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ABSTRACT The movement of reentry vehicle is disturbed by the atmospheric environment and changes of
aerodynamic parameters. In this paper, an adaptive terminal sliding mode control method based on nonlinear
disturbance observers is proposed, which is used to control the attitude of the reentry vehicle. Firstly,
the attitude control system is divided into an attitude angular control loop and an angular velocity control
loop. Then, novel finite time convergence nonlinear disturbance observers are designed to estimate lumped
disturbances. In the design of control law, the super-twist algorithm is used to make the proposed terminal
sliding mode variables converge to the origin within a finite time and reduce the chattering of the controller.
The estimated value of disturbance is considered in the controller to attenuate the effect of disturbances on the
vehicle. Last, the algorithm proposed is applied to reentry vehicle and a good performance can be obtained.
The effectiveness and superiority of the proposed algorithm is demonstrated by numerical simulations.

INDEX TERMS Reentry vehicle, attitude control, nonlinear disturbance observer, terminal sliding mode,
super twist algorithm.

I. INTRODUCTION
The velocity of the reentry vehicle is fast, and the flight
is affected by wind disturbance, atmospheric density and
change in the Earth’s gravitational force [1]. The aerody-
namic parameters of vehicles are time-varying because aero-
dynamic parameters are affected by altitude and velocity
changes. As a result, the movement of the reentry vehicle
has obvious nonlinearity, coupling, and uncertainty charac-
teristics [2]. Attitude control plays an important part in the
reentry vehicle control system. Achieving a precise attitude
control can provide enough aerodynamic force to ensure that
the vehicle can stably track guidance instructions.

The vehicle attitude control methods commonly used
include auto disturbance rejection control [3], back-stepping
control [4], and sliding mode control(SMC). SMC is a non-
linear control method proposed by former Soviet scholar
Emelyanov. The main advantage of the sliding mode control
method is that it is not sensitive to external disturbances

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiguang Feng .

and uncertainties [5]. With the concept of reaching law,
dynamic sliding mode, and high-order sliding mode [6] being
proposed, the sliding mode control theory has been further
developed. Many scholars have applied the sliding mode
control method in the vehicles field. Munoz et al. [7] used the
improved second-order sliding mode method in the attitude
control problem of the quadrotors. The experiments were
conducted outdoors, and noise was added during the flight of
the quadrotors. Using the control law proposed, the attitude
angles of the vehicle can effectively track the desired signals,
although with disturbances, which proves the feasibility of
the sliding mode control method in practical applications.
Tian et al. [8] proposed a dynamic sliding variable method for
the attitude tracking problem of the reusable launch vehicle.
The initial sliding variable was designed which was set at the
origin from the initial time, so that the arrival phase of the
sliding mode control is eliminated, and the global robustness
of the system is improved. By adding the relative degrees
of the system, the quasi-continue high order sliding mode
control laws were used for attitude control of reusable launch
vehicles in [9]. However, the higher derivative of system
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states and the sliding mode variable need to be obtained
for completing the control law. The terminal sliding mode
controller(TSMC), which was proposed in [10], is a finite
time control method. Due to the good dynamic characteristics
of the terminal sliding mode, TSMC was widely used in the
robot control problem [11]. Additionally, in [12], the terminal
sliding mode controllers were designed for hypersonic flight
vehicle in the vertical plane. In the actual flight process,
a faster response to attitude angle commands is required.
Thus, the terminal sliding mode method has certain advan-
tages. The major factor that discourages sliding mode control
applied in actual engineering is that the controller output has
severe high-frequency chattering [13], which increased the
energy requirements for actuators and may lead to system
instability. The commonly used methods to reduce chatter-
ing include designing a high-order sliding mode controller,
using sigmoid function to replace the sign function [14], and
combining fuzzy logic and the sliding mode control [15].
However, when the sign function is replaced by sigmoid
function, the control accuracy is reduced in the presence of
disturbances. In addition, using fuzzy logic methods requires
great control experience in advance [16]. The super-twist
algorithm is a kind of sliding mode method, which can
weaken the chattering of the controller while ensuring the
stability of the system [17]. In [18], the adaptive super-twist
control algorithm is proposed for reusable launch vehicles.

The disturbance observer can estimate the disturbance in
the system in real time, and the estimated value can be used
to compensate for the disturbance. Thus, the robustness of
the system can be effectively improved through disturbance
observer. In [19], the maneuver of the target is treated as the
interference of the system and an extended state observer
is designed to estimate the maneuver of the target. In [20],
the fault information and disturbances in the manipulator
system can be obtained by an composite observer. The finite
time convergence disturbance observer and the controller
were proposed for vehicle active suspension systems in [21].
The disturbance observer based on the terminal sliding mode
was proposed in [22], which can ensure that the estimation
error converges in finite time. Another kind of sliding mode
disturbance observer was used in the control problem of
the reusable vehicle under uncertainties in [23]. Since the
reentry flight process is interfered by changes of external
environment, it is necessary to design a disturbance observer
to improve the robustness of vehicle control system.

