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ABSTRACT Obtaining optimal operation rules for cascade reservoirs is crucial for making the most of the
comprehensive benefits of reservoirs. However, the operation of cascade reservoirs is generally complex,
which involves with challenges including various decision variables, multiple conflicting objectives and
constraints. In this paper, a new algorithm named multi-objective tangent algorithm (MOTA) is proposed
for optimizing operation rules of cascade reservoirs with the objectives of hydropower generation, ecology
and navigation. The performance of MOTA is firstly validated through several well-known benchmark
problems. Then it is applied to a case study of cascade reservoirs optimization in China’s Pearl River. Using
observed inflow data (1956–2015) of cascade reservoirs, a uniform Pareto front is obtained eventually via
MOTA after 1000 generations. The optimal operation rules fully considers the comprehensive benefits of
hydropower generation, ecology and navigation in China’s Pearl River. The optimal operation rules can
be used as a guidance tool for decision makers, through the objectives’ tradeoff without having to embed
a priori preferences in the decision process. Finally, this paper use observed inflow data (2016) of cascade
reservoirs for examining the operational rule to comprehend the analysis under different optimal operation
rules. The obtained results show that MOTA can be a viable alternative for generating optimal operation
rules for cascade reservoirs planning and management.

INDEX TERMS Operation rules, tangent algorithm, multi-objective optimization, cascade reservoirs.

I. INTRODUCTION
Dam and reservoir systems often serve multiple purposes,
such as flood control, hydropower generation, ecology and
navigation [1]. The operation of reservoirs involves a com-
plex decision making process that strives to balance many
(often conflicting) objectives of different reservoir bene-
fit [2], aiming mostly at the quantification of uncertainty
inflow and the optimization of water allocation [3]. Cascade
reservoirs research is a hot issue [4], it must utilize com-
pensation coordination among the reservoirs in regard to the
overall comprehensive benefit to maximize water resources
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use [5]. Operation rule for cascade reservoirs is complex
with multiple reservoirs to consider. [6], which increases the
difficulty of research [7]. Therefore, the cascade reservoirs
operations are crucial for decision making and determining
reasonable optimal operation rules to operate scheduling the
water volume of reservoirs.

Over the years, numerous optimization models have been
employed to generate operation rules for dam and reservoir
systems [8]. These models include linear [9], nonlinear [10],
stochastic [11] and other concepts, which have been sug-
gested to develop optimal operation rules for dam and reser-
voir systems to allocate the proper amount of water released
according to current reservoir storage and inflow while con-
sidering reservoir systems objectives and constraints [12].
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Operating rules are widely used in the reservoir long-term
operation because of it provide a more practical and reli-
able guidance to reservoir system operators in the current
period [13].With in-depth study, cascade reservoirs confronts
increasing complexity of the operation context and involves
with challenges including various decision variables, multiple
conflicting objectives and constraints [14]. The best way to
deal with this is the coupling of multi-objective evolutionary
algorithms (MOEAs) and simulation models [15], typically
produce a set of Pareto optimal solutions. The solutions can
then be used as a guidance tool for decision makers, through
the objectives’ tradeoff without having to embed a priori
preferences in the decision process [16].

In past decades, various MOEAs appear, such as non-
dominated sorting genetic algorithm II (NSGAII) [17], multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) [18], an evolutionary many-objective optimiza-
tion algorithm using reference-point-based non-dominated
sorting approach (NSGAIII) [19], a simple but effective θ
dominance-based evolutionary algorithm (θ-DEA) [20] and
multi-objective artificial sheep algorithm (MOASA) [21].
With the development ofMOEAs, more andmore researchers
have begun to apply it in multi-objective problems of reser-
voir systems and acquire optimal operation rules [22]. Some
MOEAs get good achievements in multi-objective problems
of reservoir systems such as multi-objective cultured evolu-
tionary algorithm based on decomposition (MOCEA/D) [23],
shark machine learning algorithm (SMLA) [24], straw-
berry optimization algorithm [25], bounded optimization
BY quadratic approximation algorithm (BOBYQA) [26]
and honey bee mating optimization (HBMO) [27], which
has been employed to provide operational rules to operate
scheduling the water volume of reservoirs.

