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ABSTRACT Motivated by the increasing practical needs for simulation optimization of modern indus-
trial systems, this paper proposes an efficient ranking and selection (R&S) procedure for selecting the
best-simulated design from a finite set of alternatives in the presence of large stochastic noise. To obtain the
correct selection under a limited simulation budget, the proposed procedure sequentially allocates the budget
to minimize the evaluated uncertainty values of the selection through a two-step process based on the existing
uncertainty evaluation (UE) procedure. This two-step process reduces the inefficiency of the underlying
UE procedure while keeping its high robustness to noise, thereby achieving improved the efficiency for
the proposed procedure in a noisy environment. This improved efficiency is demonstrated in comparative
experiments with other R&S procedures on several benchmark problems. In particular, the experimental
results of three practical optimization problems emphasize the necessity of the proposed procedure.

INDEX TERMS Discrete-event system, high robustness to noise, optimization, ranking and selection,
stochastic simulation.

I. INTRODUCTION
Discrete-event system simulation plays a key role in eval-
uating, analyzing, and optimizing the performance of mod-
ern industrial systems such as the telecommunication [1],
military [2], manufacturing [3], smart grid [4], and trans-
portation [5] systems, which scarcely meet the assumptions
of closed-form analytic models [6]. However, conducting a
simulation experiment can be expensive and time-consuming.
Let a configuration of decision variables in the system be
referred to as a design. Since simulations typically involve
a stochastic noise to reflect the randomness and uncertainty
of the real-world, many replicated simulations for one design
are necessary to reduce noise and estimate the mean per-
formance of the design. Suppose N simulation replications
are required to obtain a precise estimation (i.e., the sample
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mean) of the performance for each design, and suppose k
designs are given. Then, the total number of simulation repli-
cations T required for this experiment is kN . If the number
of feasible designs is large (i.e., k is large) and the stochastic
noise is large (i.e., N should be large to meet the precision
requirement), T can be very large; this may easily result in
a prohibitively high cost for the simulation experiment and
preclude the use of simulation [7].

There are a variety of ways to reduce the cost of simulation
experiments, but if k is less than a few thousand, it falls into
the area of statistical ranking and selection (R&S) [8]. Instead
of assigning the same number of simulation replications
to all designs blindly, R&S procedures make an intelligent
allocation. That is, based on the statistical inferences for
the current simulation results of designs, R&S procedures
allocate the replications to each design differently in order to
select the best one correctly, thereby reducing the necessary
cost dramatically.
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Thus far, various R&S procedures have been proposed.
Kim and Nelson [9] proposed the two-stage indifference-
zone (IZ) procedure to achieve a prespecified lower bound
guarantee of the probability of correct selection P{CS} from
the frequentist perspective. On the other hand, Chick and
Wu [10] presented another IZ procedure that provides an
upper bound guarantee of the expected opportunity cost
E[OC], of a potentially incorrect selection. In addition,
Chick and Inoue [11], [12] suggested the two-stage Bayesian
procedure to minimize E[OC] based on the IZ procedure.
Chick et al. [13] eliminated several approximations used
in the previous Bayesian procedure and proposed a
small-sample procedure that allocates a few replications
sequentially. Chen et al. [14] presented the well-known opti-
mal computing budget allocation (OCBA) procedure to maxi-
mize P{CS} under a simulation budget constraint. It allocates
further replications sequentially according to the optimal rule
that asymptotically maximizes an approximated lower bound
of P{CS}. Instead of maximizing P{CS}, He et al. [15] pro-
posed an OCBA-EOC procedure that sequentially minimizes
E[OC] by using the OCBA approach to selection. (cf. [16] for
extensive empirical comparisons of these R&S procedures.)

Recently, Choi and Kim [17] proposed the uncertainty
evaluation (UE) procedure to resolve practical simulation
optimization problems involving large stochastic noise effi-
ciently. Similar to the OCBA procedure, the UE proce-
dure also aims to maximize P{CS} under a limited number
of replications. Applying the statistical hypothesis test and
the p-value, it evaluates a measurement for each design
called uncertainty that indicates the degree to which the cur-
rent simulation results are significant evidence for verifying
the correct selection. Then, it sequentially allocates further
replications according to the evaluation results to maximize
P{CS}. In contrast with the OCBA procedure, which uses
only the sample mean and variance values of the design for
the allocation, theUE procedure considers the precision of the
sample mean by using the number of replications assigned so
far for each design additionally. Consequently, in the presence
of large stochastic noise, the UE procedure can prevent the
waste of replications caused by a poor value of the sample
mean and improve P{CS}; this has been demonstrated in
several practical case studies [18]–[20].

While theUE procedure has high robustness to noise, it still
suffers from the drawback of inefficiency caused by heuristics
in the uncertainty evaluation for each design. As a direct
example to show this, consider the simple problem of select-
ing the better of two design alternatives under limited repli-
cations. The UE procedure allocates the replications equally
to both designs, like as the most inefficient equal allocation.
The reason is that the evaluations of the uncertainty of the two
designs are the same regardless of their current simulation
results (see Section III-A for details). Theoretically, the opti-
mal allocation that maximizes P{CS} for this problem is to
allocate the replications depending on the variance of each
design [8]. That is, the fact that the UE allocation does not
converge to the theoretical optimal allocation in this example

implies that there is room to further improve the efficiency of
the UE procedure.