On the basis of previous studies, to control the attitude of
the reentry vehicle effectively in the presence of disturbances,
the adaptive terminal sliding mode control(ATSMC) are pro-
posed in this paper. Firstly, the attitude control system is
divided into two loops. The outer loop is the attitude angular
tracking loop, and the inner loop is the angular velocity track-
ing loop. Nonlinear disturbance observers are proposed to
estimate the disturbances in each loop. Terminal slidingmode
control laws with disturbance compensation are proposed for
two loops to ensure the stability of the attitude control system.

The main contributions of this paper are:

1. Nonlinear disturbance observers using new estima-
tion laws are proposed to estimate disturbances dur-
ing the reentry flight. Using the proposed disturbance
observers can ensure that the estimation errors con-
verge in a finite time. The stability of the disturbance
observers is proved by the Lyapunov theory.

2. Terminal sliding mode variables are designed to ensure
that state errors converge within a finite time. New
adaptive control laws based on the super-twist algo-
rithm and the terminal sliding mode variables designed
are proposed to control the attitude angles of the reentry
vehicle. The estimated values of the disturbances are
considered in the control laws to compensate for dis-
turbances adaptively and attenuate the effect of distur-
bances on the vehicle. The simulation results show that
attitude angles can track the command signals stably
with better dynamic performance by using the control
laws proposed.

The content of the paper is organized as follows: The
attitude control model of reentry vehicles and task analysis
are given in section II. The nonlinear disturbance observers
are proposed in Section III. After that, the adaptive terminal
sliding mode control methods are designed for the reentry
vehicle, which are presented in section IV. Numerical sim-
ulations that prove the performance of the proposed control
laws are performed in section V. Section VI is reserved for
conclusions.

II. THE ATTITUDE MOVEMENT MODEL FOR REENTRY
VEHICLES AND TASK ANALYSIS
A. THE ATTITUDE MOVEMENT MODEL FOR REENTRY
VEHICLES
The movement characteristics of the reentry vehicle can be
described by three kinematic equations and three dynamics
equations. According to the movement model established
in papers [24], [25], the rotation dynamics equations are
described as follows:

I0

 ṗq̇
ṙ

 = −�I0
 pq
r

+M
I0 =

 Ixx 0 −Ixz
0 Iyy 0
Ixz 0 Izz

,
� =

 0 −r q
r 0 −p
−q p 0

 (1)

where I0 is the nominal moment of inertia matrix. p, q and
r represent roll, pitch, and yaw rate, respectively. M =

[Mx ,My,Mz]T is the control torque vector. Mx ,My and Mz
are roll torque, yaw torque and pitch torque, respectively.

The flight of the reentry vehicle is affected by atmospheric
conditions and the change of the gravitational force, thus,
it is necessary to consider external disturbances and uncer-
tainties in the motion equation. The dynamics equation is
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FIGURE 1. Attitude control system structure.

rewritten as

(I0 +1I)ω̇ = −�(I0 +1I)ω +M+1ς (2)

where ω = [ p q r ]T is the angular velocity vector. 1I
shows the uncertain parameters. The symbol 1ς represents
the bounded disturbance in the dynamics equation.

Considering that the earth rotates slowly and that the
vehicle moves at a high speed, the effect of the rotation of
the earth is neglected. The translational movement is a long
period movement. However, the attitude movement is a short
periodmovement, so it is reasonable to ignore the influence of
derivatives of velocity and position. Thus, the reentry vehicle
kinematic equations are described as follows:

α̇ = −p cos(α) tan(β)+ q− r sin(α) tan(β) (3)

β̇ = p sin(α)− r cos(α) (4)

σ̇ = −p cos(α) cos(β)− q sin(β)− r sin(α) cos(β) (5)

where α, β, σ denote the angle of attack, sideslip angle, and
bank angle, respectively.

Based on the above analysis, the attitude control model of
the reentry vehicle can be described as follows:

ω̇ = −I−10 �I0ω + I−10 M+1d (6)

θ̇ = Rω +1f (7)

where θ = [α β σ ]T and 1f = [1f11f21f3]T is the dis-
turbances in the kinematic equations.1d = [1d11d21d3]T,
which can be regarded as lumped disturbances, indicates
the influence of the external environmental disturbances and
parameters uncertainties in the dynamics equation. The spe-
cific expressions of 1d and R are shown as follows:

1d = I−10 (−1I0ω̇ −�1Iω +1ς ) (8)

R =

− cosα tanβ 1 − sinα tanβ
sinα 0 − cosα

− cosα cosβ − sinβ − sinα cosβ


B. THE TASK ANALYSIS OF ATTITUDE CONTROL SYSTEM
The task of the attitude control system is to control the attitude
angles of the vehicle to track the desired signals, and to

ensure that the vehicle completes the mission reliably under
environmental disturbances. The attitude angle signals that
need to be tracked are represented by θd = [αd βd σd ]

T.
By analyzing the movement of the reentry vehicle, the control
system is divided into two loops for better control. The outer
loop is the attitude angular tracking loop. And the inner loop
is the angular velocity tracking loop. The terminal sliding
mode controllers and nonlinear disturbance observers are
designed for each loop. The outer loop generates the angu-
lar velocity command ωc required for system stability. The
angular velocity commandωc is also treated as the commands
needed to be tracked in the inner loop. The inner loop realizes
the angular velocity commands ωc are tracked under the
control torques M . The structure of attitude control system
is shown in Fig. 1.