The study of cascade reservoirs in the China’s Pearl River
is a complex problem, involving multiple benefits such as
hydropower generation, ecology and navigation. In order
to solve this complex multi-objective problem and obtain
optimal operation rules, a tangent algorithm using reference-
point-based non-dominated sorting approach (MOTA) is pro-
posed in this paper. The optimal operation rules calculated by
MOTA can be used as a guidance tool for decision makers.
Major contributions are outlined as follows:

(1) The model established in this paper considers the
comprehensive benefits of eleven hydropower stations in the
Pearl River System, which mainly focus on the benefits of
hydropower generation, ecology and navigation.

(2) A new MOEA named MOTA is proposed for solv-
ing the multi-objective model in this paper. The algorithm
combines the advantages of NSGAIII and shows its high
performance when solve some well-known test functions.

(3) The solutions of optimal operational rules for cascade
reservoirs can be used as a guidance tool for decision makers,
through the objectives’ tradeoff without having to embed
a priori preferences in the decision process.

The remaining parts of this paper are arranged as follows:
In section 2, the paper build multi-objective model of optimal

operation rules based on an overall analysis of the benefit of
hydropower generation, ecology and navigation. In section 3,
a new MOEA named MOTA is proposed, which is used
to solve the model of this paper. In Section 4, the cascade
reservoirs in the Pearl River is selected as a case study. The
results analysis and discussion are presented in section 5.
Finally, section 6 concludes this paper.

II. THE MODEL OF OPTIMAL OPERATION RULES
FOR CASCADE RESERVOIRS
Optimal operation rules of cascade reservoirs involves with
challenges including various decision variables, multiple con-
flicting objectives and constraints, which mainly focus on the
comprehensive benefits of hydropower generation, ecology
and navigation. Therefore, the model considers objectives
including: maximizing hydropower generation of the cas-
cade reservoirs, minimizing ecological water deviation of the
cascade reservoirs and maximizing guarantee rate of navi-
gation. At the same time, the model considers constraints
such as water volume balance, water level, discharge flow,
hydropower output and so on.

A. OBJECTIVE FUNCTION
1) Maximizing hydropower generation of the cascade
reservoirs.

F1 = maxP = max
T∑
t=1

Rn∑
i=1

Ki · Q
f
i,t · hi,t ·1t (1)

where: P is the total hydropower generation, Ki is the power
production coefficient of the i-th hydropower plant,Qfi,t is the
power generation reference flow of the i-th reservoir during
the t-th period, hi,t is the net head of the i-th reservoir during
the t-th period, 1t is the operation interval, T is the number
of periods, Rn is the number of reservoirs.

2) Minimizing ecological water deviation of the cascade
reservoirs.

Reservoir scheduling changes the historical runoff
sequence. It may be caused great damage to the living
environment of aquatic organisms downstream of the reser-
voir, and cause a reduction of biodiversity. Therefore, it is
very important to pay attention particularly to ecologi-
cal protection while considering power generation tasks.
Wang et al. [28]–[30] proposed a new ecological benefit
objective — minimizing ecological water deviation of the
reservoir system. The objective function can be written as:

F2=minW = min
T∑
t=1

Rn∑
i=1

Wi,t

Wi,t =


(Qi,t − EWRmax

i,t ) ·1t if Qi,t > EWRmax
i,t

0 if Qi,t ∈ [EWRmin
i,t ,EWR

max
i,t ]

(EWRmin
i,t − Qi,t ) ·1t if Qi,t < EWRmin

i,t
(2)

where:Wi,t is the ecological water deviation of the i-th reser-
voir during the t-th period, Qi,t is the discharge flow of the
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i-th reservoir during the t-th period, EWRmax
i,t and EWRmin

i,t are
the upper and lower limit of the suitable ecological flow of the
i-th reservoir during the t-th period.
The method of calculating the suitable upper and lower

limits of ecological flow introduces the ideas and recom-
mendations of the RVA framework [31], [32]. The RVA
framework recommends taking 25% monthly frequency cor-
responding flow as the upper limit of suitable ecological flow,
and 75% monthly frequency corresponding flow as the lower
limit of suitable ecological flow.

