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ABSTRACT Deceptive jamming may not only induce a large amount of false alarms and deteriorate the
target detection performance, but also lead to degraded space-time adaptive processing (STAP) performance
in an airborne radar. To tackle these issues, this paper proposes a cognitive transmitting scheme to counter the
deceptive jamming for airborne array radar. The proposed approach is composed of two steps. The first step
is the deceptive jamming perception. A specially designed high pulse repetition frequency (PRF) waveform
is transmitted, and then the deceptive jamming is identified according to the angle clustering feature of the
false targets. In the second step, the phase-only transmit pattern with notches at the jammers’ directions is
designed. The encountered pattern synthesis problem is nonconvex due to the fixed excitations constraint.
To solve this problem, a nested alternating direction method of multipliers (N-ADMM) is proposed. With
the developed approach, the radiated power at the jammers’ directions is attenuated significantly. Therefore,
the probing signal possesses the characteristic of low probability of intercept (LPI). Numerical examples are
given to demonstrate the effectiveness of the proposed approach.

INDEX TERMS Airborne radar, deceptive jamming, pattern synthesis, electronic counter-countermeasures
(ECCM), space-time adaptive processing (STAP), ADMM.

I. INTRODUCTION
Airborne radar is an effective sensor for providing long-
range andwide-area groundmoving targets reconnaissance or
surveillance [1]–[3]. The airborne radar usually operates at a
high altitude, which means it is easy to suffer from electronic
attacks. The typical electronic attack includes suppressive
jamming and deceptive jamming. The suppressive jamming
will raise the noise level of radar system, and thus degrade
the performance of target detection [4]. Different from the
suppressive jamming, deceptive jamming can not only raise
the detection threshold, but also mislead the radar system to
track false targets [5]. Even worse, the radar data processor
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is easy to be saturated in the presence of dense false tar-
gets [6]. Generally, compared with the suppressive jamming,
the deceptive jamming is more difficult to be eliminated or
identified in a radar system. To counter deceptive jamming,
various electronic counter-countermeasures (ECCM) have
been proposed [7]–[17]. They can be categorized into two
types, i.e., receive processing-based approaches and transmit
modulation-based approaches.

The receive processing-based approaches try to filter or
identify deceptive jamming based solely on the received
signal [7]–[10]. Space-time adaptive processing (STAP) is
a typical receive processing-based approach in an airborne
radar [7]. It combines multiple spatial channels with multiple
coherent pulses to realize clutter and jamming rejection.
Since the locations of false targets are usually unpredictable
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in range domain, it is hard to obtain sufficient range samples
used for deceptive jamming covariance matrix estimation.
Therefore, STAP has limited performance in rejecting decep-
tive jamming. The polarization filtering-based approach has
the ability to suppress deceptive jamming to some extent [8],
but this approach needs extra polarization channels which
will bring increased hardware cost. In addition, the motion
feature and the phase noise of digital radio frequency
memory (DFRM) could be used to identify deceptive jam-
ming [9], [10]. However, these approaches can only distin-
guish the deceptive jamming from the true targets, and the
negative impact of deceptive jamming on target detection is
still existing.

Different from above receive processing-based approaches,
the transmit modulation-based approaches try to modulate
the probing signal or transmit pattern to reducing the prob-
ability of radar being jammed [11]–[17]. The frequency
agile and waveform diversity-based approaches are effective
transmit modulation-based anti-jamming schemes [11]–[13].
However, these schemes will complicate the radar signal.
Moreover, their influence on suppression of space-time
coupled clutter has not been considered. The transmit
pattern notching with prior knowledge of jammers’
directions is another typical transmit modulation-based
approach [14]–[17]. The synthesized beampattern has low
gains at the jammers’ directions. Therefore, the probability
of radar signal being intercepted could be reduced signifi-
cantly. The greatest advantage of transmit pattern notching
is that it will not complicate the probing waveforms and not
change the space-time coupling characteristic of the ground
clutter. Therefore, conventional STAP algorithms can achieve
a satisfactory performance in this case. However, the problem
of deceptive jamming identification and direction finding in
a practical airborne radar system is rarely discussed in the
existing literature.

The development trend of modern radar signal processing
has gradually changed from data-based adaptive receiv-
ing processing to cognitive transmitting and cognitive receiv-
ing processing, that is, radar can adjust transmitting and
receiving systems adaptively according to the electromag-
netic environment. This kind of fully adaptive radar is
referred to as cognitive radar [18]–[20]. The perception-
action cycle of a cognitive radar is mainly composed of
three steps, i.e., sensing the environment, deciding upon an
appropriate action, and then adapting accordingly [20]. In this
work, the problem of anti-deception jamming for airborne
array radar is solved in a cognitive perspective. Specifically,
in the perception stage, the perception waveform is rationally
designed to sense the jamming environment. Considering
that the clutter signal will deteriorate the performance of
parameter estimation, a high pulse repetition frequency (PRF)
waveform with a relatively large clutter-free region is devised
to sense the deceptive jamming. Then, the number of jammers
and corresponding directions is estimated according to the
clustering feature of the false targets.

In the action stage, the transmit pattern is synthesized with
notches at the jammers’ directions. In order to simplify the
hardware cost, we assume that only the phase of each antenna
element is adjustable. The resulting problem is equivalent
to a quadratically constrained linear programming (QCLP)
problem with fixed amplitudes constraint, and thus, it is
nonconvex. Unlike the existing approaches for phase-only
pattern design using semi-definite relaxation (SDR) tech-
nique [16], [17], a nested alternating direction method of
multipliers (N-ADMM) is proposed to tackle the nonconvex
QCLP problem. More specifically, we first apply variable
splitting to introduce auxiliary two-element real vectors for
each angular response constraint [21]. In doing so, the orig-
inal problem can be solved via tackling two subproblems
iteratively. Note that one of the subproblems is still noncon-
vex due to the fixed amplitudes constraint. The ADMM is
applied again to tackle this subproblem at each iteration. The
original problem can be efficiently solved by the proposed
N-ADMM without using the CVX toolbox [22]. With the
proposed active anti-jamming scheme, the radiated power at
the jammers’ directions is attenuated significantly. Therefore,
the probability of radar being jammed could be decreased
significantly. Furthermore, the signal processing burden at the
receiving end could be reduced effectively.

The main contributions of the proposed work are briefly
summarized as follows.

i) We propose to counter the deceptive jamming for the
airborne radar in a cognitive perspective. A full perception-
action cycle is given.

ii) The criterion for sensing waveform parameter design is
presented with enhanced environment perception capability.

iii) An algorithm for deceptive jamming identification and
localization is devised based on the angle-clustering feature
of false targets.

iv) A novel method, termed Nested ADMM (N-ADMM),
is proposed to tackle the problem of phase-only pattern
notching. The corresponding scheme for computational load
reduction is also provided. Compared with the SDR-based
approaches, the proposed N-ADMM requires less computa-
tion cost meanwhile owns better performance.

The remainder of this paper is organized as follows.
Section II develops the signal model of airborne array radar.
Section III elaborates the proposed cognitive anti-deception
jamming scheme. Section IV gives some discussions on the
proposed approach. Simulation results are presented to verify
the effectiveness of the proposed algorithm in sectionV, while
the conclusions are drawn in section VI.
Notations: Vectors and matrices are denoted by bold-

face lowercase and uppercase letters, respectively. The E { },
diag { }, ‖ ‖, T and H stand for the expectation, diagonal-
ization, Frobenius norm, transpose and Hermitian transpose,
respectively. The ⊗ and � represent the Kronecker prod-
uct and Hadamard product, respectively. The In denotes the
n× n identity matrix, while < { } and = { } mean the real and
imaginary parts, respectively.
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FIGURE 1. Operation geometry of airborne radar.

II. SIGNAL MODEL OF AIRBORNE ARRAY RADAR
Let us consider an airborne pulse-Doppler (PD) radar system
that utilizes a N -element antenna array with interelement
spacing d , and a K -pulse narrowband coherent waveform
with pulse-repetition-interval (PRI) Tp. Fig. 1 depicts the
operational geometry of an airborne radar. Only the sidelobe
jamming is considered in this work. The antenna array is
a sidelooking array whose axis is aligned with the flight
direction. The height of the radar is H and the speed of the
platform is v.