Recently, the increasing stochastic noise due to the higher
complexity of systems has made simulation optimization
more expensive. To deal with this problem efficiently, we pro-
pose an improvedR&S procedure based on theUE procedure.
The proposed procedure increases efficiency by improving
the inefficiency of the previous procedure through a two-
step sequential allocation process. Here, this two-step process
differs from the two-stage IZ procedure in that it does not
include elimination [9]. Compared with the UE procedure,
the proposed procedure converges to the theoretical optimal
allocation in the two-design case and is more efficient in the
presence of large stochastic noise. We present experimental
results of a comparison with other R&S procedures through
practical simulation optimization problems as well as a series
of numerical benchmarks.

The rest of the paper is organized as follows: Section II
defines the problem in detail, and Section III proposes the
R&S procedure. Section IV exhibits the experimental results.
Finally, the conclusion is given in Section V.

II. PROBLEM DEFINITION
We use the following notations in this paper, where a bold
typeface notation represents a vector.

T Total number of simulation replications.
k Number of design alternatives.
xi Design (i.e., simulation input), where the subscript i

represents the design index, i ∈ {1, . . . , k}.
2 Set of feasible designs, 2 = {x1, x2, . . . , xk}.
Yij Simulation output of xi in the jth replication, where

Yij ∼ N
(
µi, σ

2
i

)
.

µi Mean of Yij (i.e., the performance of xi),
µi = E

[
Yij
]
.

σ 2
i Variance of Yij, σ 2

i = Var
[
Yij
]
.

Ni Number of output samples (i.e., number of
allocated replications at xi).

µ̄i Sample mean of Yi1, . . . ,YiNi (i.e., the estimated
performance of xi),
µ̄i = 1

/
Ni
∑Ni

j=1 Yij∼N
(
µi, σ

2
i

/
Ni
)
.

s2i Sample variance of Yi1, . . . ,YiNi ,

s2i =
∑Ni

j=1

(
Yij − µ̄i

)2/
(Ni − 1) .

We assume that the distribution of simulation output fol-
lows a normal distribution and that every output is indepen-
dent across different replications and designs. This normality
assumption is reasonable in practice because the output is typ-
ically obtained as an average value or batch means in stochas-
tic simulations and thus the central limit theorem holds [8].
In addition, in contrast to the assumptions commonly used
in R&S literature, we suppose that the variance of the output
is unknown. That is, the proposed procedure can be effective
in practical situations where no prior knowledge of the mean
and variance of each design is given.
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Assuming that a lower value is better in the performance
of a design, the simulation optimization problem is defined
as follows:

xb = argmin
xi∈2

µi, (1)

where xb is the best design, which we have to select from 2.
This assumption can be made is without loss of generality
since the proposed procedure is equally applicable to max-
imization problems, as are many R&S procedures that start
from a minimization problem (see the practical case studies
in Section IV-B).

However, in practice, the exact value of µi in (1) cannot be
obtained; thus, we inevitably select the estimated best design
xe based on the sample mean µ̄i,

xe = argmin
xi∈2

µ̄i. (2)

Then, the accuracy of this selection, P{CS} is defined as

P {CS} = P {xe = xb}
= P {µe < µi, i 6= e, and i = 1, . . . , k} . (3)

As the precision of µ̄i increases through many simulation
replications, P{CS} can increase to 1; however, our objective
is to maximize P{CS} under a limited simulation budget T
in order to improve the efficiency of simulation. The R&S
problem for achieving this objective is given as

argmax
N1,...,Nk

P {CS}

such that
∑k

i=1
Ni = T and Ni ≥ 0. (4)

Here, the constraint
∑k

i=1 Ni = T implicitly assumes that the
simulation cost of each replication is roughly the same across
designs.

III. PROPOSED PROCEDURE
As mentioned previously, this paper proposes an improved
R&S procedure based on the UE procedure to solve the
problem defined in (4). The first subsection briefly introduces
the underlying UE procedure and the drawback of its inef-
ficiency. Then, the improved procedure will be proposed in
the second subsection.

A. THE UE PROCEDURE
A statistical hypothesis test statistically verifies the compar-
ative relationship between unknown values µi and µj via the
p-value calculated using the observed statistical data such as
µ̄i, µ̄j, si, sj, Ni, and Nj. For example, the test for verifying
µi > µj is as follows:

H0 : µi ≤ µj, HA : µi > µj. (5)

H0 is the null hypothesis, andHA is the alternative hypothesis,
which is the relationship to be verified. The p-value for this
test, εi,j can be calculated as

εi,j=Fν
((
µ̄j − µ̄i

)/
si,j
)

where si,j=

√
s2i
/
Ni + s2j

/
Nj.