P25%(Qhisi,t ) = EWRmax
i,t

P75%(Qhisi,t ) = EWRmin
i,t (3)

where: Qhis
i,t is the historical stream flow sequence of the

i-th reservoir during the t-th period. P25%(Qhis
i,t ) is the stream

flow corresponding to the 25% monthly frequency and
P75%(Qhis

i,t ) is the stream flow corresponding to the 75%
monthly frequency.

3) Maximizing guarantee rate of navigation.

F3 = max S = max
1

T · Rn

T∑
t=1

Rn∑
i=1

Si,t

Si,t =

{
0 if Qi,t > SRmax

i,t or Qi,t < SRmin
i,t

1 if Qi,t ∈ [SRmin
i,t , SR

max
i,t ]

(4)

where: S is the function of navigation guarantee rate, SRmax
i,t

and SRmin
i,t are the upper and lower limit of the navigable

discharge of the i-th reservoir during the t-th period.

B. CONSTRAINTS
1) WATER VOLUME BALANCE CONSTRAINTS.

Vi,t+1 = Vi,t + (Ii,t − Qi,t ) ·1t (5)

Ii+1,t = Qi,t + qi+1,t (6)

where: Vi,t is the reservoir storage of the i-th reservoir during
the t-th period, Ii,t and Qi,t are the reservoir inflow and
discharge flow of the i-th reservoir during the t-th period,
respectively. qi+1,t is the tributary flow between the i-th reser-
voir and the (i+ 1)-th reservoir.

2) WATER LEVEL CONSTRAINTS.

Zmin
i,t ≤ Zi,t ≤ Z

max
i,t (7)

where: Zmax
i,t and Zmin

i,t are the maximum and minimum limit
of upstream water level of the i-th reservoir during the
t-th period.

3) RESERVOIR DISCHARGE FLOW CONSTRAINTS.

Qmin
i,t ≤ Qi,t ≤ Q

max
i,t (8)

where: Qmax
i,t and Qmin

i,t are the maximum and minimum limit
of discharge flow of the i-th reservoir during the t-th period.

4) HYDROPOWER OUTPUT CONSTRAINTS.

Ni,t ≤ Nmax
i,t (9)

where: Nmax
i,t is the maximum limit of hydropower output of

the i-th reservoir during the t-th period.

5) GUARANTEE RATE OF HYDROPOWER
OUTPUT CONSTRAINTS.

min{P(Ni,t > Nmin
i,t )} > 90% (10)

where: Nmin
i,t is the minimum limit of hydropower output of

the i-th reservoir during the t-th period. P(Ni,t > Nmin
i,t ) is the

frequency of hydropower output.

III. METHODOLOGY
A. TANGENT ALGORITHM
The Sine Cosine Algorithm (SCA) proposed by Australian
scholar Mirjalili [31] in 2016 has a simple structure and
few parameter settings, which is inspired by the image
of the sine and cosine function. However, SCA has some
exists shortcomings in solving complex practical prob-
lem, which results in low convergence accuracy and slow
convergence [32], [33].

Inspired by the image of tangent function, a tangent algo-
rithm is proposed to solve complex optimization problems,
which has high convergence accuracy and fast convergence.
In the tangent algorithm, the positions of n individuals are
first randomly generated. It is assumed that each solution
of the optimization problem corresponds to the position of
the individual in the search space and is used to indicate the
position of the i-th (i = 1, 2, · · · , n) individual. In the next
iteration, the position update formula in the tangent algorithm
is as follows:

X t+1i = X ti + (r1 × tan(r2)+ r3) (Pbti − X
t
i ) (11)

r1 = a · e−
t
Ti (12)

r3 =

{
0, r4 < 0.5
1, r4 > 0.5

(13)

where: X ti is the position of the current solution in i-th dimen-
sion at t-th iteration. Pbti is the position of the best solution
in i-th dimension at t-th iteration. r2 is a random number in
[-π /3, π /3], r4 is a random number in [0, 1]. t is the current
iteration, Ti is the maximum number of iterations, a is a
constant and the value is 0.025.

There are four parameters r1, r2, r3, r4 in the formula
where r1 determines the area of the next position (or direction
of movement) r2 determines the distance to move r3 is a
random weight when r3 = 0 means moving around the
current individual and r3 = 1 means moving around the best
individual r4 is a random number.

