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ABSTRACT Recently, Geometric Algebra (GA) has attracted more and more attention in the field of signal
and image processing. GA can treat multi-dimensional signals in a holistic way to keep the correlations
among multiple dimensions and avoid information loss. So when traditional signal and image processing
algorithms are redefined in GA space, they will be more powerful and achieve better performance in
multi-dimensional signal processing. In this paper, we provide a comprehensive survey covering various
GA-based algorithms. In particular, we first review the mathematic theories of GA and Reduced Geometric
Algebra (RGA). Then, advanced GA-based algorithms are elaborately analyzed and compared, including
GA-based Sparse representation model, GA-based Dictionary Learning method, Clifford Support Vector
Machine, GA-based Feature extraction algorithms, GA-based adaptive filtering algorithms, GA-based
Fourier-type transform, and GA-based edge detection algorithm. Finally, we discuss several open issues
and challenges of GA, and point out possible research directions in the future.

INDEX TERMS Geometric algebra (GA), multivectors, multi-dimensional signals, image processing.

I. INTRODUCTION
Geometric algebra (GA) has been considered as one of the
most powerful tools in mathematics and has witnessed great
success in awide range of applications, such as physics, quan-
tum computing, electromagnetism, satellite navigation, neu-
ral computing, camera geometry, image processing, robotics
and computer vision, etc. The above-mentioned application
fields are reviewed in 2013 [1]. Since it is impossible to make
a complete overview for the enormous range of applications
developed in the past decades, particularly, we try to give an
overview on theory and applications of GA mainly in signal
and image processing.

For multi-channel signals, traditional methods usually
treat each channel as a different vector and process them
independently, which may fail to exploit the correlations
among multiple channels and lead to information loss. For-
tunately, GA can transform multi-dimensional signals into
multivectors and handle them in a holistic manner in a
new multi-dimensional GA space. By this way, GA is
able to keep the correlations among multiple dimensions
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and avoid information loss. So when traditional signal and
image processing algorithms are redefined in GA space, they
will be more powerful and achieve better performance in
multi-dimensional signal processing.

In this paper, we provide a comprehensive and up-to-date
survey covering various GA-based algorithms. We hope it
may be helpful for researchers who are interested in the signal
and image processing field of GA. For more details, please
refer to the related references.

The rests of the paper are organized as follows.
Section II briefly reviews the mathematic theories of GA
and Reduced Geometric Algebra (RGA). In Section III,
advanced GA-based algorithms for signal and image pro-
cessing are elaborately analyzed and compared, includ-
ing GA-based Sparse representation model, GA-based
Dictionary Learning method K-GASVD, Clifford Fuzzy
SVM(CFSVM), GA-based Feature extraction algorithms
(GA-SIFT, GA-SURF, GA-ORB, GA-STIP), GA-based
adaptive filtering algorithms (GA Least-Mean-Squares
(GA-LMS), GA Least-Mean Kurtosis (GA-LMK)), sparse
Fast Clifford Fourier transform(SFCFT), and GA-based edge
detection algorithm. Section IV discusses several open issues
and challenges of GA, their advantages and shortcomings are
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also analyzed. Section V forecasts the prospects of GA in sig-
nal and image processing. Finally, Section VI summarizes the
paper and points out possible research directions in the future.

II. RELATED WORK
A. THE BASIC OF GEOMETRIC ALGEBRA
Geometric algebra (GA) [2], [3] is created by W.K. Clifford,
also called Clifford algebra. GA provides a mathematical
framework, which is ideal to constitute an extension of real,
complex and quaternion algebras to complete associative
algebras of subspaces of vector spaces in the general frame-
work of vector. Geometric relationships and algorithms can
be described by GA, compactly and geometrically. Thus,
GA can completely make use of the information associated
with different geometric data and improve the computational
efficiency. In recent years, GA has become one of the research
hotspots in the area of information science owing to the
advantages mentioned above, it has been widely and success-
fully applied to object detection and face recognition, image
processing and analysis [4]–[6].

Mathematically, supposeGn is denoted as a 2n-dimensional
vector space, the basis of Gn is denoted as{

eA = ea1 · · · ear |A = (a1, . . . ar ) ∈ B
}

(1)

where Gn can be denoted as Gp,q, and n = p+ q.
In general, GA is non-commutative, the multiplication of

GA will follow the next rules.
e2ai = 1, ai = 1, . . . , p
e2ai = −1, ai = p+ 1, . . . , p+ q
eaieaj = −eajeai , ai 6= aj

(2)

The power set 0 of {1, · · · , n} can turn the basis into an
ordered one with the index set B.

{B = (a1, · · · ar ) ∈ 0, 1 ≤ a1 · · · ar ≤ n} (3)

For example, the basis in 23 vector space can be described
as {

e∅, e1, e2, e3, e12, e13, e23, e123
}

(4)

For convenience, in the rest of the paper, A = a1 · · · ar will
be denoted as A = a1···r , and e∅ = 1.