To analyse the problem conveniently, we make the follow-
ing assumption:
Assumption 1: The derivatives of the disturbances are

bounded, which means there are positive numbers Fi and Di
that satisfy max

∣∣1ḟi∣∣ < Fi and max
∣∣1ḋi∣∣ < Di(i = 1,2,3).

III. NONLINEAR DISTURBANCE OBSERVER DESIGN
A sliding mode observer(SMO) was proposed in [26], and a
low pass filter is required during the estimation process. It is
difficult to determine the cut-off frequency of the low-pass
filter accurately, leading to the loss of observation accuracy.
To make the estimated errors converge fast when the errors
are large and converge within a finite time, new disturbance
estimation laws inspired by [27] are proposed for reentry
vehicles.

A. DESIGN OF NONLINEAR DISTURBANCE OBSERVER
FOR THE OUTER LOOP
For attitude angular tracking loop (7), the nonlinear distur-
bance observer is designed in the following form:

˙̂
θ = Rω +1f̂ (9)

1f̂ = −kf
∣∣∣θ̂ − θ ∣∣∣ 12 sign(θ̂ − θ )+ v1 (10)
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where θ̂ represents the estimated value of θ , and 1f̂ is the
estimated value of 1f, kf = diag{kfi}, kfi > 0, i = 1, 2, 3,
and v1 = [v11 v12 v13]T is an auxiliary control input designed
as Eq. (11):

v̇1 = −l1sign(θ̂ − θ )− l2(θ̂ − θ ) (11)

where

sign(θ ) = [sign(α̂ − α)sign(β̂ − β)sign(σ̂ − σ )]T

∈ R3×1∣∣∣θ̂ − θ ∣∣∣ 12 sign(θ ) = [
∣∣α̂ − α∣∣ 12 sign(α̂ − α) ∣∣∣β̂ − β∣∣∣ 12
× sign(β̂ − β)

∣∣σ̂ − σ ∣∣ 12 sign(σ̂ − σ )]T
∈ R3×1

l1 = diag{l1i}, l1i > 0, l2 = diag{l2i},

l2i > 0, (i = 1, 2, 3).

Before analyze the stability of the disturbance observer,
we firstly introduce the definition of finite time convergence
and the lemma of finite time convergence.
Definition 1 [28]: Consider the following nonlinear sys-

tem:

ẋ = f (x, t) f (0, t) = 0 (12)

where x ∈ Ry is the system state and f : L × R → R is
continuous on L × R, where L is an open neighbourhood of
the origin . The origin is a finite time stable equilibrium point
of system(12), if from any initial time t0 and initial state x0,
there is a time T (x0) ≥ 0 that depends on x0, such that the
solution of system (12) satisfies the following conditions lim

t→T (x0)
x(t, x0) = 0

x(t, x0) = 0 ∀t ≥ T (x0)
(13)

Lemma 1 [29]: For nonlinear systems (12), if there is a
Lyapunov function V that satisfies

1) V is positive definite.
2)

V̇ + bV γ ≤ 0. (14)

where b > 0, 0 < γ < 1,
the system states converge to the equilibrium point in finite
time, and the setting time t(x0) depends on the initial system
state x(0) = x0, satisfying the following relationship:

t(x0) ≤
1

b(1− γ )
V (x0)1−γ (15)

Theorem 1: For the attitude angular tracking loop (7),
by using the disturbance observers(9),(10), (11), and if
parameters in observer that satisfy kfi >

√
2Fi, l1i > 3Fi +

2F2
i

k2fi
, and l2i ≥ 0(Fi has been defined in Assumption 1),

the disturbances estimation error can converge to zero within
a finite time under Assumption 1.

Proof: From Eq. (7) and (9), we obtain:

˙̃
θ = 1f̃ = −kf

∣∣∣θ̂ − θ ∣∣∣ 12 sign(θ̂ − θ )+ v1 −1f (16)

where θ̃ = θ̂ − θ = [θ̃1θ̃2θ̃3]T and 1f̃ is the estimation error
of disturbance where 1f̃ = 1f̂ −1f.
The Lyapunov function is chosen as

V =
3∑
i=1

Vi (17)

Vi = XTi HiXi (18)

where Xi =
[∣∣∣θ̃i∣∣∣ 12 sign(θ̃i)θ̃i(v1i −1fi)]T ∈ R3×1,
Hi =

 2l1i +
1
2
k2fi 0 −

1
2
kfi

0 l2i 0
−

1
2kfi 0 1


when kfi > 0, l1i > 0, l2i > 0, it can be verified that Hi is a
positive definite matrix.