B. THE TANGENT ALGORITHM FOR
MULTI-OBJECTIVE PROBLEMS
In order to solve the multi-objective problem, the tangent
algorithm uses the framework of NSGAIII [19]. We call
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FIGURE 1. MOTA flowchart.

it multi-objective tangent algorithm using reference-point-
based non-dominated sorting approach (MOTA). The calcu-
lation process of the algorithm is shown in Fig. 1.

The MOTA algorithm first defines a set of reference points
then randomly generates the initial population with n mem-
bers iterates over the next steps until the termination condition
is satisfied. In the t-th iteration, the current parent population
Pt uses the tangent algorithm and polynomial mutation to
produce the offspring population Qt. The size of the Qt is the
same as that of the Pt. Then two populations of Pt and Qt
are combined to form a new population of Rt = Pt ∪ Qt (2n).
In order to select the best n members from the next gener-
ation Rt, Rt is classified into different non-dominated levels
(F1, F2 et al.) using non-dominated sorting based on Pareto
dominance. Then starting from F1 the members of different
non-dominant levels are filled one by one to construct a new
population St filtering until the size of St is equal to that
of n. In the process of population selection the objectives and

Algorithm 1 Find the Global Best Population Set
Input: Pt (current population), Z r (reference points)
Output: Pb (best population set)
1: Pb = ∅
2: for each
Pi,t (X1,t ,X2,t ,X3,t , · · ·Xm,t )∈Pt {P1,t ,P2,t ,P3,t , · · ·Pn,t }
3: if Pi,t .getRank == 1
4: Pb = Pb ∪

{
Pi,t

}
5: end
6: end
7: if Pt == Pb
8: Normalized Pb←Normalize all individuals in the best
population set.
9: for each Pbi ∈ Pb {Pb1,Pb2,Pb3, · · ·Pbn}
10: Find min-distance from Z r

(
Z r1 ,Z

r
2 ,Z

r
3 , · · ·

)
11: Z rmin associate Pbi
12: end
13: Find minimum association (>0) Z r,min

(
Z r,min
1 , · · ·

)
from Z r

(
Z r1 ,Z

r
2 ,Z

r
3 , · · ·

)
14: for each Pbi ∈ Pb {Pb1,Pb2,Pb3, · · ·Pbn}
15: if Pbi not associated Z r,min

(
Z r,min
1 , · · ·

)
16: Pb remove Pbi
17: end
18: end
19: end

reference points are first standardized so that they have the
same range. After normalization the ideal point of the set St
is zero vector and the vertical distance between the members
of the St, and each reference line (which is the line between
the ideal point and the reference point) is calculated. Each
member of St is then associated with a reference point with
the minimum vertical distance. The next step is to calculate
the number of associated members of the j reference point
ρj (the number of members in the St / F1 associated with the j
reference point). To select a member from F1 we first identify
the reference point set Jmin (Jmin required to be greater than or
equal to 1) with the minimum ρj. If Jmin = 1 selects a unique
associated member to be added to Pt+1 if Jmin > 1 randomly
selects a member to be added to Pt+1. Then increase the count
of ρj by 1. If theF1 does not have anymember associated with
the j reference point the reference point will be excluded from
the further consideration of the current generation and the
minimum ρj will be recalculated. Repeat the above operation
until the total number of members filled with Pt+1 is n. Then
Algorithm 1 is used to find the global optimal solution set.
The above steps are iterated until the termination condition
is satisfied the algorithm converges and the population is
uniformly distributed to the Pareto front.

C. EXPERIMENTAL DESIGN AND RESULTS
1) TEST PROBLEMS AND QUALITY INDICATORS.
In order to prove the performance of MOTA algorithm
DTLZ1-4 [18], WFG6-7 [36], SDTLZ1-2 [37] are used
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for eight experimental studies. These test problems can be
scaled to any number of objectives and decision variables.
We consider the number of objectives Mo ∈ {3, 5, 10}. For
DTLZ1–4 problems, the number of variables is given by
Nv = Mo + k − 1, k is set to 5 for DTLZ1 and set to
10 for DTLZ2-4. For WFG6–7 and SDTLZ1-2 problems,
the number of variables is set to the same as in [35].