After matched filtering, the received space-time snapshot
of the target can be expressed as [7]

xt = αta (ϑt)⊗ b ($t) , (1)

where αt is the complex amplitude of the target, a (ϑt) and
b ($t) denote the spatial steering vector and temporal steering
vector respectively, which are given by

a (ϑt)=
[
1, exp {j2πϑt} , · · · , exp {j (N−1) 2πϑt}

]T
, (2)

b ($t)=
[
1, exp {j2π$t} , · · · , exp {j (K−1) 2π$t}

]T
, (3)

where ϑt = d cos θt/λ is the normalized spatial frequency,
$t = 2vtTp/λ denotes the normalized Doppler frequency, λ
represents the wavelength, θt and vt stand for the direction of
arrival (DOA) and radial velocity of the target.

According to the general clutter model introduced in [7],
the clutter return from each ambiguous range can be modeled
as the superposition of many independent clutter sources.
Therefore, the space-time snapshot of the clutter can be
expressed as

xc =
Na∑
p=1

Nc∑
q=1

αp qa
(
ϑpq

)
⊗ b

(
$pq

)
, (4)

where Na is the number of range ambiguities, Nc is the num-
ber of clutter patches, αp q is the complex amplitude of the
clutter patch, ϑpq = d cos θpq/λ and $pq = 2Tpv cos θpq/λ
are normalized spatial frequency and normalized Doppler
frequency of the clutter patch respectively, and θpq is the DOA
of the clutter patch.

The DFRM repeat jammer has the ability to intercept and
store the radar signal, and modulate the intercepted signal
with arbitrary delay and Doppler [5]. Therefore, the coherent
repeater jammer is able to generate plenty of false targets,
namely, deceptive jamming. Since the waveforms of false
targets are very similar to that of true target, the deceptive
jamming is very easy to obtain a high processing gain of
matched filtering in the radar’s receiver. Similar to the target
snapshot, the space-time snapshot of deceptive jamming can
be expressed as

xj =
M∑
m=1

Pm∑
i=1

αj,mia
(
ϑj,m

)
⊗ b

(
$j,mi

)
, (5)

where M is number of jammers, Pm denotes the number of
false targets generated by the m-th jammer, ϑj,m stands for
the normalized spatial frequency of the m-th jammer, αj,mi
and$j,mi are the complex amplitude and normalized Doppler
frequency of the false target, respectively. It is worth noting
that the false targets generated by the same jammer share the
same spatial frequency.

According to aforementioned definitions, if the range bin
of interest contains a true target and deceptive jamming, then
the received space-time snapshot can be expressed as

x = xt + xc + xj + xn, (6)
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where xn is the noise component. We assume that the noise
snapshot xn is a zero-mean complex Gaussian random vector
with covariance matrix given by σ 2

n INK , where σ
2
n is the noise

power.
The STAP technique is a critical data-based receiving

processing technique in an airborne array radar [1]. It com-
bines multiple spatial channels with coherent pulses to realize
clutter and jamming rejection, provided that the statistical
property of clutter and jamming could be estimated correctly.
However, in the deceptive jamming scenario, the false tar-
gets are randomly and sparsely distributed in range-Doppler
domain. In this case, the space-time dataset will become
a non-homogeneous dataset. On one hand, to improve the
performance of STAP in non-homogeneous environment,
the STAP algorithms are usually carried out combined with
non-homogeneous detector (NHD) [23]. That is to say, the
false target contaminated samples will be removed from the
dataset before STAP. Thus, the statistical property of decep-
tive jamming is hard to be correctly estimated in this case.
On the other hand, if the STAP algorithms are performed
without using NHD, the statistical property of deceptive jam-
ming is still hard to be estimated correctly (especially the
power of jamming), because the false targets are randomly
and sparsely distributed in range domain. In summary, it is
hard to obtain sufficient training data to estimate the statistical
property of deceptive jamming. Therefore, STAP has limited
performance in deceptive jamming suppression. The residual
false targets will introduce a large amount of false alarms,
which would bring heavy computational load to subsequent
data processing. In the next section, a scheme of cognitive
anti-deception jamming will be introduced to circumvent the
above mentioned problem.

III. COGNITIVE-TRANSMIT-BASED ANTI-DECEPTION
JAMMING
In this section, we introduce a cognitive transmit-based anti-
deception jamming scheme. The block diagram of the pro-
posed scheme is shown in Fig. 2. It is mainly composed of two
parts, i.e., deceptive jamming perception and transmit pattern
notching. The details of these two parts will be introduced in
the following subsections.

A. DECEPTIVE JAMMING PERCEPTION FOR AIRBORNE
ARRAY RADAR
In the perception stage, two fundamental missions should be
accomplished: (1) sense and recognize deceptive jamming
and (2) estimate the directions of jammers both in clutter-
contaminated environment. To this end, a burst of sensing
pulses with specially designed waveform is transmitted.
Then, the targets (including true targets and false targets)
are detected from the sensing data, and the DOAs of the
detected targets are estimated. Further, the deceptive jamming
can be identified according to the clustering feature of the
estimated DOAs, meanwhile the number of jammers could
be determined. The detailed steps for deceptive jamming
perception are given as follows.

FIGURE 2. Block diagram of the proposed cognitive transmit-based
anti-deception jamming scheme.

Step 1 (Sensing Waveform Parameter Design and Target
Detection): Generally, the ground clutter of an airborne radar
would spread in Doppler domain due to platformmotion. As a
consequence, a large proportion of Doppler region may be
occupied by the ground clutter when the radar system oper-
ates at low- or mid-PRF. The probability of target detection
and the accuracy of DOA estimation will degrade if the target
is located in clutter region. In order to improve the perfor-
mance of deceptive jamming perception, it is reasonable to
employ high-PRF waveform. In high-PRF case, the clutter-
free region is relatively large. Therefore, the false targets (i.e.,
deceptive jamming) will be located in clutter-free region with
a high probability.

According to the observation geometry in Fig. 1, the
Doppler bandwidth of the ground clutter is

Bd = 4v/λ. (7)

Therefore, the PRF of the sensing waveform should be larger
than Bd. However, the upper bound of PRF should not be
infinite. Because that the higher the PRF is, the fewer the
range bins are. If there exist a large amount of false targets, the
number of range bins available for background level estima-
tion would become very small in large PRF case. As a result,
the target detection performance will suffer from significant
degradation. In this work, as a rule of thumb, the PRF of the
sensing waveform is set as 2Bd to 4Bd to reserve a relatively
large clutter-free region and sufficient range bins. The other
parameters of sensing waveform could be set to be the same
as that of probing waveform.

After matched filtering, the received sensing data can
be expressed as (6). In order to detect the false targets,
the received data is firstly transformed into range-Doppler
domain via PD processing. The PD processing is actually
the non-adaptive space-time filtering. Therefore, for the tar-
get with normalized spatial frequency ϑ0, the output of the
k̄-th Doppler bin corresponding to the l-th range bin can be
expressed as

ỹk̄ l =
[
a (ϑ0)⊗

(
q� b

(
$k̄

))]H xl, (8)
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where k̄ = 1, 2, · · · , K̄ andK̄ is the number of Doppler bins
which could be selected as K̄ = 2dlog2 Ke, l = 1, 2, · · · ,L
and L is the number of range bins,$k̄ = (k̄ − 1)

/
K̄ denotes

the normalized Doppler frequency of the k̄-th Doppler bin,
q ∈ RK×1 is the temporal taper vector, e.g., Chebyshev or
Taylor window.

Then, we can perform CFAR detection in range-Doppler
domain. Considering that the performance of cell-averaging
CFAR (CA-CFAR) detector degrades rapidly in nonideal
conditions caused bymultiple interfering targets (i.e. multiple
false targets scenario considered in this paper), the ordered-
statistic CFAR (OS-CFAR) is a reasonable alternative to the
CA-CFAR [24]. The OS-CFAR trades a small loss in detec-
tion performance relative to the CA-CFAR in ideal conditions
for much less performance degradation in nonideal condi-
tions [25]. Define a set consisting of the coordinates of the
detected targets in range-Doppler map, i.e.,

3 =
{
(k̄, l)

∣∣∣∣ỹk̄ l ∣∣ ≥ ξ } , (9)

where ξ = TZ is the detection threshold, Z is the averaging
background level which is estimated by the l0-th largest ele-
ment of the rank-ordered magnitudes of L0 reference cells,
T is the threshold factor which can be determined by the
probability of false alarm, l0 and L0 [24], i.e.,

pfa = l0

(
L0
l0

)
0(l0)0(T + L0 − l0 + 1)

0(T + L0 + 1)
, (10)

where 0 (x) =
∫
+∞

0 e−t tx−1dt is the Gamma function of x.
Fig. 3 illustrates the possible situations of the detected

targets. It is shown that the detected targets may be located
in clutter region or in clutter-free region (with a high
possibility).