(6)

The function Fν (·) is the cumulative distribution function
(CDF) of the t-distribution with ν degrees of freedom, where
ν can be defined as

ν =

 s4i,j(
s2i
/
Ni
)2/

(Ni − 1)+
(
s2j
/
Nj
)2/(

Nj − 1
)
 . (7)

The p-value εi,j is defined as the probability of obtaining
the currently observed data or more extreme data than the cur-
rent data under the assumption that H0 is true. Here, extreme
means less likely to be obtained under this assumption. In the
framework of the hypothesis test, εi,j indicates the degree
to which the observed data can be considered significant
evidence to verify µi > µj. That is, a small value of εi,j close
to zero means that it is very unlikely (or almost impossible)
for the current data to be observed when H0 is true; thus,
this actually observed data can be regarded as significant
evidence to reject H0 and accept HA as true. On the other
hand, a relatively large value of εi,j close to 0.5 indicates that
the data cannot be considered evidence to verify µi > µj,
as it is probable for such data to be obtained when H0 is true.
In this case, it is uncertain whether µi > µj is true [21].
Using such features of the hypothesis test and p-value,

the UE procedure evaluates the uncertainty of each design
as the criterion for allocating further replications. The uncer-
tainty of a design is defined as the maximum p-value for the
comparative relationships between that design and the others
that must be verified for the correct selection of the design.
Similar to the p-value, the uncertainty indicates the degree to
which the simulation data of the design that has been obtained
can be statistically significant evidence that the selection of
the design is correct (cf. [17]).

For example, supposing that x1 is selected as the estimated
best design of the three designs: x1, x2, and x3, the following
comparative relationships should be verified for the correct
selection of x1: µ2 > µ1 and µ3 > µ1. Thus, the uncer-
tainty of x1 is defined as the maximum value of ε2,1 and
ε3,1 for verifying each relationship. A small value close to
zero indicates that the observed data of x1 can be considered
significant evidence to statistically confirm that x1 is the best
design since the data are significant evidence for verifying
both relationships. On the other hand, a relatively large value
close to 0.5 means that at least one relationship is uncertain,
based on the data. That is, the selection of x1 is also uncertain,
so more replications should be allocated to update the data of
x1 so that it can be considered significant evidence.
However, the uncertainty evaluation of the UE procedure

involves heuristics that may result in inefficient allocation,
which is to evaluate a single design using the p-value in (6)
that has been calculated with the observed data of both
designs. In other words, the evaluated uncertainty of the
design indicates not only the significance degree of this
design’s data, but also that of another design’s data. When the
evaluated value is small, it does not have a significant impact
on the allocation, but as the value becomes higher it may
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lead to inefficient allocation. In the example above, suppose
that x1 and x3 have already been allocated many replications,
so that µ̄1 and µ̄3 are quite accurate, whereas x2 has not been
allocated replications and hence its observed data are insuf-
ficient. Due to the inaccurate value of µ̄2, the uncertainty of
x1 (i.e., ε2,1) is assigned a high value, and thus x1 is allocated
further replications due to its high uncertainty. However, this
additional assignment to x1 is excessive allocation that wastes
the limited replications that should be allocated to x2. In short,
the UE procedure does not fully exploit the nature of the
p-value. The inefficient even allocation in the two-design case
mentioned in the introduction also results from this.

B. THE IMPROVED R&S PROCEDURE
To improve such inefficiency, the proposed procedure
allocates further replications through a two-step process.
Applying the UE procedure, the first step assigns further
replications depending on the evaluated uncertainty for each
design. However, it allocates the replications to the pairs
of designs involved in the uncertainty to fully exploit the
p-value. Then, in the second step, the allocated replications at
each pair are finally distributed to the two designs tominimize
the uncertainty.

1) THE FIRST STEP
Depending on the definition of uncertainty, the uncertainty
of each design is evaluated as follows. For k − 1 designs that
are not selected as the estimated best design xe, µi > µe
should be verified for the correct selection of each xi (i.e.,
∀i∈ {1, . . . , k} and i 6= e: xi 6= xb ⇐ µi > µe); thus,
the uncertainty of xi is evaluated as εi,e. On the other hand,
for the estimated best design xe, µi > µe should be verified
for the remaining k − 1 designs for the correct selection of
xe (i.e., xe = xb ⇐ (µ1 > µe) ∧ · · · ∧ (µi > µe) ∧ · · · ∧

(µk > µe) , i 6= e); thus, the uncertainty of xe is evaluated as
the maximum among the values of εi,e for each µi > µe (i.e.,
max

(
ε1,e, . . . , εi,e, . . . , εk,e

)
).

The first step in applying the UE procedure allocates fur-
ther replications to each design depending on its evaluated
uncertainty. That is, this step allocates more replications to
designs with relatively larger uncertainty based on the mean-
ing of the uncertainty. However, in contrast with the UE
procedure, the allocated replications at each design in the first
step are considered to be temporarily assigned to a pair of
designs involved in its uncertainty. As mentioned before, the
evaluated uncertainty of a design indicates the significance
degree not only of this design’s data but of both designs’ data,
based on the nature of the p-value in (6). To make the most
of the characteristic of the p-value, the first step temporarily
allocates additional replications to the pair of xi and xe rather
than allocating additional replications to xi depending on εi,e,
the uncertainty of xi calculated with the data of both xi and
xe. These allocated replicationswill finally be distributed to xi
and xe to minimize εi,e in the second step, thereby improving
the inefficiency of the UE procedure.