The above equation can be written as follow:

V =
i=3∑
i=1

{
1
2
[kfi

∣∣∣θ̃i∣∣∣ 12 sign(θ̃i)− (v1i −1fi)]2

+
1
2
(v1i −1fi)2 + 2l1i(

∣∣∣θ̃i∣∣∣ 12 sign(θ̃ ))2 + l2iθ̃2i } (19)

Differentiating on both sides of Eq.(19), we can obtain:

V̇ =
i=3∑
i=1

[kfi
∣∣∣θ̃i∣∣∣ 12 sign(θ̃i)− (v1i −1fi)] · [

1
2
kfi
∣∣∣θ̃i∣∣∣− 1

2 ˙̃
θi

− (v̇1i −1ḟi)]+ (v1i −1fi)(v̇1i −1ḟi)

+ 2l1isign(θ̃i)
˙̃
θi+2l2iθ̃i

˙̃
θi (20)

Substituting Eq.(16) into Eq.(20), we can obtain:

V̇ =
3∑
i=1

−
1∣∣∣θ̃i∣∣∣1/2XT

i PiXi + X
T
i

 kfi1ḟi
0
−21ḟi

 (21)

where

Pi =


kfil1i +

1
2
k3fi 0 −

1
2
k2fi

0 kfil2i 0

−
1
2
k2fi 0 1

2kfi


Thus, the following relationship can be obtained:

XT
i

 kfi1ḟi
0
−21ḟi

 = [∣∣∣θ̃i∣∣∣ 12 sign(θ̃i)θ̃i(v1i −1fi)]
 kfi1ḟi

0
−21ḟi


= (kfi

∣∣∣θ̃i∣∣∣ 12 sign(θ̃i)− 2(v1i −1fi))1ḟi

≤ kfiFi
∣∣∣θ̃i∣∣∣ 12 − 2(v1i −1fi)1ḟi
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=
1∣∣∣θ̃i∣∣∣1/2XTi LiXi (22)

The specific expressions of Li is shown as follows:

Li =

 kfiFi 0 −1ḟisign(θ̃i)
0 0 0

−1ḟiisign(θ̃i) 0 0


According to Eq.(21),(22), we can obtain the following

inequality relationship:

V̇ ≤
3∑
i=1

−
1

|θi|
1/2X

T
i (Pi − Li)Xi (23)

where

Pi − Li

=


kfil1i +

1
2
k3fi − kfiFi 0 −

1
2
k2fi +1ḟisign(θ̃i)

0 kfil2i 0

−
1
2
k2fi +1ḟisign(θ̃i) 0

1
2
kfi


When (Pi − Li) is positive definite matrix, the stability

of the system can be guaranteed. We can know that if the
following relationships are satisfied, Pi − Li is a positive
definite matrix:

kfil1i +
1
2
k3fi − kfiF > 0

(kfil1i +
1
2
k3fi − kfiFi)kfil2i > 0

|Pi − Li| > 0

(24)

where |Pi − Li| is the determinant of Pi − Li.
According to Eq.(24), we can obtain that if the following

relationships are satisfied, Pi−Li is a positive definite matrix.
kfi >

√
2Fi

l1i > 3Fi +
2F2

i

k2fi
l2i > 0

(25)

To accomplish the following proof, we define that ρi is the
minimum eigenvalue of the matrix (Pi − Li), and hi is the
minimum eigenvalue of the matrix Hi, thus, we can obtain:

V̇i ≤ −ρimin
1∣∣∣θ̃i∣∣∣ 12 ‖Xi‖

2 (26)

We can know that: ‖Xi‖2 ≥ Vi
himax

, Vi
himin
≥ ‖Xi‖2 ≥

∣∣∣θ̃ i∣∣∣,
so the following relationship can be obtained:

V̇i ≤ −ρimin
Vi

himax

√
himin
√
Vi

= −ρimin

√
himin

himax
V

1
2
i (27)

We choose that:

ζ = min{ρ1min

√
h1min

h1max
, ρ2min

√
h2min

h2max
, ρ3min

√
h3min

h3max
}

Fromwhat is shown above, the following inequality can be
obtained:

V̇ + ζV
1
2 ≤ 0 (28)

According to Lemma 1, we can know that the state Xi
converges to the origin within a finite time, so θ̃ and ˙̃θconverge
to the origin within a finite time. And we can draw the
conclusion by Eq.(16) that the estimation errors1f̃ converge
to the origin in a finite time.