FIGURE 3. Possible locations of the detected targets in range-Doppler
map.

Step 2 (DOA Estimation): As shown in Fig.3, the detected
targets are separable in range-Doppler domain, thus the
DOA of the detected target can be estimated in post-Doppler
element space. There exist a lot of DOA estimation meth-
ods, such as subspace-based methods [26]–[28], compressive

sensing-based methods [29], [30], maximum likelihood-
based (ML) methods [31], [32] and so on. Among these
methods, only theML-basedmethods are capable of handling
the interference (such as ground clutter). Therefore, in this
paper, the ML method is utilized to estimate the DOA.

The spatial data vector of the k̄-th Doppler bin can be
obtained as

x̃k̄ l =
[
IN ⊗

(
q� b

(
$k̄

))]H xl . (11)

According to the ML estimation theory [31], the normalized
target spatial frequency can be estimated by

ϑ̂k̄ l=arg max
ϑ

aH (ϑ) R̂−1
k̄

x̃k̄ l x̃
H
k̄ l
R̂−1
k̄

a (ϑ)

aH (ϑ) R̂−1
k̄

a (ϑ)
, (k̄, l) ∈ 3,

(12)

where R̂k̄ is the interference-plus-noise covariance matrix of
the k̄-th Doppler bin. When the target is located in clutter-
free region, the covariance matrix R̂k̄ could be replaced by
the noise covariance matrix, i.e.,

R̂k̄ = σ
2
n IN . (13)

If the detected target is located in clutter region, the covari-
ance matrix R̂k̄ should be estimated by the clutter samples,
that is

R̂k̄ =
1

L̃0

L∑
l=1,l /∈3

x̃k̄ l x̃
H
k̄ l, (14)

where L̃0 =
∑L

l=1,l /∈3 l is the number of available clut-
ter samples. It should be noted that the interfering targets
included in R̂k̄ will lead to significant DOA estimation per-
formance degradation. Therefore, the range samples which
contain the interfering targets are discarded in the process of
estimating R̂k̄ .
Step 3 (Deceptive Jamming Identification and Jammer

Localizatio): It can be seen from (5) that the false targets
generated by the same jammer share the same DOA. It means
that the estimated false target DOAs will concentrate in the
angle regions where the jammers are. Hence, the deceptive
jamming could be recognized according to the number of
targets in a given angle region. Specifically, given the angle
region [ϑ̂k̄ l − 1ϑ, ϑ̂k̄ l + 1ϑ] (where (k̄, l) ∈ 3) and a
threshold Nmin, if the target number Nk̄ l in the angle region
[ϑ̂k̄ l −1ϑ, ϑ̂k̄ l +1ϑ] exceeds Nmin, we conclude that there
may exist a jammer in this angle region. The detailed algo-
rithm for jammer localization is summarized in Table 1. Some
remarks on the proposed algorithm are given as follows.
Remark 1: At the input stage, the true targets are removed,

i.e., only the targets outside of mainlobe are processed.
Remark 2: The parameter 1ϑ is selected as ϑ3dB

/
10 to

account for the deviation of estimated DOA, where ϑ3dB is
the beamwidth.
Remark 3: The parameter Nmin is selected as 3. A possible

scenario is that there may be more than 3 sidelobe true targets
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TABLE 1. Proposed angle clustering feature-based jammer localization
algorithm.

appearing at the same angle region. In this case, the synthe-
sized beampattern will introduce an additional notch at this
angle region. (In practice, the possibility of multiple sidelobe
true targets appearing at the same angle region is very small).

B. TRANSMIT PATTERN NOTCHING USING N-ADMM
In the action stage, the transmit pattern is synthesized to
produce notches at the jammers’ directions. Herein, in order
to simplify the hardware structure, the notches are generated
via phase-only weight control. That is to say, the shaped
beampattern could be generated by only adjusting the phase
of each antenna element.

The problem of phase-only beampattern synthesis can be
formulated as maximizing the mainbeam gain under the
weight amplitude constraint and angular response constraint,
that is

max
w

∣∣∣wHa (ϑ0)
∣∣∣

s.t. |wn| = cn, n = 1, · · · ,N∣∣∣wHa
(
ϑ̄j,m

)∣∣∣2 ≤ Um, m = 1, · · · ,M . (15)

wherew = [w1,w2, ...,wN ]T ∈ CN×1 is the so-called weight
vector, {cn}Nn=1 are the amplitudes of the weighting factors
{wn}Nn=1, Um stands for the upper bound of the corresponding
radiated power. By introducing an auxiliary variable η, (15)
could be equivalently formulated as a minimization problem:

min
w,η

η

s.t.
∣∣∣wHa (ϑ0)

∣∣∣ ≥ −η, η < 0∣∣∣wHa
(
ϑ̄j,m

)∣∣∣2 ≤ Um, m = 1, · · · ,M

|wn| = cn, n = 1, · · · ,N . (16)

Actually, (16) is a QCLP problem, but it is nonconvex
due to the first and the third constraints. In order to solve
this problem, a N-ADMM is proposed. This algorithm is
based on the idea that multiple inequality constraints could be
associated with different optimization variables so that they
can be tackled separately [21]. More specifically, we first
introduce real-valued two-element auxiliary vectors

y0 = A (ϑ0) w̃ ∈ R2×1 (17)

ym = A
(
ϑ̄j,m

)
w̃ ∈ R2×1, m = 1, · · · ,M , (18)

where

w̃ =
[
< {w}
= {w}

]
(19)

A (ϑ0) =
[
<
{
aT (ϑ0)

}
−=

{
aT (ϑ0)

}
=
{
aT (ϑ0)

}
<
{
aT (ϑ0)

} ] (20)

and A
(
ϑ̄j,m

)
is defined in the same manner. With these defi-

nitions, (16) becomes

min
w,η

η

s.t. y0 = A (ϑ0) w̃
ym = A

(
ϑ̄j,m

)
w̃ , m = 1, · · · ,M

|y0|2 ≥ η2, η < 0
|ym|2 ≤ Um, m = 1, · · · ,M
w̃2
n + w̃

2
n+N = c2n, n = 1, · · · ,N . (21)

Define the augmented Lagrangian as

`0,ρ
(
w̃, η, y0, ym,λ0,λm

)
= η +

(
λT
0
(
y0 − A (ϑ0) w̃

)
+
ρ

2

∥∥y0−A (ϑ0) w̃∥∥2)
+

M∑
m=1

(
λT
m
(
ym−A

(
ϑ̄j,m

)
w̃
)
+
ρ

2

∥∥ym − A
(
ϑ̄j,m

)
w̃
∥∥2),
(22)

where λ0 ∈ R2×1 and λm ∈ R2×1 are the Lagrange multiplier
vectors, while ρ > 0 is a user-defined parameter representing
the primal step size. Then all unknowns in (21) as well as
λ0 and λm can be determined using the iterative manner of
the ADMM from `0,ρ

(
w̃, η, y0, ym,λ0,λm

)
:

Step 1: Update w̃ with given
{
η(i), y(i)0 , y

(i)
m ,λ

(i)
0 ,λ

(i)
m

}
(which are obtained from the i-th iteration) by solving

min
w̃

{
η(i)+

((
λ
(i)
0

)T (
y(i)0 −A (ϑ0) w̃

)
+
ρ

2

∥∥∥y(i)0 −A (ϑ0) w̃∥∥∥2)
+

M∑
m=1

((
λ(i)
m

)T (
y(i)m −A

(
ϑ̄j,m

)
w̃
)

+
ρ

2

∥∥∥y(i)m −A (ϑ̄j,m) w̃∥∥∥2)}
s.t. w̃2

n+w̃
2
n+N = c2n, n = 1, · · · ,N . (23)

Overlooking the terms independent of w̃, (23) can be com-
pactly rewritten as

min
w̃

w̃TR1w̃+ w̃Td(i)1

s.t. w̃2
n + w̃

2
n+N = c2n, n = 1, · · · ,N , (24)

where

R1=
ρ

2
AT (ϑ0)A (ϑ0)+

ρ

2

M∑
m=1

AT (ϑ̄j,m)A (ϑ̄j,m), (25)

d(i)1 =−A
T (ϑ0)

(
λ
(i)
0 +ρy

(i)
0

)
−

M∑
m=1

AT (ϑ̄j,m) (λ(i)
m +ρy

(i)
m

)
.