Inverse generation distance (IGD) [19] and hyper-volume
(HV) [37] are two important indexes to measure the conver-
gence and diversity of Pareto optimal set. Let P∗ be the set
of optimal solutions of a group of uniformly distributed (PF)
along the Pareto frontier. A is the set of final non-dominated
points obtained in objective space. The IGD value of A is
calculated as follows:

IGD(A,P∗) =
1
|P∗|

|P∗|∑
i=1

min
f ∈A

d (pi, f ) (14)

where: d(pi, f) is the Euclidean distance between the points
pi and f . The lower value of IGD (A, P∗) means that the
algorithm obtains a better solution set A.
A is the set of final non-dominated points obtained in objec-

tive space. r = (r1, r2, . . . rm) are the reference point in the
objective space which is dominated by any point in the set A.
The hyper-volume index value of A can be expressed as:

HV (A, r) = volume
(
∪
f ∈A

[f1, r1]× · · · [fm, rm]
)

(15)

For a given reference, the larger HV (A, r) value, the better
the quality of the optimal solution set obtained.

2) EXPERIMENTAL RESULTS.
In order to verify the MOTA algorithm, this paper uses
the NSGAIII [35], MOEA/D [20], dMOPSO [38] algorithm
to compare. For each algorithm, each test problem is run
independently 20 times. The parameter settings for the test
problem are shown in Table 1, other experimental settings are
consistent with those in the original NSGA-III, MOEA/D and
dMOPSO study. The test results for MOTA on the DTLZ1-4
problem are shown in Figure 2. In the comparison of IGD
and HV, the statistical results of the eight questions are shown
in Table 2 and Table 3.

TABLE 1. Problem setting for algorithms.

From the IGD test index in Table 3, it can be seen that
MOTA algorithm outperforms other algorithms on DTLZ1,

FIGURE 2. Obtained solutions by MOTA for DTLZ1-4. (Dots are the
solutions, the grid is the true PF of each problem).

DTLZ2, DTLZ4, WFG6, SDTLZ1, SDTLZ2 problems,
whereasNSGAIII wins onWFG7 problem. In theDTLZ3 test
function, the MOTA algorithm is better than other algorithms
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TABLE 2. Best, median and worst IGD values obtained by MOTA to
different algorithms on multi-objective DTLZ1–4, WFG6-7 and
SDTLZ1–2 problems. Best performance is shown in bold.

TABLE 2. (Continued.) Best, median and worst IGD values obtained by
MOTA to different algorithms on multi-objective DTLZ1–4, WFG6-7 and
SDTLZ1–2 problems. Best performance is shown in bold.

TABLE 3. Performance comparison of MOTA to different algorithms with
respect to the average HV values on DTLZ1–4, WFG6-7 and SDTLZ1–2
problems. Best performance is shown in bold.

under the condition of three objectives and the NSGAIII
algorithm is better than algorithm under the condition of five
and ten objectives. From the HV test index in Table 4, it can
be analyze that in the DTLZ1, DTLZ3, WFG6, SDTLZ1,
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TABLE 4. Typical schemes for multi-objective optimal operation rules.

SDTLZ2 test function the MOTA algorithm is better than
other algorithms. MOTA algorithm inferior performs other
algorithms on DTLZ2, DTLZ4, WFG7 problems. In conclu-
sion,MOTA algorithm is a strong competitivemulti-objective

algorithm, which can be used to solve the practical problem
in this paper.

IV. CASE STUDY
A. TOPOLOGY STRUCTURE OF STUDY AREA
Taking cascade reservoirs in China’s Pearl River System as a
study case, this paper determines optimal operation rules to
operate scheduling the water volume of reservoirs. The study
area is shown in Figure 3. Each reservoir in the study area has
the function of hydropower generation, and some reservoirs
have the function of navigation and ecology. In terms of reser-
voir regulation capacity, I, II and IX are annual regulating
reservoirs, and others are diurnal regulating reservoirs. The
topology structure of cascade reservoirs is shown in Figure 4.