B. DESIGN OF NONLINEAR DISTURBANCE OBSERVER
FOR INNER LOOP
The nonlinear disturbance observer for inner control loop(6)
is designed as follows:

˙̂ω= −I−10 �I0ω + I−10 M+1d̂ (29)

1d̂ = −kd |v2|
1
2 sign(ω̂ − ω)+ v2 (30)

where ˙̂ω and 1d̂ represent the estimated value of ω̇ and 1d,
kd = diag{kdi}, kdi > 0 and v2 = [v21 v22 v23]T is an
auxiliary control vector that can be expressed as follows:

v̇2 = −l3sign(ω̂ − ω)− l4(ω̂ − ω) (31)

where l3 = diag{l3i}, l4 = diag{l4i}, l3i > 0, l4i > 0(i =
1, 2, 3).
Theorem 2: For the system (6), by using the disturbance

observers (29),(30), and (31), and if parameters are selected

that satisfy kdi >
√
2iDi, l3i > 3Di +

2D2
i

kdi
, l4i ≥ 0 (Di has

been defined in Assumption 1), the disturbances estimation
errors can converge within a finite time under Assumption 1.

The proof of Theorem 2 is omitted, which is similar to the
proof of Theorem 1.

IV. ADAPTIVE TERMINAL SLIDING MODE ATTITUDE
CONTROL LAW DESIGN
A. INTRODUCTION TO THE SUPER-TWIST CONTROL
ALGORITHM
Before designing the controller, we introduce the following
lemma, which is the core of the super-twist algorithm:
Lemma 2 [23]: For a class of nonlinear differential equa-

tion as follows:

ṡ(t)+k1 |s(t)|
1
2 sign(s(t))+k2

∫ t

0
sign(s(t))dt=η(t) (32)

where k1 and k2 are positive coefficients, and max |η̇(t)| ≤ C ,
C is a positive constant.
If parameters k1 and k2 satisfy the relationships that k1 ≥

1.5
√
C and k2 ≥ 1.1C , the solution of the differential

equation (32) and its first order derivative will converge to
zero within a finite time. Additionally, the variable s moves
to the origin in a smooth twisting way[30] shown in Fig. 2.
The convergence time Tr satisfies the following relationship:

Tr ≤
7.6s(t0)
k2 − C

(33)

where s(t0) is the initial value of the variable s.
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FIGURE 2. The motion trajectory of variable s.

So for an affine nonlinear system(34)

ẋ = f (x)+ g(x)u+ ζ (34)

where x is the state of the system, and f (x) is a continuous
function, g(x) is a continuous and invertible function. ζ is
the disturbance in the system. To make the system state x
converge to the origin, we can design the control law u shown
as follow:

u=g(x)−1(−f (x)−h1 |x|
1
2 sign(x)−h2

∫ t

0
sign(x)dt) (35)

If the parameters h1 and h2 satisfy that h1 ≥ 1.5
√
max

∣∣ζ̇ ∣∣,
h2 ≥ 1.1max |ζ |, the stability of the system can be guaran-
teed according to Lemma 2. The design method of control
law such as Eq. (35) is called the super-twist algorithm. The
super-twist algorithm is proposed in sliding mode control,
which is usually used to ensure that the sliding mode variable
converges to the origin within a finite time. The control
law(35) does not directly contain the sign function, which can
weaken the chattering of the controller output.

B. THE OUTER LOOP ADAPTIVE TERMINAL SLIDING
MODE CONTROLLER DESIGN
For attitude angular control loop(7), a terminal sliding mode
variable is designed as follows:

s1 = [s11s12s13]T = θe +
∫ t

0
(a1θ

q1
p1
e +b1θme )dt (36)

where θe is the attitude angle tracking error vector that θe =
θ − θd , m > 1 is a constant, a1 = diag{a11, a12, a13}, b1 =
diag{b11, b12, b13}, aji and bji(j = 1, i = 1, 2, 3) are positive
constants. q1 and p2 are positive odd integers, which satisfy
the following inequality relationship:

0 < q1 < p1 < 2q1 (37)

Based on the sliding mode variable(36), the following
adaptive sliding mode control law is designed:ωc = R−1[θ̇d − a1θ

q1
p1
e − b1θme + ωk −1f̂ ]

ωk = −k1 |s1|
1
2 sign(s1)− k2

∫ t
0 sign(s1)dt

(38)

where k1 = diag{k11, k12, k13}, k2 = diag{k21, k22, k23} and
kji(j = 1, 2, i = 1, 2, 3) are positive constants.

Theorem 3: For the system(7), if the sliding variable(36)
and the control law(38) are used, the sliding variable s1 will
converge within a finite time. After the sliding mode variable
s1 reaches the origin, the tracking errors converge within a
finite time.
Proof: The proof of Theorem 3 is divided into two steps.

The first step is to prove the convergence of the sliding mode
variable s1. The second is to prove the convergence of angular
tracking errors after the sliding mode variable converges to
zero.