(26)
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Note that (24) is still nonconvex due to the amplitude
constraints. Actually, the amplitude constraints can be rewrit-
ten as multiple quadratic equality constraints. By doing so,
(24) could also be solved by ADMM efficiently. The detailed
procedure to update w̃ is given in Appendix.
Step 2: Update {η, y0, ym} with given

{
w̃(i+1),λ

(i)
0 ,λ

(i)
m

}
by solving

min
η,y0,ym

{
η+

((
λ
(i)
0

)T (
y0 − A (ϑ0) w̃(i+1)

)
+
ρ

2

∥∥∥y0−A (ϑ0) w̃(i+1)
∥∥∥2)

+

M∑
m=1

((
λ(i)
m

)T (
ym − A

(
ϑ̄j,m

)
w̃(i+1)

)
+
ρ

2

∥∥∥ym − A
(
ϑ̄j,m

)
w̃(i+1)

∥∥∥2)}
s.t. |y0|2 ≥ η2, η < 0

|ym|2 ≤ Um, m = 1, · · · ,M . (27)

After removing the irrelevant terms, (27) can be rewritten as

min
η,y0,ym

{
η +

ρ

2

∥∥∥y0 − ỹ(i)0
∥∥∥2 +ρ

2

M∑
m=1

∥∥∥ym − ỹ(i)m
∥∥∥2}

s.t. |y0|2 ≥ η2, η < 0

|ym|2 ≤ Um, m = 1, · · · ,M , (28)

where ỹ(i)0 = A (ϑ0) w̃(i+1)
− λ

(i)
0

/
ρ and ỹ(i)m =

A
(
ϑ̄j,m

)
w̃(i+1)

− λ
(i)
m
/
ρ.

Note that ym is independent of η and y0 in (28). Thus,
(28) can be decomposed into two optimization subproblems,
i.e.,

min
ym

ρ

2

M∑
m=1

∥∥∥ym − ỹ(i)m
∥∥∥2

s.t. |ym|2 ≤ Um, m = 1, · · · ,M (29)

and

min
η,y0

η +
ρ

2

∥∥∥y0 − ỹ(i)0
∥∥∥2

s.t. |y0|2 ≥ η2, η < 0. (30)

Actually, (29) can be further separated into M subprob-
lems, and the m-th subproblem is

min
ym

∥∥∥ym − ỹ(i)m
∥∥∥2

s.t. |ym|2 ≤ Um. (31)

The solution of (31) is given by

y(i+1)m =


√
Um∥∥∥ỹ(i)m ∥∥∥ ỹ(i)m ,

∥∥∥ỹ(i)m ∥∥∥ ≥ √Um
ỹ(i)m ,

∥∥∥ỹ(i)m ∥∥∥ < √Um. (32)

However, for the subproblem (30), η is coupled with y0.
Fortunately, with given η < 0, it is readily shown that the

minimum of
∥∥∥y0 − ỹ(i)0

∥∥∥2 can be calculated as

min
y0

{∥∥∥y0−ỹ(i)0 ∥∥∥2}=
0,

∥∥∥ỹ(i)0 ∥∥∥ ≥ −η(
η +

∥∥∥ỹ(i)0 ∥∥∥)2 , ∥∥∥ỹ(i)0 ∥∥∥ < −η. (33)

Therefore, by substituting (33) back into (30), (30) can be
rewritten as a function of η, that is

min
η

η, −

∥∥∥ỹ(i)0 ∥∥∥ ≤ η < 0

η +
ρ
2

(
η +

∥∥∥ỹ(i)0 ∥∥∥)2 , η < −

∥∥∥ỹ(i)0 ∥∥∥ . (34)

Note that, when −
∥∥∥ỹ(i)0 ∥∥∥ ≤ η < 0, the minimum of (34)

is

V1 = −
∥∥∥ỹ(i)0 ∥∥∥ . (35)

The second row of (34) is a quadratic function of η which can
be rewritten in a stand quadratic form, i.e.,

min
η

ρ

2

(
η −

(
−

∥∥∥ỹ(i)0 ∥∥∥− 1
ρ

))2

−
1
2ρ
−

∥∥∥ỹ(i)0 ∥∥∥
s.t. η < −

∥∥∥ỹ(i)0 ∥∥∥ . (36)

Since −
∥∥∥ỹ(i)0 ∥∥∥− 1

/
ρ < −

∥∥∥ỹ(i)0 ∥∥∥ (because ρ > 0), the mini-
mum of (36) is

V2 = −
∥∥∥ỹ(i)0 ∥∥∥− 1

2ρ
. (37)

Obviously, V2 < V1 (because ρ > 0). Therefore, the
optimal solution of (34) is dependent on (36). According
to (36), we can determine the optimal η as

η(i+1) = −

∥∥∥ỹ(i)0 ∥∥∥− 1
ρ
. (38)

Once η(i+1) is determined, the optimal y0 can be obtained by
solving (30), that is

y(i+1)0 = −
η(i+1)∥∥∥ỹ(i)0 ∥∥∥ ỹ

(i)
0 . (39)

Step 3: Update λ0 and λm as

λ
(i+1)
0 = λ

(i)
0 + ρ

(
y(i+1)0 − A (ϑ0) w̃(i+1)

)
, (40)

λ(i+1)
m = λ(i)

m + ρ
(
y(i+1)m − A

(
ϑ̄j,m

)
w̃(i+1)

)
. (41)

Via iterating Steps 1 to 3, the proposed N-ADMM for
transmit pattern notching is summarized in Table 2.
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TABLE 2. Proposed nested ADMM for transmit pattern notching.

IV. DISCUSSIONS
A. ON PRACTICAL IMPLEMENTATION
1) CPI LENGTH OF SENSE WAVEFORM
In the deceptive jamming perception stage, a burst of pulses
is transmitted to sense the jamming environment. Actually,
the CPI length of sense waveform could be shorter than that
of normal probing waveform. This is because the false targets
are much easier to be detected than the true target due to
the large jamming power. In another words, the integration
time of the sense waveform (i.e., the length of CPI) could
be set as a small value (such as a half of the CPI of probing
waveform). A short CPI will reduce the data throughput of
the radar system and also reduce the consumption of time
resource in perception stage.

2) NOTCH WIDTH
In the transmit pattern notching stage, we assumed the
jamming is a point-like jamming. The synthesized pattern
can only produce nulls at the estimated directions of the
jammers. In practice, the DOA estimation algorithm will
induce DOA deviation, meanwhile the platform motion also
results in direction bias. Therefore, it is necessary to broaden
the notches to some extent to handle these biases. In our
numerical examples, all notches are widened to 3◦ via adding
angle grids around the estimated DOAs of jammers.

B. ON COMPUTATIONAL COMPLEXITY OF N-ADMM
1) ANALYSIS ON COMPUTATIONAL COMPLEXITY OF
N-ADMM
For each update of primal variable w̃, we need to solve (24)
via the inner ADMM algorithm. In the inner ADMM, the
update of w̃ includes calculating d(p)2 , R(p)

2 and the inverse
of R(p)

2 , which totally takes O(10N 2
+ 14N 3). Similarly,

the update of z (using (A.19)) will also takeO(10N 2
+14N 3).

In addition, the update of β2 takes O(2N
2). Therefore, solv-

ing (24) will take O(log(ε−1)(22N 2
+ 28N 3)) [33], where ε

is a given accuracy of the inner ADMM algorithm. For each
update of auxiliary variables {η, y0, ym}, it will take O(2M ).

Therefore, the computational complexity of N-ADMM is
O(log(ε−1)(22N 2

+ 28N 3)+ 2M ) at each iteration.

