and report
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FIGURE 14. The F1-measure with respect to different numbers of
maximal gap size on the dataset SemEval-2010.

FIGURE 15. The F1-measure with respect to different numbers of topics
on SemEval-2010.

FIGURE 16. The precision with respect to different numbers of topics on
INSPEC.

the F1-score value in Fig. 13. According to Fig. 13, with
the support threshold increasing, the performance gradually
improves. However, when the support threshold is above 3,
the F1-measure score reaches the peak, and then it decreases
with the increase in the value of the support threshold.
Another important parameter is the maximal gap size. We set
the support threshold to 3, and then vary the maximal gap
size from 3 to 30, and report the F1-score values in Fig. 14.
Intuitively, the curve reaches the peak when the maximal gap
size is set to 10. When the gap size is above 10, the F1-
measure score remains unchanged.

The resulting F1-measure on SemEval-2010 with respect
to the different number of topics is shown in Fig. 15. We first
let the maximal gap size be 9, the support threshold be 3 and

FIGURE 17. The recall with respect to different numbers of topics on
INSPEC.

FIGURE 18. The F1-measure with respect different numbers of topics on
INSPEC.

the number of extracted keyphrase words be 7. According to
Fig. 15, with the topic number increasing, the performance
gradually improves. However, when the topic number is
above 10, the F1-measure score reaches the peak and then,
it decreases with the increase in the topic number.

Fig. 16, 17 and 18 report the performance of different
numbers of topics on the INSPEC dataset. The precision
related to the topic number is illustrated in Fig. 16.We first let
the maximal gap size be 9, the support threshold be 2 and the
number of extracted keyphrases be 4. According to Fig. 16,
the performance gradually improves when the topic num-
ber grows. However, when the topic number is above 200,
the precision reaches the peak, and then, it decreases with
the increase in the topic number. In Fig. 17, when the topic
number increases, the recall gradually improves. However,
when the topic number is above 200, the recall reaches the
peak, and then, it decreases with the increase in the topic
number. In Fig. 18, with the topic number increasing, the
F1-measure score gradually improves. However, when the
topic number is above 200, the F1-measure score reaches
the peak, and then, it decreases with the increase in the topic
number.

Fig. 19 reports the F1-measure with respect to different
numbers of extracted keyphrases on INSPEC. We first let the
maximal gap size be 9, the support threshold be 2, and the
topic number be 200. According to Fig. 19, with the number
of extracted keyphrases increasing, the performance grad-
ually improves. However, when the number of keyphrases
extracted is above 3, the F1-measure score reaches the peak,
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FIGURE 19. The F1-measure with respect to different numbers of
extracted keyphrases on INSPEC.

and then, it decreases with the increase in the number of
extracted keyphrases.

VI. CONCLUSION
In this paper, we propose a new approach Ke-MSMING for
keyphrase extraction. Ke-MSMING is a document-specific
keyphrase extraction algorithm using topic model and
sequential pattern mining with general gap constraints. Two
main problems have been solved. The first is how to improve
the quality of extracted keyphases. The second is how to
capture semantic relationships between words. To solve these
two problems, we use LDA and sequential pattern mining
with different general gap constraints to discover a rich set
of keyphrase candidates for each individual document, and
further use a supervised learning approach to build a clas-
sification model for keyphrase extraction. To improve the
classification efficiency, we integrate three types of features
into the learning process: (1) baseline features, (2) pattern
features, and (3) centrality features. To consider the topics
of documents in the step of searching keyphrase candidates,
we use topic model LDA before using sequential pattern min-
ing. Experiments demonstrate that the proposed keyphrase
extraction method is effective in improving the quality of
extracted keyphrases. Currently, deep neural networks are
being used for keyphrase extraction, as they can obtain an
effective representation of text. In the future, we will extend
our work to apply deep neural networks to obtain word
embeddings of keyphrase candidates to improve the accuracy
of keyphrase extraction.
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