The differentiation of Eq.(36) can be available as:

ṡ1 = θ̇e + a1θ
q1
p1
e + b1θme

= Rωc +1f+ a1θ
q1
p1
e + b1θme − θ̇d (39)

Substituting control law(38) into(39), we can obtain:

ṡ1=−k1 |s1|
1
2 sign(s1)−k2

∫ t

0
sign(s1)dt+1f−1f̂ (40)

Therefore, the following equation can be acquired:

ṡ1+k1 |s1|
1
2 sign(s1)+ k2

∫ t

0
sign(s1)dt=1f−1f̂ (41)

From Theorem 1, it can be known that
∥∥∥1f−1f̂∥∥∥ → 0

within a finite time. Thus, according to Lemma 1, the value
of parameter k1 and k2 can be selected as small to ensure
that sliding mode variable s1 can converge within a finite
time. Here, the super-twist algorithm is used to ensure that the
terminal sliding mode variable s1 can converge to the origin.
After the sliding mode variable s1 converges, Eq.(36) is

changed to:

θe +

∫ t

0
a1θ

q1
p1
e + b1θme dt = 0 (42)

Differentiating on both sides of Eq.(42) results as:

θ̇e + a1θ
q1
p1
e + b1θme = 0 (43)

Taking the angle of attack channel as an example, we can
obtain:

α̇e + a11α
q1
p1
e + b11αme = 0 (44)

where αe = α − αd
Eq.(44) can be written as:

α̇e = −a11α
q1
p1
e − b11αme (45)

The following equation can be obtained according to
Eq.(45):

dt =
d(αe)

−(a11α
q1
p1
e + b11αme )

(46)

1) When the absolute value of the attitude angular tracking
error is greater than one, the major part of the denomi-
nator in Eq.(46) is −b11αme .
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The time required for the error converging from
initial value to one can be calculated as follows:

t2 =
∫ 1

|αe(t1)|

d(αe)

−a11α
q1
p1
e − b11αme

=

∫
|αe(t1)|

1

d(αe)

a11α
q1
p1
e + b11αme

≤

∫
|αe(t1)|

1

d(αe)
b11αme

=
1

b11(m− 1)
(1− |αe(t1)|−m+1) (47)

where t1 is the time when the sliding mode variable
converges to zero and αe(t1) is the attitude angle track-
ing error when the sliding mode variable converges.

2) When the value of the tracking error of attitude angle
is smaller than one, the major part of the denominator

in Eq.(46) is −a11α
q1
p1
e .

The time required for the error converging from one to zero
is shown as follows:

t3 =
∫ 0

1

d(αe)

−a11θ
q1
p1
e − b11αme

=

∫ 1

0

d(αe)

a11α
q1
p1
e + b11αme

≤

∫ 1

0

d(αe)

a1α
q1
p1
e

=
1

a11(−
q1
p1
+ 1)

=
p1

a11(p1 − q1)
(48)

Thus, the total convergence time T satisfies the following
relationship:

T < t1 + t2 + t3 (49)

The analysis of the sideslip angle channel and the bank
angle channel are similar to the angle of attack channel, which
are omitted here.

The attitude angular control loop is a relative-degree- one
system. The terminal sliding mode variable commonly used
for relative-degree-one system is the integral terminal sliding
mode variable σ shown as follows[31]:

σ = e+ a
∫ t

0
e
q
p dt (50)

where e represents the state tracking error, a is a positive
constant, q and p are positive odd integers which satisfy the
relationship that p > q > 0.

When terminal sliding mode variable σ keeps at the origin,
we can obtain:

ė = −ae
q
p (51)

Thus, the time t need for e converging to zero is:

t =
|e(0)|

a(1− q
p )

1− q
p

(52)

where |e(0)| represents the initial state error.
According to the relationship between q and p, we can

know that qp < 1. According to the above analysis based on

the Eq.(46),(47),(48) and comparing the Eq.(45) and Eq.(51),
we can get that error convergence faster using the terminal
sliding mode variable designed in this paper than that using
the sliding mode variable(50), which reflects the advantage
of the sliding mode variable designed in this paper.

C. The INNER ADAPTIVE TERMINAL SLIDING MODE
CONTROLLER DESIGN
The inner loop is the angular velocity control loop. For inner
loop(6), a terminal sliding mode variable is designed as fol-
lows:

s2 = [s21s22s23]T = ωe +
∫ t

0
(a2ω

q2
p2
e + b2ωne)dt (53)

where ωe is the angle velocity tracking error vector and ωe =
ω − ωc, n > 1 is a constant. a2 = diag{a21, a22, a23}, b2 =
diag{b21, b22, b23} and aji, bji(j = 2, i = 1, 2, 3) are positive
constants. q2 and p2 are positive odd integers which satisfy
the following inequality relationship:

0 < q2 < p2 < 2q2 (54)

The adaptive sliding mode control law designed based on
sliding mode variable(53) is shown as follows:M = I0[ω̇c + I−10 �I0ω − a2ω

q2
p2
e − b2ωne +Mk −1d̂]

Mk = −k3 |s2|
1
2 sign(s2)− k4

∫ t
0 sign(s2)dt

(55)

where k3 = diag{k31, k32, k33}, k4 = diag{k41, k42, k43} and
kji(j = 3, 4 i = 1, 2, 3) are positive constants.
Theorem 4: For the system(6), if the sliding variable(53)

and the control law(55) are applied, the sliding variable s2
will converge to zero under the designed control law. After
the sliding mode variable s2 reaches the origin, the tracking
errors converge within a finite time.
Proof: The proof of Theorem 4 is divided into two steps.