2) COMPUTATIONAL COMPLEXITY REDUCTION SCHEME
Note that the computational complexity of N-ADMM
at each iteration is mainly dependent on solving (24).
More specifically, it depends on calculatingR(p)

2 andR(p)
3 and

the inverses ofR(p)
2 andR(p)

3 . By carefully examiningR(p)
2 and

R(p)
3 , we find they are sparse matrices since En is a sparse

diagonal matrix. Therefore, the computational complexity of
N-ADMM could be reduced significantly using the sparse
structure of R(p)

2 and R(p)
3 .

TakingR(p)
2 as an example, according to (A.5), B

(
z(p)
)
can

be rewritten as

B
(
z(p)
)
=

[
D(p)
1 D(p)

2

]
, (42)

where D(p)
1 = diag

{
z(p)1 , · · · , z

(p)
N

}
and D(p)

2 =

diag
{
z(p)N+1, · · · , z

(p)
2N

}
. Substituting (42) into (A.10),R(p)

2 can
be rewritten as

R(p)
2 = ρ1

(
I2N +

[
D(p)
1 D(p)

2

]T [
D(p)
1 D(p)

2

])
= ρ1

(
I2N +

[
D(p)
1 D(p)

1 D(p)
1 D(p)

2
D(p)
2 D(p)

1 D(p)
2 D(p)

2

])

= ρ1

[
D̃(p)
1 D̃(p)

3
D̃(p)
3 D̃(p)

2

]
, (43)

where D̃(p)
1 = IN+diag

{
(z(p)1 )2, · · · , (z(p)N )2

}
, D̃(p)

2 =

IN+diag
{
(z(p)N+1)

2, · · · , (z(p)2N )
2
}

and D̃(p)
3 =

diag
{
z(p)1 z(p)N+1, · · · , z

(p)
N z(p)2N

}
are diagonal matrices.

It can be seen from (43) that R(p)
2 is actually a block matrix

with 4 blocks being diagonal matrices. Evidently, the compu-
tational complexity of constructing R(p)

2 is reduced to O(3N ).
According to the matrix inversion lemma [34], the inverse

of R(p)
2 can be easily computed with a closed-form solution,

which is given by (44), as shown at the bottom of this page.
Note that (R(p)

2 )−1 is still a block matrix with 4 blocks being
diagonal matrices. Therefore, the computational complexity
of calculating (R(p)

2 )−1 is only O(11N ). Similarly, the com-
putational complexity of calculating R(p)

3 and (R(p)
3 )−1 are

O(3N ) and O(11N ), respectively.
In addition, using the sparse structure of the matrix, updat-

ing d(p)2 and d(p)3 only needs O(8N 2
+ 4N ), while calculating

w̃(p+1) and z(p+1) only takesO(8N ). In summary, if we utilize
the sparse structure of the matrix, then solving (24) will only
takeO(8N 2

+40N ). Therefore, the computational complexity

(R(p)
2 )−1 =

1
ρ1

[
(D̃(p)

1 − D̃(p)
3 (D̃(p)

2 )−1D̃(p)
3 )−1 −(D̃(p)

1 )−1D̃(p)
3 (D̃(p)

2 − D̃(p)
3 (D̃(p)

1 )−1D̃(p)
3 )−1

−(D̃(p)
2 )−1D̃(p)

3 (D̃(p)
1 − D̃(p)

3 (D̃(p)
2 )−1D̃(p)

3 )−1 (D̃(p)
2 − D̃(p)

3 (D̃(p)
1 )−1D̃(p)

3 )−1

]
(44)
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of N-ADMM will reduce to O(log(ε−1)(8N 2
+ 40N )+ 2M )

at each iteration.
For comparison, the computational complexity of SDR-

based methods are given as follows. The method of [17]
is a standard SDR problem and its computational com-
plexity is O(max {M ,N }4 N 1/2 log(ε−11 )), where ε1 is the
solution accuracy [36]. The method of [16] is a iterated
version of method [17], and its computational complexity is
O(max {M ,N }4 N 1/2 log(ε−11 )I1), where I1 is the predefined
iteration number. The practical running times of all methods
depend on the iteration numbers, and they will be compared
with each other in Section V.

V. NUMERICAL EXAMPLES
In this section, simulation experiments are carried out to
evaluate the effectiveness of the proposed approach.

The simulation parameters of airborne array radar are given
in Table 3.We assume there exist 3 jammers and 5 true targets
in the battle field, and each jammer generates 20 false tar-
gets with randomly assigned range-Doppler parameter. The
locations of these targets in range-Doppler map are shown
in Fig. 4. The other parameters of the jammers and true
targets are given in Table 4. The target, deceptive jamming
and clutter signals are generated according to (1), (5) and (4),
respectively.

TABLE 3. Parameters of simulated airborne radar system.

TABLE 4. Parameters of true targets and deceptive jamming.

For the action stage, all notches are widened to 3◦ by
adding angle grids around the estimated DOAs of jammers.
The angle spacing of adjacent grids is 0.25◦. The normal-
ized notch depth is set as −55 dB. The maximum iteration
number of N-ADMM is set as I =10000, and the outer
termination condition of N-ADMM is set as 1 = 10−4.
The absolute tolerance and relative tolerance of inner ADMM
(of N-ADMM) are set as εabs = 10−3 and εrel = 10−2,
respectively. The initialization of the N-ADMM is conducted
as follows. Let w̃(0)

=
[
<
{
aT (ϑ0)

}
,=
{
aT (ϑ0)

}]T
, λ(0)

0 = 0
and λ

(0)
m = 0, then y(0)m and y(0)0 can be determined

FIGURE 4. Distribution of the simulated targets in range-Doppler map.

by (32) and (39), respectively. The initialization of inner
ADMM is performed as follows: z(0) = 0, β

(0)
1 = 0 and

β
(0)
2 = 0.

A. RESULTS OF DECPTIVE JAMMING PERCEPTION
1) RESULT OF TARGET DETECTION
Fig. 5 depicts the range-Doppler map of PD processing, and
the result of CFAR detection is also given in this plot. It can
be seen that the Doppler bandwidth of clutter is about fPRF

/
2,

and one half of targets are located in clutter region. After
CFAR detection, most of the targets (53 targets including
true targets and false targets, marked with green cross) are
detected out except those located close to or in mainlobe
clutter region. Obviously, it is difficult to distinguish these

FIGURE 5. Results of PD processing and OS-CFAR detection.
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detected targets only relying on the range or Doppler infor-
mation. In the subsequence, the DOA of these detected targets
will be estimated by ML algorithm (12), and then the decep-
tive jamming will be identified according to the algorithm
proposed in Table 1.

2) RESULT OF DOA ESTIMATION
Fig. 6 shows the estimated DOAs of all detected targets.
It is shown that the DOAs can be correctly estimated by
the proposed ML algorithm, and the estimated DOAs are
concentrated in four angle regions corresponding to the four
signal sources. Subsequently, the deceptive jamming will be
identified according to the angle clustering feature.

FIGURE 6. Estimated DOAs of the detected targets.

3) RESULT OF DECEPTIVE JAMMING IDENTIFICATION AND
JAMMER LOCALIZATION
According to the algorithm presented in Table 1, the DOAs
within mainbeam are firstly excluded from the DOA data set.
The residual DOAs are given in Fig. 7. It can be seen that the
DOAs corresponding to the true targets are removed, and the

FIGURE 7. Residual DOAs after removing mainlobe targets.

FIGURE 8. Histogram of the distribution of DOAs.

residual targets are false targets or false alarms. Fig. 8 shows
the histogram of the distribution of the residual DOAs. It is
shown that the DOAs are mainly located in three angle
regions which corresponds to three jammers. With this obser-
vation, the deceptive jamming can be identified and classified
by the proposed angle-clustering-feature-based classification
algorithm. Running result shows there exist three different
classes of deceptive jamming. Then, the directions of the jam-
mers can be obtained by averaging the DOAs of every class.
Finally, the DOAs of jammers are estimated as −51.01◦,
10.98◦ and 21.02◦ respectively, which are quite approximate
to the theoretic values. Subsequently, the estimated DOAs
will be feed into the action stage for transmit pattern notching.