B. ENCODING PROCESS OF THE MODEL
Through the simulation scheduling of 60 years observed
historical inflow data (1956-2015), the optimal operation
rules of cascade reservoirs are obtained. The optimal oper-
ation rules provide a reference for the planning and man-
agement of the cascade reservoirs. The optimal operation
rules of the annual regulation reservoir (I, II, IX) are pre-
sented by scheduling diagrams of reservoir, as shown in
Figure 5. Taking the month as the X-axis, the water level
as the Y-axis, draw six schedule lines. From the top to the
bottom, the schedule lines are the normal water level, level
of flood control, the line of increase hydropower output,
the line of guarantee hydropower output, the line of reduce
hydropower output and dead water level. Since the normal
water level, the level of flood control and the dead water
level of each reservoir have been determined at the time of
reservoir design, it is necessary to optimize the position and
shape of the other three lines. In the optimization process of
each reservoir, each schedule line includes two variables of
water level in flood season and non-flood season, and four
time variables of starting and ending time of flood season
and non-flood season. Its encoding mode includes 4 time
variables and 6 water level variables as shown in Figure 5.
Therefore, the three reservoirs have a total of 30 variables.

In addition to satisfying the reservoir constraints,
the schedule diagram also needs to meet the following
constraints:

(1) Time constraints.

ti,1 < ti,2 < ti,3 < ti,4 (16)

(2) Constraints of each schedule line.

xi,1 > xi,2 , xi,3 > xi,4 , xi,5 > xi,6 (17)

(3) Constraints between upper and lower schedule lines.

xi,1 > xi,3 > xi,5, xi,2 > xi,4 > xi,6 (18)

V. RESULTS AND DISCUSSION
A. RESULTS
According to the historical inflow data of cascade reservoirs
in the Pearl River System from 1956 to 2017, the proposed
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FIGURE 3. Study area.

FIGURE 4. Topology structure of cascade reservoirs.

FIGURE 5. Diagram of optimization encoding.

MOTA algorithm is used to solve the multi-objective optimal
operation rules. The algorithm parameters are set as follows:
the population size of the algorithm is set to 92, the number
of reference points is set to 91, the archive population size

of the algorithm is set to 40, the number of iterations is set
to 1000 generations, the mutation rate is set to 0.05 and the
mutation index is set to 20. The results of the MOTA are
shown in Figure 6 and Table 4.

The 3D view of the Pareto frontier of the optimal operation
rules solved by the MOTA algorithm is shown in Figure 6(a).
It can be seen that the distribution of the entire Pareto front
is very uniform, which is reflected by the superiority of the
MOTA algorithm. The projection of the Pareto front on any
two objectives is represented in Figure 6(b), Figure 6(c) and
Figure 6(d), respectively.

As can be seen from the Figure 6(b), the objective of
annual average power generation (P) is proportional to the
objective of ecological water deviation (W). In the Pareto
solution, increasing the annual average power generation (P)
of the cascade reservoirs in Pearl River will lead to the
increase of ecological water deviation (W). This shows that
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FIGURE 6. Obtained solutions by MOTA for multi-objective optimal
operation rules.

the conflicting relationship between hydropower generation
benefits and ecological benefits of the reservoirs in the
Pearl River System. Increasing hydropower generation will

FIGURE 7. Optimal operation rules of Scheme 1.

destroy the ecological environment of the downstream rivers,
it causes the eco-crisis.

As can be seen from the Figure 6(c), the objective of annual
average power generation (P) is proportional to the objective
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FIGURE 8. Optimal operation rules of Scheme 2.

of navigation guarantee rate (S). This shows that increase the
hydropower generation benefits of the cascade reservoirs in
Pearl River, the navigation benefits will also increase. In the
Pareto solution, there are some schemes in which both the

FIGURE 9. Optimal operation rules of Scheme 40.

annual average power generation and the navigation guaran-
tee rate are superior.

As can be seen from the Figure 6(d), the objective of
ecological water deviation (W) is proportional to the objective
of navigation guarantee rate (S). This shows that reduce the
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FIGURE 10. Comparison of the results of the three schemes under the
three objectives.

FIGURE 11. The relationship between water level and hydropower output
under three schemes.

ecological benefits of the cascade reservoirs in Pearl River,
the navigation benefits will also reduce. This is because the
upper and lower limits of the navigable discharge are gener-
ally different from the upper and lower limits of the ecological
flow. It is very difficult to receive the best scheduling scheme
with better ecological benefits and navigation benefits.