The first step is to prove the convergence of the sliding
mode variable s2, and the second is to prove the convergence
of angular velocity tracking errors after the sliding mode
variable s2 converges.
The differentiation of Eq.(53) can be available as follows:

ṡ2= ω̇e + a2ω
q2
p2
e + b2ωne

=−I−10 �I0ω+I−10 M+1d+a2ω
q2
p2
e +b2ωne−ω̇c (56)

Substituting control law(55) into(56), we can obtain:

ṡ2=−k3 |s2|
1
2 sign(s2)−k4

∫ t

0
sign(s2)dt+1d−1d̂ (57)

Therefore, the following equation can be acquired:

ṡ2+k3 |s2|
1
2 sign(s2)+k4

∫ t

0
sign(s2)dt=1d−1d̂ (58)

From Theorem 2, we can know that
∥∥∥1d−1d̂∥∥∥ → 0

within a finite time. Thus, the values of parameters k3 and k4
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can be selected as small to ensure that sliding mode variable
can converge in finite time according to Lemma 1.

The proof of angular velocity tracking errors converging
within a finite time after sliding mode variable s2 converges
is similar to the proof of Theorem 3.
Remark 1: The stability of the two loops is proved accord-

ing to the above analysis. The outer loop generates the angular
velocity command ωc, which can be treated as the control
input for the outer loop. When angular velocity command ωc
can be responded to quickly by inner loop, it can be consid-
ered that the required angular velocities can be supplied to the
outer loop fast and stably. In this way, the stability of the outer
loop can be guaranteed, and the vehicle can track the desired
attitude angles stably. This idea is similar to the idea of
back-stepping. In order to ensure the stability of the system,
the response speed of the inner loop should be faster than that
of the outer loop, so the value of k1i should be chosen as ten
times larger than k3i, and the same relationship should exist
between k2i and k4i(i = 1, 2, 3).

V. NUMERICAL SIMULATION
In this part, in order to verify the effectiveness of the algo-
rithm, numerical simulations are carried out using the pro-
posed adaptive terminal sliding mode control (ATSMC). The
physical parameters of the X-33 aircraft are used in the sim-
ulation.

The nominal inertia matrix Io is

I0 =

 434270 0 −17880
0 961200 0

−17880 0 1131541


The parameters of the controllers are selected as follows:

k1 = diag{0.2, 0.2, 0.2}, k2 = diag{0.01, 0.01, 0.01}

k3 = diag{18, 18, 18}, k4 = diag{0.5, 0.5, 0.5}

m = 1.5, n = 1.5

q1 = q2 = 7, p1 = p2 = 9

a1 = diag{4, 4, 4}, b1 = diag{4, 4, 4}

a2 = diag{4, 4, 4}, b2 = diag{2, 2, 2}

l1 = diag{0.8, 0.8, 0.8}, l2 = diag{1, 1, 1}

l3 = diag{5, 5, 5}, l4 = diag{1, 1, 1}

kf = diag{1, 1, 1}, kd = diag{5, 5, 5}

The initial states of the system are

θ0 = [00, 100, 00]

To illustrate the effectiveness of the proposed algorithm,
numerical simulations are performed in following two cases.
Case 1: In this case, the command signals are step signals,

and the performance of the method proposed is compared
to that of the integral sliding mode control(ISMC) and the
integral terminal sliding mode control(ITSMC).

The integral sliding mode variables are presented as fol-
lows:

σ 1 = θe +

∫ t

0
θedt (59)

σ 2 = ωe +

∫ t

0
ωedt (60)

The integral sliding mode variable attitude control laws are
shown as follows:

ωc = R−1[θ̇d − θe − kc1σ 1 − kc2sign(σ 1)] (61)

M = I0[ω̇c + I−10 �I0ω − ωe − kc3σ 2 − kc4sign(σ 2)]

(62)

The parameters are chosen as:

kc1 = diag{0.2, 0.2, 0.2}, kc2 = diag{0.01, 0.01, 0.01}

kc3 = diag{18, 18, 18}, kc4 = diag{0.5, 0.5, 0.5}

The ITSMC is designed based on the terminal slidingmode
variable(50) and the super twist algorithm. And the parameter
values of ITSMC are the same as that of ATSMC.

FIGURE 3. The response curve of angle of attack.

Comparisons between the adaptive terminal sliding mode
control and ISMC, ITSMC are shown in Fig.3-7. It can
be seen that all methods can ensure the angular tracking
errors converge, but the errors convergence speed using ISMC
is slower than using ATSMC and ITSMC. There is obvi-
ous overshoot in the tracking process using ISMC, which
is not conducive to the stability of the vehicle. However,
there is less overshoot in the tracking process by applying
the ATSMC and ITSMC. It also can be obtained from the
response curves of attitude angles that the tracking errors
convergence speed using ATSMC is faster than that using
ITSMC, which reflects the advantage of the terminal sliding
mode variables designed. Comparing the control torque curve
of two methods shown in Fig. 6 and Fig. 7, it is obvious
that high frequency chattering exists in conventional integral
sliding mode controller, which makes it difficult to be used
in practical applications. The adaptive terminal sliding mode
control law does not contain the sign function directly, and
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FIGURE 4. The response curve of sideslip angle.