B. PERFORMANCE OF TRANSMIT PATTERN NOTCHING
WITH N-ADMM
In this subsection, we will assess the performance of the
proposed N-ADMM algorithm in terms of convergence,
beampattern, magnitudes and running time. The results of
SDP-based methods in [16] and [17] are also given for com-
parison. Both solution vectors of [16] and [17] are obtained by
performing rank-1 decomposition of the resulting matrices.

1) BEAMPATTERN WITH NON-UNIMODULAR EXCITATIONS
Firstly, all algorithms are evaluated under the condition of
non-unimodular excitations. The penalty parameters of outer
ADMM and inner ADMM are set as ρ = 0.2 and ρ1 = 20
respectively.

Fig. 9(a) shows the primal residual norms and stopping
criterion limit of N-ADMM versus the iteration number.
It can be seen that the termination condition of N-ADMM
algorithm is met after 1523 iterations. Fig. 9(b) reveals the
objective function values in (21) versus the iteration number.
As illustrated in Fig. 9(b), the objective function is minimized
at the 7th iteration. However, there exists a tiny gap between
the steady value of the objective function and the optimal
value. This may attribute to the fact that the solution needs
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FIGURE 9. Residual norm and objective function value of N-ADMM under the non-unimodular condition. (a) Primal residual norm versus the
iteration number. (b) Objective function value versus iteration number.

FIGURE 10. Beampatterns and amplitudes of weight vectors under the non-unimodular condition (a) Beampatterns of different methods.
(b) Amplitudes of weight vectors of various methods.

to make a trade-off between the objective function value and
amplitude constraints.

Fig. 10(a) gives the normalized beampatterns (to the theo-
retic array gain) of three different methods. The static sum-
beam without notching is also illustrated for comparison. It is
shown that all methods can place satisfied deep notches at
the directions of jammers. However, as depicted in Fig. 10(a),
the array gain loss of the proposed algorithm is only 0.064 dB,
while the gain losses of the method [16] and method [17] are
1.002 dB and 3.082 dB respectively. The reason can be find in
Fig. 10(b) which shows the amplitudes of each element of the
solutions. It can be seen that the magnitudes of the proposed
algorithm matches the given magnitudes very well, while the
magnitudes of the method [16] and method [17] are lower
than the given magnitudes. Therefore, the array gain losses
of method [16] and method [17] are larger than that of the
proposed method.

2) BEAMPATTERN WITH UNIMODULAR EXCITATIONS
Subsequently, all algorithms are assessed in the case of uni-
modular excitations. The penalty parameters of outer ADMM
and inner ADMM are set as ρ = 0.15 and ρ1 = 20
respectively.

Fig. 11(a) illustrates the primal residual norms and stop-
ping criterion limit of N-ADMM versus the iteration num-
ber. It is shown that the termination condition of N-ADMM
algorithm is met after 1185 iterations. Fig. 11(b) gives the
objective function values in (21) versus the iteration number.
It can be seen that the objective function is minimized at
the 6th iteration. However, there exists a gap between the
optimal value and steady value of the objective function. This
phenomenon is similar to Fig. 9(b).

Fig. 12(a) gives the normalized beampatterns of three dif-
ferent methods. The static sumbeam without notching is also
depicted for comparison. It is shown that all methods can
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FIGURE 11. Residual norm and objective function value of N-ADMM under the unimodular condition. (a) Primal residual norm versus the
iteration number. (b) Objective function value versus iteration number.

FIGURE 12. Beampatterns and amplitudes of weight vectors under the unimodular condition (a) Beampatterns of different methods. (b)
Amplitudes of weight vectors of various methods.

introduce required deep notches at the directions of jammers.
However, as revealed in Fig. 12(a), the gain loss of the pro-
posed algorithm is only 0.435 dB, while the gain losses of
the method [16] and method [17] are 1.0 dB and 3.445 dB
respectively. Fig. 12(b) exhibits the magnitudes of each ele-
ment of the solutions. It can be seen that the magnitudes of the
proposed algorithm matches the given magnitudes very well,
while the magnitudes of the method [16] and method [17]
are much lower than the given magnitudes. Therefore, the
array gain loss of the proposed method is smaller than those
of method [16] and method [17].

3) RUNNING TIME
In order to evaluate the efficiency of the proposed N-ADMM
algorithm, the running time is tested under the scenarios of
unimodular constraint and non-unimodular constraint. All
the numerical examples are analyzed using matlab 2015b
version, perfoming on a standard PC (with 2.5 GHz of
double-core CPU and 4 GB of RAM). Table 5 gives the

running time of the proposed algorithm under different con-
ditions. The results of method [16] and method [17] are also
given for comparison, where the optimization problems in
[16] and [17] are both solved by CVX toolbox [22], and the
iteration number of method [16] is set as 5. It is shown that the
proposed algorithm has the shortest running time, meanwhile
it possesses the best performance (in terms of gain loss and
magnitudes).

TABLE 5. Running time with different conditions.

C. INFLUENCE ON STAP
In this part, we will examine the impact of the proposed anti-
jamming scheme on STAP. In order to enhance the robustness
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of STAP in dense targets environment, the NHD is used to
exclude the non-homogeneous samples (i.e., the range bins
involving true target or false target) before covariance matrix
estimating [23]. Fig. 13 illustrates the STAP results of the
41th Doppler bin (the corresponding normalized Doppler
frequency is 0.125) with and without active anti-jamming
measures. Only the outputs of the 225-th to the 275-th range
bins are given in this figure. It can be seen that, in the case
of absence of active anti-jamming measure, although STAP
can suppress the clutter, it is failed to reject the deceptive
jamming. In contrast, if we take active anti-jammingmeasure,
the received signal will not include deceptive jamming (we
assume the radar signal cannot be intercepted by the jam-
mers). Therefore, as illustrated in Fig. 13, the output of STAP
does not contain false target. This will be a great benefit to
the subsequent data processing (such as target tracking).

FIGURE 13. Filtering outputs of STAP in different scenarios.

VI. CONCLUSION
In this paper, the problem of anti-deception jamming in an air-
borne array radar is considered. A cognitive transmit pattern
notching scheme is proposed to deal with the above problem.
The proposed approach mainly consists of two parts, i.e.,
deceptive jamming perception and transmit pattern notching.

In the perception stage, the sensing waveform parameter
is rationally designed to enhance the performance of target
detection and DOA estimation. Then, the deceptive jamming
is identified according to the angle-clustering feature. Finally,
the directions of jammers are determined by averaging the
classified DOAs.

In the action stage, the transmit pattern is designed with
notches at the jammers’ directions. The encountered prob-
lem is virtually a nonconvex QCLP problem. A N-ADMM
algorithm with closed-form solutions at every iteration is
proposed to cope with this problem. Simulation results shows
that the proposed approach is valid in different conditions.
The proposed N-ADMM can also be applied to other analo-
gousQCLP problems. Although the proposed phase-only pat-
tern synthesis algorithm has lower computational complexity,
less gain loss andmore accuratemagnitudes, its sidelobe level
is slightly higher than those of the existing methods.

In this work, we mainly consider the problem of anti-
sidelobe deceptive jamming. Future research area may focus
on anti-mainlobe deceptive jamming using other resources of
the radar system.

APPENDIX
UPDATE w̃ USING ADMM
To solve the optimization problem of (24), we first rewrite the
amplitude constraints as

w̃TEnw̃ = c2n, n = 1, · · · ,N , (A.1)

where En ∈ R2N×2N is a sparse matrix with all elements
being zeros except the (n, n)-th and the (n + N , n + N )-th
elements equal to one.

By introducing an auxiliary primal variable z ∈ R2N×1,
problem (24) can be equivalently expressed as

min
w̃

w̃TR1z+ w̃Td(i)1

s.t. z = w̃

w̃TEnz = c2n, n = 1, · · · ,N . (A.2)

The last N equality constraints of (A.2) can be expressed in a
compact form:

g(z, w̃) = G
(
w̃
)
z = B (z) w̃ = c0, (A.3)

where g(z, w̃) = c0 ∈ RN×1, and G
(
w̃
)
∈ RN×2N , B (z) ∈

RN×2N and c0 ∈ RN×1, which are given by

G
(
w̃
)
=
[
E1w̃, · · · ,EN w̃

]T
, (A.4)

B (z) =
[
zTE1; · · · ; zTEN

]
, (A.5)

c0 =
[
c21, · · · , c

2
N

]T
. (A.6)

Note that the objective function and constraints in (A.2)
are now jointly affine in z and w̃. Therefore, the ADMM
algorithm is very suitable for finding the solution of
problem (A.2).