Table 4 shows a comparison of the 40 different opti-
mal operation rules for the Pareto front on three objec-
tives. In the scheme, the annual average power generation
exhibits advantages in scheme 1, the ecological water devi-
ation exhibits advantages in scheme 40 and navigation guar-
antee rate exhibits advantages in scheme 2. Finally, the paper

FIGURE 12. The relationship between discharge flow and Ecological
water deviation under three schemes.

draws schedule diagrams for the three scheduling schemes,
as shown in Figure 7, Figure 8 and Figure 9.

B. DISCUSSION
In order to deeply analyze the relationship between each
objective, the inflow data for each reservoir in 2016 selected
to validate schedule diagrams. Scheme 1, scheme 2 and
scheme 40 are used for simulation scheduling, and the overall
comparison of the three schemes is shown in Figure 10.
As can be seen from the Figure 10, it has achieved an
advantage in the optimal objective of hydropower gen-
eration in scheme 1, and its hydropower generation is
4.8697∗107MW.h. It is higher than the other two schemes
of 4.8217∗107MW.h and 4.8126∗107MW.h. It has achieved
an advantage in the optimal objective of navigation guarantee
rate in scheme 2, and its navigation guarantee rate is 0.875.
It is higher than the other two schemes of 0.844 and 0.865.
It has achieved an advantage in the optimal objective of
ecological water deviation in scheme 40, and its ecological
water deviation is 3.8053∗109m3. It is higher than the other
two schemes of 9.8983∗109m3 and 8.9113∗109m3.
Under the conditions of scheme 1, scheme 2 and

scheme 40, the water level and hydropower output of the
annual regulation reservoir (reservoir I and reservoir II) were
analyzed and compared in this paper. As can be seen from
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the Figure 11, the difference in the value of water level
and hydropower output mainly occurs in the flood season
under three different schemes. Among them, the reservoir I
occurred in March-September, and the reservoir II occurred
inMarch-August. In September, hydropower output is atmost
in reservoir I and reservoir II under three schemes, of which
scheme 1 is larger than other schemes. As can be seen from
the Figure 11(b), the water level changes very little in the
reservoir II under three schemes. The main reason for the
change in the hydropower output is that the discharge is
different in the reservoir I, resulting in a difference in the
inflow from the reservoir II.

In the meanwhile, under the scheme 1, scheme 2 and
scheme 40, the discharge and ecological water deviation
of the reservoir (reservoir VIII and reservoir XI) which is
satisfy the ecological demand of water were analyzed and
compared in this paper. As can be seen from the Figure 12,
the ecological shortage water mainly occurs in the river
in May and the ecological overflow mainly occurs in the
river in September. The ecological overflow is not occurred
in September in scheme 40. Overall, the annual ecologi-
cal water deviation is lower in scheme 40 and higher in
scheme 1.

VI. CONCLUSION
It is complex to obtain optimal operation rules for cascade
reservoirs, which involves with challenges including various
decision variables, multiple conflicting objectives and con-
straints. This paper proposesmodel of optimal operation rules
for cascade reservoirs and strive to make the most of the com-
prehensive benefits of hydropower generation, ecology and
navigation. A new algorithm named multi-objective tangent
algorithm (MOTA) is proposed to solve the problem. The
performance ofMOTA is validated through somewell-known
benchmark problems. Then, MOTA is applied to a case study
of cascade reservoirs optimization in China’s Pearl River
System. The experimental results show that MOTA obtains a
Pareto front composed of forty operation rules, reflecting the
comprehensive benefits of hydropower generation, ecology
and navigation in China’s Pearl River System.

The following points can be concluded from the Pareto
front composed of forty operation rules: (a) In the Pareto
solution, increasing the hydropower generation benefit will
lead to reduce the ecology benefit. (b) In the Pareto solu-
tion, there are some schemes in which both the hydropower
generation benefit and the navigation benefit are superior.
(c) In the Pareto solution, increasing the ecology bene-
fit will lead to reduce the navigation benefit. The opti-
mal operation rules can be used as a guidance tool for
decision makers, through the objectives’ tradeoff with-
out having to embed a priori preferences in the deci-
sion process. Finally, this paper use observed inflow data
(2016) of cascade reservoirs for examining the operational
rule to comprehend the analysis under different optimal
operation rules. It is necessary to use MOTA for generating

optimal operation rules to optimize comprehensive benefits
of cascade reservoirs, which has profound guidance meaning
for cascade reservoirs planning and management.
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