FIGURE 5. The response curve of bank angle.

FIGURE 6. Control torque curve using ATSMC.

disturbances are effectively compensated, so the magnitude
of chattering is reduced.
Case 2: In this case, the method proposed is used when the

reentry vehicle makes large-scale maneuvers. The following
disturbances, consisting of different frequency components,
are added to the inner control loop and outer control loop after
12 seconds to simulate the influence of atmospheric changes

FIGURE 7. Control torque curve using ISMC.

FIGURE 8. The response curve of angle of attack using ATSMC.

and parameter uncertainties on the flight process.

1f =


0.1+ sin(t)+ sin(t/5)
0.1+ sin(t)+ sin(t/5)
0.1+ sin(t)+ sin(t/5)

(63)

1d =


0.01+ 0.1 sin(t)+ 0.1 sin(t/5)
0.01+ 0.1 sin(t)+ 0.1 sin(t/5)
0.01+ 0.2 sin(t)+ 0.2 sin(t/5)

(64)

To prove the effectiveness of the nonlinear disturbance
observer (NDO) proposed in section III. The extended
state observer(ESO) proposed in [19] and the sliding mode
observer(SMO) proposed in [26] are also used to estimate the
disturbances in the inner loop.

The simulation results are shown in Fig. 8-20. The sideslip
angle is generally maintained at 0 degrees during the reentry
flight. The command signals of angle of attack and bank
angle are square wave signals. According to the response
process of the attitude angles, it can be known that with
ATSMC, the vehicle can quickly track the desired attitude
angle commands despite the presence of disturbances. With
TSMC, there are tracking errors in the response process due
to the influence of disturbances. According to the comparison
test, we can know that using the disturbance observer can
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FIGURE 9. The response curve of sideslip angle using ATSMC.

FIGURE 10. The response curve of bank angle using ATSMC.

FIGURE 11. Control torque curve using ATSMC.

improve the robustness of the system, and the system can
obtain higher tracking accuracy, which is beneficial for the
vehicle to complete the flight mission. The strong robustness
of the conventional sliding mode controller is at the expense
of selecting large control gains, which will cause the con-
troller output to generate high frequency chattering. And the
robustness of the conventional sliding mode control is just to
ensure the stability of the system. However, considering the
estimated value of disturbances in the control laws can make
the controllers compensate for disturbance adaptively and

FIGURE 12. The response curve of angle of attack using TSMC.

FIGURE 13. The response curve of sideslip angle using TSMC.

FIGURE 14. The response curve of bank angle using TSMC.

get good dynamic performance. At the same time, by using
the nonlinear disturbance observers, smaller control gains are
need to ensure the stability of the system, which is helpful to
reduce the chattering of the controller output and guarantee
the effectiveness of the actuators.

From Fig. 11, we can obtain that the vehicle can track the
command signals effectively without significant chattering in
the output of the controller. It can be known from Fig. 16 and
Fig. 17 that the disturbances in two control loops are accu-
rately estimated by using the disturbance observers proposed.
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FIGURE 15. Control torque curve using TSMC.

FIGURE 16. The estimated value of disturbances in outer loop by NDO.

FIGURE 17. The estimated value of disturbances in inner loop by NDO.

According to the estimated errors curve Fig. 20, it can be
obtained that the observation error converges faster using the
proposed NDO than using ESO and SMO, and there are no
steady state errors by using NDO. The parametric selection of
the extended state observer relies on experience, so to choose

FIGURE 18. The estimated value of disturbances in inner loop by ESO.

FIGURE 19. The estimated value of disturbances in inner loop by SMO.

FIGURE 20. The estimated errors of disturbances in inner loop using
NDO, ESO and SMO.

appropriate parameters for ESO requires more work than that
for NDO. The low pass filter is required for SMO to reduce
the chattering, which is not required for NDO.
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VI. CONCLUSION
To achieve an effective attitude control for reentry vehicles,
an adaptive terminal sliding mode control law is proposed
in this paper. First, the attitude control system is divided
into an angular control loop and an angular velocities control
loop. Then nonlinear disturbance observers are designed to
obtain accurate estimations of the disturbances. The stability
of the observer is analyzed by Lyapunov theory. Next, new
terminal sliding mode control laws are proposed for each
loop. The estimated values of the disturbance are used in the
control laws to improve the anti-interference ability of the
system. The control laws proposed are used to control
the attitude of the reentry vehicle and are compared with
the ISMC and TSMC in the same situation for comparisons.
The performance of the proposed disturbance observers and
controllers are illustrated via numerical simulations.
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