Given the number of further replications 1, the number
of allocated replications, ai,e, for each pair of xi and xe
depending on the value of εi,e in the first step, is calculated
as follows [17]:

ai,e
/
aj,e = εi,e

/
εj,e

where

i, j ∈ {1, . . . , k} , i 6= j 6=e, and 1=
∑k

i=1,i 6=e
ai,e. (8)

Here, Equation (8) involves a small adjustment that excludes
the uncertainty of xe from the allocation of1, in contrast with
the UE procedure. Since the uncertainty of xe is defined as
max

(
∀i 6= e : εi,e

)
, the assignment to xe depending on this

uncertainty is considered a redundant allocation to one pair
of xi and xe in the first step that results in inefficiency. Thus,
the uncertainty of xe is not used in (8). Because of this, even
if xe is not allocated further replications in the first step, it can
be allocated sufficient replications tominimize its uncertainty
through the second step.

2) THE SECOND STEP
Using Bonferroni’s inequality, an approximated lower bound
of P{CS} (APCS) can be defined as follows [14]:

P {CS} = P


k⋂

i=1,i 6=e

(µ̃i > µ̃e)


≥ 1−

k∑
i=1,i 6=e

[
1− P {µ̃i > µ̃e}

]
≡ APCS. (9)

Here, P {µ̃i > µ̃e} is the posterior probability of µi > µe
based on the observed data. Under the noninformative prior
assumption mentioned in Section II, the results of Bayesian
and frequentist inference have the same value [22]. That is,
the value of 1−P {µ̃i > µ̃e} is equal to the value of εi,e; thus,
the APCS in (9) can be rewritten as follows:

P {CS} ≥ 1−
∑k

i=1,i 6=e
εi,e. (10)

As a result, P{CS} can be maximized when the uncertainty of
each xi other then xe is minimized to zero. In the second step,
the additional replications temporarily allocated to each pair
xi and xe in the previous step, ai,e are optimally distributed
between both designs to minimize each εi,e.

Let ai and ae be the number of further replications dis-
tributed to xi and xe, respectively, in the second step (i.e.,
ai+ae = ai,e). Then, the minimization problem of the second
step is defined as follows:

argmin
ai,ae

(
εi,e

∣∣ai,ae )
such that ai + ae = ai,e and ai, ae ≥ 0, (11)

where εi,e|ai,ae is the change of εi,e according to the further
allocation of ai and ae. Unfortunately, a closed-form expres-
sion for εi,e|ai,ae cannot be obtained since the simulation
outputs of xi and xe for the additional allocation of ai and ae
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cannot be predicted. However, if ai and ae are not too large
compared to Ni and Ne, the number of allocated replications
to xi and xe so far (i.e., ai � Ni and ae � Ne), it can
be assumed that the statistical data of both designs will not
change too much after conducting further simulations. That
is, the observed data after further simulations of ai and ae
for each design can be reasonably expected to µ̄i, µ̄e, si, se,
Ni + ai, and Ne + ae; thus, εi,e|ai,ae can be approximated
using (6) and (7) as follows:

εi,e
∣∣ai,ae ≈ Fν

 µ̄e − µ̄i√
s2i
/
(Ni + ai)+ s2e

/
(Ne + ae)


where

ν =

(s2i /(Ni + ai)+ s2e/(Ne + ae))2(
s2i
/
(Ni+ai)

)2
(Ni+ai−1)

+

(
s2e
/
(Ne+ae)

)2
(Ne+ae−1)

. (12)

Based on (12), the problem given in (11) can be approximated
as follows:

argmin
ai,ae

Fν

 µ̄e − µ̄i√
s2i
/
(Ni + ai)+ s2e

/
(Ne + ae)


such that ai + ae = ai,e and ai, ae ≥ 0. (13)

A lower bound for the degree of freedom ν in (12) is defined
as min (Ni + ai − 1,Ne + ae − 1) [23]. Due to the nature of
the R&S procedure, every design is allocated initial repli-
cations of n0 to obtain the minimum data for the additional
allocations, where n0 has a value of 10 or more by default
(see the next subsection in detail). That is, Ni and Ne are
greater than 10; thus, it can be supposed that ν is at least as
large as 10 depending on its lower bound. The CDF of the
t-distribution with ν = 10 is almost the same as that of the
function with ν → ∞ (i.e., the CDF of the standard normal
distribution8(·)). Actually, the cosine similarity between the
two functions is 0.9987. That is, the impact of varying ν based
on ai and ae on Fν (·) is insignificant. As a result, we neglect
this to simplify the problem. Since Fν (·) is a monotonically
increasing function and µ̄i is always larger than µ̄e (i.e.,
µ̄i > µ̄e), the problem in (13) can be simplified as follows:

argmin
ai,ae

s2i
Ni + ai

+
s2e

Ne + ae
such that ai + ae = ai,e and ai, ae ≥ 0. (14)

Plugging the constraint ae = ai,e − ai into (14), we have,

argmin
ai

s2i
Ni + ai

+
s2e

Ne + ai,e − ai
such that 0 ≤ ai ≤ ai,e.