The augmented Lagrangian of (A.2) can be constructed as

`1,ρ1
(
w̃, z,β1,β2

)
= w̃TR1z+w̃Td(i)1 +

(
βT
1
(
z− w̃

)
+
ρ1

2

∥∥z− w̃
∥∥2)

+

(
βT
2
(
g(z, w̃)− c0

)
+
ρ1

2

∥∥g(z, w̃)− c0
∥∥2) , (A.7)

where β1 ∈ R2N×1 and β2 ∈ RN×1 are the Lagrange
multiplier vectors, while ρ1 > 0 is a user-defined parameter
representing the primal step size. Then all unknowns in (A.7)
as well as β1 and β2 can be determined using the iterative
manner of the ADMM from `1,ρ1

(
w̃, z,β1,β2

)
:

Step 1: Update w̃ with given
{
z(p),β(p)

1 ,β
(p)
2

}
(which are

obtained from the p-th iteration) by solving

min
w̃

`1,ρ1

(
w̃, z(p),β(p)

1 ,β
(p)
2

)
. (A.8)

The gradient of `1,ρ1
(
w̃, z(p),β(p)

1 ,β
(p)
2

)
with respect to w̃ is

∇w̃`1,ρ1

(
w̃, z(p),β(p)

1 ,β
(p)
2

)
= R(p)

2 w̃+ d(p)2 , (A.9)
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where

R(p)
2 = ρ1

(
I2N + BT

(
z(p)
)
B
(
z(p)
))

(A.10)

and

d(p)2 =(R1 − ρ1I2N ) z(p)+BT
(
z(p)
) (

β
(p)
2 −ρ1c0

)
+d(i)1 −β

(p)
1 . (A.11)

To find the global minimization of (A.8), we need to solve
the equation

∇w̃`1,ρ1

(
w̃, z(p),β(p)

1 ,β
(p)
2

)
=R(p)

2 w̃+ d(p)2 = 0. (A.12)

Therefore, the close-form solution of (A.12), i.e., the optimal
solution of (A.8) can be obtained as

w̃(p+1)
= −

(
R(p)
2

)−1
d(p)2 . (A.13)

Step 2: Update zwith given
{
w̃(p+1),β

(p)
1 ,β

(p)
2

}
by solving

min
w̃

`1,ρ1

(
w̃(p+1), z,β(p)

1 ,β
(p)
2

)
. (A.14)

Similarly to Step 1, we first calculate the gradient of
`1,ρ1

(
w̃(p+1), z,β(p)

1 ,β
(p)
2

)
with respect to z, i.e.,

∇z`1,ρ1

(
w̃(p+1), z,β(p)

1 ,β
(p)
2

)
= R(p)

3 w̃+ d(p)3 , (A.15)

where

R(p)
3 = ρ1

(
I2N +GT

(
w̃(p+1)

)
G
(
w̃(p+1)

))
(A.16)

and

d(p)3 = (R1 − ρ1I2N ) w̃(p+1)
+GT

(
w̃(p+1)

) (
β
(p)
2 − ρ1c0

)
+β

(p)
1 . (A.17)

To find the global minimization of (A.14), we need to solve
the equation

∇z`1,ρ1

(
w̃(p+1), z,β(p)

1 ,β
(p)
2

)
=R(p)

3 w̃+ d(p)3 = 0. (A.18)

Therefore, the optimal solution of (A.14) can be obtained as

z(p+1) = −
(
R(p)
3

)−1
d(p)3 . (A.19)

Step 3: Update β1 and β2 as

β
(p+1)
1 = β

(p)
1 + ρ1

(
z(p+1) − w̃(p+1)

)
, (A.20)

β
(p+1)
2 = β

(p)
2 + ρ1

(
g(z(p+1), w̃(p+1))− c0

)
. (A.21)

By iterating Steps 1 to 3 until satisfying termination
criteria, we can obtain the updated w̃(i+1).
The termination criterion is set to be the same as [35].More

specifically, we first define

d(p+1)r1 = z(p+1) − w̃(p+1), (A.22)

d(p+1)r2 = g(z(p+1), w̃(p+1))− c0 (A.23)

as the primal residuals at p+ 1 iteration and

d(p+1)s = ρ1(w̃(p+1)
− w̃(p)) (A.24)

as dual residual at p+ 1 iteration, respectively. [35] suggests
that a group of reasonable termination criteria are∥∥∥d(p)r1

∥∥∥≤εpri1 ,

∥∥∥d(p)r2

∥∥∥ ≤ εpri2 and
∥∥∥d(p)s

∥∥∥ ≤ εdual, (A.25)

where εpri1 , εpri2 and εdual are the tolerances for primal residu-
als and dual residual, which are defined as

ε
pri
1 =
√
2Nεabs+εrelmax

{∥∥∥z(p)∥∥∥ , ∥∥∥w̃(p)
∥∥∥} , (A.26)

ε
pri
2 =
√
Nεabs+εrelmax

{∥∥∥g(z(p), w̃(p))
∥∥∥ , ‖c0‖} , (A.27)

εdual=
√
2Nεabs+εrel

∥∥∥β(p)
1

∥∥∥ , (A.28)

where εabs is a absolute tolerance and εrel is a relative
tolerance.

REFERENCES
[1] R. Klemm, Applications of Space-Time Adaptive Processing. London,

U.K.: IET, 2004.
[2] W. L. Melvin, ‘‘A STAP overview,’’ IEEE Aerosp. Electron. Syst. Mag.,

vol. 19, no. 1, pp. 19–35, Jan. 2004.
[3] D. Cerutti-Maori and I. Sikaneta, ‘‘A generalization of DPCA processing

for multichannel SAR/GMTI radars,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 5, no. 1, pp. 560–572, Jan. 2013.

[4] C. Wen, J. Peng, Y. Zhou, and J. Wu, ‘‘Enhanced three-dimensional joint
domain localized STAP for airborne FDA-MIMO radar under dense false-
target jamming scenario,’’ IEEE Sensors J., vol. 18, no. 10, pp. 4154–4166,
May 2018.

[5] S. D. Berger, ‘‘Digital radio frequency memory linear range gate
stealer spectrum,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 2,
pp. 725–735, Apr. 2003.

[6] A. Farina, ‘‘Electronic Counter-countermeasures,’’ in Radar Handbook,
M. Skolnik, 3rd ed. New York, NY, USA: McGraw-Hill, 2008.

[7] J. Ward, ‘‘Space-time adaptive processing for airborne radar,’’ Lincoln
Labs, Lexington, MA, USA, Tech. Rep. 1015, Dec. 1994, pp. 20–24.

[8] H. Dai, X. Wang, Y. Li, Y. Liu, and S. Xiao, ‘‘Main-lobe jamming
suppression method of using spatial polarization characteristics of anten-
nas,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 3, pp. 2167–2179,
Jul. 2012.

[9] B. Rao, S. Xiao, X.Wang, and T.Wang, ‘‘Maximum likelihood approach to
the estimation and discrimination of exoatmospheric active phantom tracks
using motion features,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1,
pp. 794–819, Jan. 2012.

[10] M. Nouri, M. Mivehchy, and M. F. Sabahi, ‘‘Target recognition based
on phase noise of received signal,’’ Electron. Lett., vol. 53, no. 12,
pp. 808–810, Jun. 2017.

[11] D. L. Adamy, Electronic Warfare Against a New Generation of Threats.
Norwood, MA, USA: Artech House, 2015.

[12] J. Akhtar, ‘‘Orthogonal block coded ECCM schemes against repeat
radar jammers,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 3,
pp. 1218–1226, Jul. 2009.

[13] J. Zhang, D. Zhu, and G. Zhang, ‘‘New antivelocity deception jamming
technique using pulses with adaptive initial phases,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 49, no. 2, pp. 1290–1300, Apr. 2013.

[14] P. Cao, J. S. Thompson, and H. Haas, ‘‘Constant modulus shaped beam
synthesis via convex relaxation,’’ IEEE Antennas Wireless Propag. Lett.,
vol. 16, pp. 617–620, 2017.