(15)

Let s2i
/
(Ni + ai) + s2e

/ (
Ne + ai,e − ai

)
in (15) be the

function g (ai). Since g (ai) is twice continuously differen-
tiable and its second derivative is nonnegative in the interval(
−Ni,Ne + ai,e

)
involving the constraint of ai, g (ai) is a

strictly convex function on this interval; thus, a solution c

that minimizes g (ai) exists within this interval and can be
obtained as follows:

c =
si
(
Ne + ai,e

)
− seNi

si + se
. (16)

Hence, depending on the constraint of ai in (15), an optimal
solution of (15) can be defined as follows:

ai =


0 c ≤ 0
c 0 < c < ai,e
ai,e ai,e ≤ c.

(17)

The results are summarized as the optimal allocation rule of
the second step in the following theorem.
Theorem 1: For the further replications ai,e allocated to

the pair xi and xe, the uncertainty of each xi, εi,e can be
approximately minimized by distributing ai,e to xi and xe as
follows:

ai = 0 and ae = ai,e c ≤ 0

(Ni + ai)
/
(Ne + ae) = si

/
se 0 < c < ai,e

ai = ai,e and ae = 0 ai,e ≤ c.

(18)

In summary, the number of given further replications 1
is allocated to each design through applying (8) in the first
step and (18) in the second step sequentially. Let δi denote
the number of additional replications assigned to a design
xi via the two-step process (i.e., 1 =

∑k
i=1 δi). For k − 1

designs that are not selected as the estimated best design xe
(i.e., i 6= e), δi is calculated as follows according
to (8) and (18):

δi = min

(
max

([(
ai,e + Ni + Ne

)
si

si + se

]
− Ni, 0

)
, ai,e

)
,

where

i 6= e and ai,e = 1 · εi,e

/∑k

j=1,j 6=e
εj,e. (19)

On the other hand, for the estimated best design xe
(i.e., i = e), xe is allocated further replications simultane-
ously from every pair xi and xe in the second step because it is
involved in all εi,es. These further replications allocated from
each pair are independent from each other; thus, we heuris-
tically define δe, the number of further replications allocated
to xe, as their sum:

δe =

k∑
i=1,i 6=e

min

(
max

([(
ai,e + Ni + Ne

)
se

si+se

]
−Ne, 0

)
, ai,e

)

= 1−
∑k

i=1,i6=e
δi. (20)

Since the observed data of xe is used to calculate every εi,e,
this heuristic method can additionally reduce the uncertain-
ties by allocating more replications to xe. That is, each εi,e
might be further reduced due to the δe − ae additionally
allocated to xe along with the ai,e from the perspective of each
pair.
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Remark 1: In the special case where k = 2 and the vari-
ance of the two designs is known, the theoretically optimal
allocation for given replications T can be obtained as [8]:

N1
/
N2 = σ1

/
σ2 where N1 + N2 = T . (21)

In this case, the allocation obtained through (19) and (20) is
identical to this theoretical optimum. Since there is only one
pair xi and xe when k= 2, the first step becomes meaningless,
and thus further replications are allocated to the two designs
depending on Theorem 1, where the sample variance in (18)
is replaced with the known variance. In the initial situation
where no replication is allocated to both designs (i.e., Ni =
Ne = 0), the value of c in (16) is always within the interval(
0, ai,e

)
; thus, according to the equation in the middle of (18),

the given replications ai,e are distributed depending on the
known variance of both design, as in (21).

3) SEQUENTIAL PROCEDURE
Similar to general R&S procedures, the proposed procedure
divides the given limited replications T into smaller units 1
and allocates them sequentially. That is, until T is depleted,
the procedure iterates the allocations of 1 in accordance
with (19) and (20) and updates the observed data of the
designs with these additionally allocated replications. This
sequential allocation enables the procedure to use T effi-
ciently and provides robustness to noise [8]. Algorithm 1 rep-
resents the sequential procedure.

Algorithm 1 Select the Best Design out of k Alternatives
Control parameters: T (≥ kn0) , n0, and 1

Procedures:
1: simulate n0 times for each xi, i ∈ {1, . . . ,k}
2: update µ̄i, si, and Ni for ∀i
3: select xe with (2)
4: while

∑k
i=1 Ni < T do

5: set 1← min
(
T −

∑k
i=1 Ni,1

)
6: calculate δi for ∀xi ∈ 2, xi 6= xe with (19)
7: calculate δe for xe with (20)
8a: simulate round(δi) times for each xi, i 6= e
9a: simulate 1−

∑k
i=1,i 6=e round (δi) times for xe

10: update µ̄i, si, and Ni for ∀i
11: select xe with (2)
12: end while
13: return xe

The control parameter n0 is the number of initial
replications allocated to every design to obtain the required
minimum data for further allocation before beginning the
iteration. Thus, if the value of n0 is too small, poor initial

aWe use the round function to convert the real numbers δi and δe to
integers and added the rounding errors to xe, which is usually allocated the
largest portion of 1. Due to the robustness of the sequential allocation, any
reasonable conversion method, such as the ceiling or the floor function, has
no significant impact on maximizing P{CS}.

FIGURE 1. The graph illustrates the estimated value of P{CS} versus n0 for
the specific value of T when 1 is fixed at 20. The equal variance (EV)
benchmark problem in Table 1 is used, and P{CS} was estimated over
10,000 independent repeated experiments.

data can be obtained, which results in bad allocations in the
iteration and decreases P{CS}. In this paper, we recommend
a value of at least 10 based on the literature [24], [25] and
empirical studies [17], [18]. As n0 increases, P{CS} can
increase due to the adequate further allocations based on the
more precise initial data. However, an excessively large value
of n0 compared to a given value of T reduces P{CS} by
wasting some of the replications required for the iteration.
Fig. 1 illustrates the trend of P{CS} with respect to the value
of n0. As a result, n0 should be set to a value of 10 or greater
in consideration of T .
On the other hand, the other parameter 1 is the number

of further replications to be allocated via (19) and (20) in
each iteration. It also should be set to a proper value by
taking k and T into consideration. A value that is too small
for a given k keeps the proposed procedure from allocating
enough replications to reduce the uncertainties. A value that
is too large for a given T reduces the advantages of the
sequential procedure. That is, both extreme cases decrease
P{CS}, as shown in Fig. 2. However, unless 1 has a very
extreme value for the given k or T , its effect on P{CS} is
relatively insignificant compared to that of n0 due to the
iterative allocations of the sequential procedure. In this paper,
we suggest a value between 0.5k and 0.05T as the proper
value of 1, based on empirical studies [17], [18].
Meanwhile, allocating1 in the proposed procedure can be

processed by calculating (19) k−1 times and (20) once. That
is, the computational complexity of the additional allocation
is O (k), which is the same as in other R&S procedures
such as the UE and OCBA procedures. However, when cal-
culating (19), it is necessary to determine the value of the
t-distribution’s CDF (i.e.,Fν

((
µ̄j − µ̄i

) /
si,j
)
) to evaluate the

uncertainty εi,e. As a result, depending on the implementa-
tion, the actual computation time of the proposed procedure
may be slightly longer than that of the OCBA procedure,
which uses only arithmetic operations for calculating the
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FIGURE 2. The graph illustrates the estimated value of P{CS} versus 1 for
the specific value of T when n0 is fixed at 10. The equal variance (EV)
benchmark problem in Table 1 is used, and P{CS} was estimated over
10,000 independent repeated experiments.

allocation of 1. In addition, the computation time of the
proposed procedure is somewhat longer than that of the UE
procedure due to the added second step. However, as men-
tioned previously, due to the higher complexity of modern
industrial systems, the cost per simulation replication is rela-
tively expensive and gradually increasing; thus, this slightly
increase in the computation time of the proposed procedure
becomes negligible compared to the total cost of the sim-
ulation experiment. Actually, while it took approximately
24 hours to solve the taxicab surplus problem in Section IV-B
by applying the proposed procedure, the computation time of
the procedure itself was only a few seconds, which is mean-
ingless. Most of the time was spent running approximately
43,000 replications of the agent-based taxicab allocation sim-
ulator in Fig. 5.

IV. EXPERIMENTS
A. NUMERICAL EXPERIMENTS
In this subsection, we exhibit experimental results that
demonstrate the improved efficiency of the proposed proce-
dure in comparison with other R&S procedures developed to
solve (4), such as the UE procedure [17], the OCBA proce-
dure [14], the proportional-to-variance (PTV) procedure [8],
and the equal allocation procedure. We used three benchmark
problems that were applied to evaluate these procedures: the
equal variance (EV), increasing variance (IV) and decreasing
variance (DV) problems. Table 1 summarizes these problems.
They each have 10 design alternatives, of which the best
design to be selected is x1. In the EV problem, all designs
have the same variance, whereas in the IV and DV prob-
lems the designs have an increasing or decreasing variance,
respectively, as the design index decreases. Each problem
has two versions: the large-noise version has relatively larger
stochastic noise compared with the original version because
it reduces the gap in µi while keeping the same value of σi.

TABLE 1. Three numerical benchmark problems.

TABLE 2. Value of T required to achieve P{CS} of 0.99 for benchmark
problems.

For a fair comparison, the values of n0 and 1 in every
procedure were set to 10 and 20, respectively, according
to [8], [14], and [17]. We estimated P{CS} for each proce-
dure with 10,000 independent repeated experiments while
varying T ; the results are shown in Fig. 3. In addition,
to numerically verify the improved efficiency of the proposed
procedure, Table 2 exhibits the value of T required to select
the best design correctly (i.e., to achieve P{CS} of 0.99) for
each problem. The experimental results shown in Fig. 3 and
Table 2 clearly indicate the improved efficiency of the pro-
posed procedure in comparison with the UE, OCBA, PTV,
and equal allocation procedures. In particular, the proposed
procedure demonstrated relatively higher efficiency in the
presence of large stochastic noise, as shown in the large-noise
version of the benchmark problems (see the shaded areas
in Fig. 3 and Table 2).