[15] J. Liang, X. Fan, Wen Fan, D. Zhou, and J. Li, ‘‘Phase-only pattern
synthesis for linear antenna arrays,’’ IEEEAntennasWireless Propag. Lett.,
vol. 16, pp. 3232–3235, 2017.

[16] B. Fuchs, ‘‘Application of convex relaxation to array synthesis problems,’’
IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 634–640, Feb. 2014.

[17] P. J. Kajenski, ‘‘Phase only antenna pattern notching via a semidefinite
programming relaxation,’’ IEEE Trans. Antennas Propag., vol. 60, no. 5,
pp. 2562–2565, May 2012.

VOLUME 7, 2019 153673



C. Wen et al.: Cognitive Anti-Deception-Jamming for Airborne Array Radar via Phase-Only Pattern Notching

[18] S. Haykin, ‘‘Cognitive radar: A way of the future,’’ IEEE Signal Process.
Mag., vol. 23, no. 1, pp. 30–40, Jan. 2006.

[19] J. R. Guerci, Cognitive Radar: The Knowledge Aided Fully Adaptive
Approach. Norwood, MA, USA: Artech House, 2010.

[20] M. S. Greco, F. Gini, and P. Stinco, ‘‘Cognitive radars: Some appli-
cations,’’ in Proc. IEEE Global Conf. Signal Inf. Process., Dec. 2016,
pp. 1077–1082.

[21] J. Liang, H. C. So, J. Li, A. Farina, and D. Zhou, ‘‘On optimizations
with magnitude constraints on frequency or angular responses,’’ Signal
Process., vol. 145, pp. 214–224, Apr. 2018.

[22] M. Grant and S. Boyd. (Feb. 2016). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx.

[23] M. Rangaswamy, J. H. Michels, and B. Himed, ‘‘Statistical analysis of the
non-homogeneity detector for STAP applications,’’ Digit. Signal Process.,
vol. 14, no. 3, pp. 253–267, May 2004.

[24] H. Rohling, ‘‘Radar CFAR thresholding in clutter and multiple tar-
get situations,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 19, no. 4,
pp. 608–621, Jul. 1983.

[25] S. A. Villar, M. De Paula, F. J. Solari, and G. G. Acosta, ‘‘A framework
for acoustic segmentation using order statistic-constant false alarm rate in
two dimensions from sidescan sonar data,’’ IEEE J. Ocean. Eng., vol. 43,
no. 3, pp. 735–748, Jul. 2018.

[26] E. D. Di Claudio, R. Parisi, and G. Jacovitti, ‘‘Space time MUSIC: Consis-
tent signal subspace estimation for wideband sensor arrays,’’ IEEE Trans.
Signal Process., vol. 66, no. 10, pp. 2685–2699, May 2018.

[27] C. Qian, ‘‘A simple modification of ESPRIT,’’ IEEE Signal Process. Lett.,
vol. 25, no. 8, pp. 1256–1260, Aug. 2018.

[28] J. Xu, W.-Q. Wang, and R. Gui, ‘‘Computational efficient DOA, DOD,
and Doppler estimation algorithm for MIMO radar,’’ IEEE Signal Process.
Lett., vol. 26, no. 1, pp. 44–48, Jan. 2019.

[29] J. H. G. Ender, ‘‘On compressive sensing applied to radar,’’ Signal Process.,
vol. 90, no. 5, pp. 1402–1414, May 2010.

[30] Z. Yang, L. Xie, and C. Zhang, ‘‘Off-grid direction of arrival estimation
using sparse Bayesian inference,’’ IEEE Trans. Signal Process., vol. 61,
no. 1, pp. 38–43, Jan. 2013.

[31] V. Nagesha and S. Kay, ‘‘Maximum likelihood estimation for array pro-
cessing in colored noise,’’ IEEE Trans. Signal Process., vol. 44, no. 2,
pp. 169–180, Feb. 1996.

[32] M. Li and Y. Lu, ‘‘Maximum likelihood DOA estimation in unknown
colored noise fields,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3,
pp. 1079–1090, Jul. 2008.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[34] X. D. Zhang, Matrix Analysis and Applications. Cambridge, U.K.:
Cambridge Univ. Press, 2017.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed
optimization and statistical learning via the alternating direction method of
multipliers,’’ Found, Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[36] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, ‘‘Semidefinite
relaxation of quadratic optimization problems,’’ IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

CAI WEN (M’19) received the B.E. and Ph.D.
degrees in signal and information processing from
Xidian University, Xi’an, China, in 2009 and 2014,
respectively.

He was a Research Scientist with the Xi’an
Electronic Engineering Research Institute, from
January 2015 to October 2016. He is currently an
Assistant Professor with the School of Information
Science and Technology, Northwest University.
His research interests include space-time adaptive

processing, array signal processing, mathematical optimization, andmachine
learning with applications in radar signal processing.

YAN HUANG (M’19) was born in Shandong,
China, in 1991. He received the B.S. degree in
electrical engineering, and the Ph.D. degree in
signal and information processing from Xidian
University, Xi’an, China, in 2013 and 2018,
respectively.

He was a Visiting Ph.D. Student with the
Electrical and Computer Engineering Department,
University of Florida, from September 2016 to
July 2017, and with the Electrical and Sys-

tems Engineering Department, Washington University in St. Louis, from
July 2017 to August 2018. He is currently an Assistant Professor with
the State Key Laboratory of Millimeter Waves, Southeast University. His
research interests include machine learning, synthetic aperture radar, image
processing, and ground moving target indication.

JIANXIN WU received the B.E. and Ph.D. degrees
in signal and information processing from the
Xidian University, Xi’an, China, in 2003 and 2009,
respectively.

He is currently an Associate Professor with
the School of Electronics and Communication
Engineering, Sun Yat-sen University. His research
interests include space-time adaptive processing
and general radar signal processing.

JINYE PENG received the M.S. degree in
computer science from Northwestern University,
Xi’an, China, in 1996, and the Ph.D. degree from
Northwestern Polytechnical University, Xi’an,
in 2002.

He joined Northwest University as a Professor,
in 2006. His research interests include statistical
signal processing, image processing, and machine
learning.

YAN ZHOU received the B.S. and Ph.D. degrees
both from Xidian University, Xi’an, China,
in 2010 and 2015, respectively.

He is currently a Lecturer with the School of
Information Science and Technology, Northwest
University. His research interests include space-
time adaptive processing and MIMO radar signal
processing.

JIE LIU received the M.Sc. degree in electrical
circuit and system from Xidian University, Xi’an,
China, in 2012.

She is currently an Engineer with Xi’an Institute
of Space Radio Technology. Her research inter-
ests include space wireless communications, high-
speed signal sampling, and analog/mixed-signal
circuits design.

153674 VOLUME 7, 2019


	INTRODUCTION
	SIGNAL MODEL OF AIRBORNE ARRAY RADAR
	COGNITIVE-TRANSMIT-BASED ANTI-DECEPTION JAMMING
	DECEPTIVE JAMMING PERCEPTION FOR AIRBORNE ARRAY RADAR
	TRANSMIT PATTERN NOTCHING USING N-ADMM

	DISCUSSIONS
	ON PRACTICAL IMPLEMENTATION
	CPI LENGTH OF SENSE WAVEFORM
	NOTCH WIDTH

	ON COMPUTATIONAL COMPLEXITY OF N-ADMM
	ANALYSIS ON COMPUTATIONAL COMPLEXITY OF N-ADMM
	COMPUTATIONAL COMPLEXITY REDUCTION SCHEME


	NUMERICAL EXAMPLES
	RESULTS OF DECPTIVE JAMMING PERCEPTION
	RESULT OF TARGET DETECTION
	RESULT OF DOA ESTIMATION
	RESULT OF DECEPTIVE JAMMING IDENTIFICATION AND JAMMER LOCALIZATION

	PERFORMANCE OF TRANSMIT PATTERN NOTCHING WITH N-ADMM
	BEAMPATTERN WITH NON-UNIMODULAR EXCITATIONS
	BEAMPATTERN WITH UNIMODULAR EXCITATIONS
	RUNNING TIME

	INFLUENCE ON STAP

	CONCLUSION
	REFERENCES
	Biographies
	CAI WEN
	YAN HUANG
	JIANXIN WU
	JINYE PENG
	YAN ZHOU
	JIE LIU