The relatively high robustness to noise of the proposed pro-
cedure can primarily be attributed to the allocation according
to the uncertainty of the UE procedure in the first step, which
takes into account the precision of the sample mean. For
example, when the observed value of µ̄1 is abnormally high in
the EV problem (actually, x1 is the best design with the lowest
µ1), the OCBA procedure, which does not consider the preci-
sion of µ̄1, cannot allocate further replications to x1 based on
the poor value of µ̄1. Thus, this erroneous value of µ̄1 is not
improved, leading to a decrease in P{CS}. If the additional
allocation continues indefinitely, the x1 will eventually be
allocated further replications due to changes in the simulation
results of the other designs; however, numerous replications
are wasted on other marginal designs in the meantime (refer
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FIGURE 3. Graphs (a)-(f) illustrate the estimated value of P{CS} versus T for the three benchmark problems, where the shaded graphs represent
the results for the large-noise version of each benchmark: (a) EV, (b) IV, (c) DV, (d) EV(L), (e) IV(L), and (f) DV(L).

to [17] for more details). However, the proposed procedure
considers the precision of the samplemean via the uncertainty
based on the p-value calculated with the sample mean and the
standard error, as shown in (6). Thus, it can allocate further
replications to x1 for which the precision of µ̄1 is relatively
low, thereby quickly lowering the abnormally high value of
µ̄1 and making the correct selection. As the stochastic noise
increases, such a poor value of the sample mean is obtained
frequently; therefore, the proposed procedure becomes rela-
tively more efficient (compare the results of the large-noise
version with the original one in Fig. 3 and Table 2).

Furthermore, the proposed procedure achieves improved
efficiency over the UE procedure via the second-step allo-
cation. The UE procedure simply allocates further replica-
tions to each design depending on its evaluated uncertainty,
whereas the proposed procedure optimally redistributes these
allocated replications to each design based on the uncertainty
of that design in the second step. That is, by fully exploiting
the nature of the uncertainty based on the p-value in (6),
the second step distributes the replications assigned at the first
step to the two designs involved in the uncertainty so that this
uncertainty is minimized. Therefore, the proposed procedure
can further increase P{CS} compared to the UE procedure in
the presence of large stochastic noise.

B. PRACTICAL CASE STUDIES
As mentioned earlier, we proposed this improved procedure
to efficiently resolve practical optimization problems with

large stochastic noise due to the high complexity of mod-
ern industrial systems. To demonstrate the necessity of the
proposed procedure, we have applied it to three practical
problems. A brief description of these problems is as follows.

1) MILES GEAR DESIGN PROBLEM
The multiple integrated laser engagement system (MILES)
provides gear for military training [26]. MILES gear consists
of a laser generator attached to an actual weapon and multiple
sensors attached to a trainee’s body. Since real bullets are not
used, a hit is considered to have occurred when the generated
laser beam is sensed by the sensor; thus, to give an immersive
experience to trainees, we need to design MILES gear to
maximize the hit rate, as with an actual weapon. There are two
design factors: beam width w and sensing angle a, as shown
in Fig. 4. The beam width refers to the diameter of the
beam area that has an energy level greater than the sensor’s
threshold at 250 m. The sensing angle means the limit of
the incidence angle of the beam that can be detected by the
sensor. Depending on the combination of these two factors,
a set of 195 feasible designs for MILES gear was given (i.e.,
2 = {x1, . . . , x195}, where xi = [w, a]). The hit rate of the
MILES gear for each design is estimated with many inde-
pendent repeated simulations using the optical engineering
(OE) simulator [27] in Fig. 4. Consequently, the MILES gear
design problem boils down to the simulation optimization
problem for selecting the best design with the highest hit rate
out of 195 alternatives.
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FIGURE 4. The OE simulator computes whether a beam with width of w
launched randomly toward a target is sensed by the sensors attached to
the target, where the sensing angle of the sensors is less than or equal to
the value of a.

2) TAXICAB SURPLUS PROBLEM IN DAEJEON,
SOUTH KOREA
Recently, the demand for taxicabs in Daejeon, South Korea,
has gradually decreased due to the development of various
means of transportation such as car-sharing services and per-
sonal mobility. As a result, the occupancy rate of taxicabs
continues to decrease, which leads to a vicious cycle in
which the income of taxi drivers is reduced, the quality of
service is reduced, and consequently, the demand is further
reduced. In addition, surplus taxicabs cause unnecessary traf-
fic congestion and sometimes accidents due to competition
for passengers. Although various efforts have been made to
increase the occupancy rate of taxicabs, reducing the number
of taxicabs is the most direct and effective way to accomplish
this. Unfortunately, since it is impossible to use real experi-
ments to find the optimal number of taxicabs to maximize the
occupancy rate, this problem becomes a simulation optimiza-
tion problem. For this scenario, 100 design alternatives were
used, with each design containing the number of taxicabs
n discretized in 100-unit intervals from 100 to 10000 (i.e.,
2 = {x1, . . . , x100}, where xi = [n]). Many replications
of the agent-based taxicab allocation (ATA) simulator [28]
in Fig. 5 can be used to estimate the occupancy rate for each
design. As a result, the second problem is defined as selecting
the best design with the highest occupancy rate of taxicabs,
out of 100 alternatives.

3) TACTICAL EVASION MANEUVER OPTIMIZATION PROBLEM
In modern warfare, domination of the air is directly linked to
victory in war, so it is crucial to increase the survival rate
of fighter aircraft, even if the increase is just one percent.
Missiles, which are the largest threat to survival, are typically
much faster than fighters and thus have that drawback of
not being able to rapidly change their direction. The tac-
tical evasion maneuver (TEM) shown in Fig. 6 allows a
fighter to avoid an approaching missile by taking advantage
of this drawback. When a missile comes within 20 km of a
fighter, the fighter descends while maintaining the leading
angle. Then, if the missile comes within the soaring distance,
the fighter radically soars up using the maximum G factor,
and the missile misses the fighter due to its inability to change

FIGURE 5. The ATA simulator provides the occupancy rate of taxicabs
using rule-based taxicab agents that move on the graph representing the
traffic environment of Daejeon. Here, passengers and their destinations
are randomly generated at each vertex based on the statistics in the
government report.

direction rapidly. To increase the survival rate of fighter
aircraft, we need to find the optimal values of the leading
angle l and the soaring distance s that maximize the success
rate of the TEM. Depending on the combination of these two
factors of the TEM, a set of 50 feasible designs was given
(i.e., 2 ={x1, . . . , x50}, where xi = [l, s]). The success rate
for each TEM design is estimated with many independent
repeated simulations using the TEM simulator [29] in Fig. 6.
Thus, the third problem is defined as selecting the best design
with the highest success rate out of 50 alternatives.

FIGURE 6. The TEM simulator determines whether a fighter can survive
an attack from an approaching missile using the TEM with leading angle
of l and soaring distance of s. Due to the randomness involved in the
representation of control errors and environmental disturbances in the
simulation, each replication gives different results.

We applied the proposed procedure to solve these prac-
tical problems efficiently. However, it is often difficult to
determine T in practice. In addition, continuously allocating
further replications until the given T is exhausted can waste
the limited budget if the correct selection has already been
made. To prevent this, the following stop condition using the
APCS defined in (9) is added before line 12 of Algorithm 1:
if APCS ≥ τ then break. That is, the iteration for further
allocation of 1 is terminated when the calculated APCS is
above the target value τ , where τ was set to 0.99 for the
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FIGURE 7. Graphs (a)-(c) illustrate the precisely estimated performance of each design for the three practical problems: (a) the hit rate of MILES
gear for the 195 designs, (b) the occupancy rate of taxicabs for the 100 designs, and (c) the success rate of TEM for the 50 designs. Graphs (d)-(e)
show the estimated value of P{CS} versus T for these problems: (d) the MILES gear design problem, (e) the taxicab surplus problem in Daejeon,
and (f) the TEM optimization problem.

TABLE 3. Selected best design for practical problems.

correct selection. Based on the guidelines in [17], the values
of n0 and 1 were set to 20 and 100, respectively, in the first
and second problems and to 20 and 50, respectively, in the
third problem. As a result, we could solve these problems
efficiently using the proposed procedure; Table 3 shows the
selected best design for each problem.

To verify the efficiency of the proposed procedure quanti-
tatively, we applied the other procedures used in the previous
numerical experiments. In each procedure, the stop condition
using theAPCSwas applied, and the same configuration of n0
and 1 was used for a fair comparison. Table 4 illustrates the
average value of T usedwith each procedure to achieveAPCS
of 0.99 for the three problems, where the average values were
estimated through 1,000 independent repeated experiments.
In addition, we estimated P{CS} for each procedure while
varying T , as shown in Figs. 7(d)-(f).

As shown in Figs. 7(a)-(c), these practical problems have
large stochastic noise that is caused by the many near-optimal
designs and relatively large variances. That is, numerous
simulation replications will be required to obtain the correct

TABLE 4. Average value of T used to achieve APCS of 0.99 for practical
problems.

selection in these problems. For example, the taxicab surplus
problem requires T of more than 106 to achieve P{CS} of
0.99. This takes approximately 550 hours or more since the
ATA simulator is a large-scale simulation involving many
agents (i.e., about two seconds per replication of the ATA sim-
ulator). The comparison results in Table 4 and Figs. 7(d)-(f)
demonstrate the improved efficiency of the proposed pro-
cedure in the presence of such large noise. While the UE

154444 VOLUME 7, 2019



S. H. Choi et al.: Improved Budget Allocation Procedure for Selecting the Best-Simulated Design

procedure took approximately 40 hours, on average, to obtain
the correct selection in the taxicab surplus problem, the pro-
posed procedure reduced this to less than one day. It also
saved half of the simulation budget that the OCBA proce-
dure used for the MILES gear design problem. This superior
efficiency, along with its high robustness to noise and easy
implementation, emphasizes the necessity of the proposed
procedure for practical optimization problems of modern
complex systems.

V. CONCLUSION
This paper proposed an improved R&S procedure based on
the UE procedure to efficiently resolve practical optimization
problems involving large stochastic noise. To select the best
design correctly from a finite set of alternatives, the proposed
procedure sequentially assigns a limited number of simula-
tion replications through a two-step allocation process. The
first step in applying the UE procedure temporarily allocates
further replications to all pairs consisting of a design and the
estimated best design depending on the uncertainty of each
design. Then, in the second step, the replications allocated to
each pair are optimally distributed between the two designs to
minimize the uncertainty. This two-step process enables the
proposed procedure to fully exploit the nature of the uncer-
tainty based on the p-value, thereby increasing P{CS} while
maintaining the high robustness to noise of the underlying UE
procedure. The experimental results for benchmark and prac-
tical problems demonstrate this improved efficiency in the
presence of large stochastic noise in comparison to existing
R&S procedures. It is expected that the proposed procedure
will allow simulation to be applied more effectively in the
fourth industrial revolution.
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