The set Gtn is denoted as following, representing t-vector
part of Gn.

Gtn = {eA |eA ∈ B, |A| = t } (5)

An arbitrary element of GA is given as

x =
n∑
t=0

〈x〉t =
∑
A

xAeA (6)

where xA ∈ R. For example, an element in 23 vector space
can be represented as

x = 〈x〉0 + 〈x〉1 + 〈x〉2 + 〈x〉3
= x0 + x1e1 + x2e2 + x3e3 + x12e12 + x13e13
+ x23e23 + x123e123 (7)

The addition of GA can be defined as

x + y =
∑
A

(xA + yA)eA (8)

The geometric product of GA can be written in the follow-
ing form.

xy = x · y+ x ∧ y (9)

where x ·y and x∧y represent inner product and outer product,
respectively.

For performing more complex multivectors operations,
several rules are defined as following.

a: The reversion of GA is

x† = 〈x〉†t = (−1)
t(t−1)

2 〈x〉t (10)

b: The conjugation of GA is

x∗ = 〈x〉∗t = (−1)
t(t+1)

2 〈x〉t (11)

c: The module of GA is

|〈x〉| =

√√√√ n∑
k=0

∣∣〈x〉t ∣∣2 (12)

∣∣〈x〉t ∣∣ = √〈x〉t · 〈x〉t (13)

B. THE BASIC OF REDUCED GEOMETRIC ALGEBRA
It is noted that the multiplication of GA above is not commu-
tative, leading to the high algorithm complexity. For improve-
ment, Shen et al. [7] propose a novel theory of reduced
geometric algebra (RGA), including commutative multipli-
cation rules and the geometric operations. The definition of
the reduced geometric algebra (RGA) is given as follows:

εi =
1
2
(1+ eien+i) ∈ GRn , i = 1, 2, · · · , n (14)

According to (14), the geometric product of is described
as:

εiεj = εjεi, i 6= j (15)

Then, we define:

ε2i = εiεj =

{
εi+1, i = 1, 2, · · · , n− 1
ε1, i = n

(16)

For example, take n = 3, ε21 = ε2, ε
2
2 = ε3, ε

2
3 = ε1.

According to (15) and (16), it is clearly that the multiplication
of εi is commutative. Specifically, RGA is denoted asGRn and
can be seen as the space that is generated by the collection of{
{ε1, ε2, · · · , εn} ,

{
εij = εiεj, 1 6 i 6= j 6 n

}}
. The element

k in GR2 has the following form:

k = a1ε1 + a2ε2 + a3ε12, a1, a2, a3 ∈ R (17)

The addition and subtraction operations in GR2 are almost
the same as GA, here we present the multiplication operation
only. ∀k, l ∈ GR2 , suppose k = a1ε1 + a2ε2 + a3ε12 and
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l = b1ε1 + b2ε2 + b3ε12, the multiplication in GR2 are given
as:

kl =
(
a1ε1 + a2ε2 + a3ε12

) (
b1ε1 + b2ε2 + b3ε12

)
=

(
a1b3 + a2b2 + a3b1

)
ε1 +

(
a1b1 + a2b3 + a3b2

)
ε2

+

(
a1b2 + a2b1 + a3b3

)
ε12 (18)

where ε12ε1 = ε1ε2ε1 = ε1ε1ε2 = ε21ε2 = ε2ε2 = ε1,
similarly, ε12ε2 = ε2. Moreover, ε12ε12 = ε1ε2ε1ε2 =

ε1ε1ε2ε2 = ε
2
1ε

2
2 = ε2ε1 = ε12

As shown in (18), no superfluous components are pro-
duced in the results of the multiplication of k and l. That is,
the results only contain ε1, ε2 and ε12 components, which suc-
cessfully overcomes the disadvantages of quaternions with
the data redundancy exited in the operations for color images.
The norm of the element k in GR2 is defined as

‖k‖=aε1+bε2+cε12=|a+b+c|=
√
a2+b2+c2 (19)

The conjugate of k is defined as

k∗ = a′ε1 + b′ε2 + c′ε12 (20)

Then

kk∗ = (aε1 + bε2 + cε12)
(
a′ε1 + b′ε2 + c′ε12

)
=
(
ca′ + bb′ + ac′

)
ε1 +

(
aa′ + cb′ + bc′

)
ε2

+
(
ba′ + ab′ + cc′

)
ε12 = ‖k‖2 (21)

According to (21), the following equations are given:
ca′ + bb′ + ac′ = 0
aa′ + cb′ + bc′ = 0
ba′ + ab′ + cc′ = ‖k‖2

(22)

When solving the equations in (22), the values of the
individual components in (20) are correspondingly yielded,
but not all the elements of GR2 are conjugate.

Thus, the inverse of element k in GR2 can be defined as

k−1 =
k∗

‖k‖2
(23)

In RGA, multivectors, which are the extension of vectors
to higher dimensions, are the basic units. Each multivector
K ∈ GR2 is so described by

K = K 1ε1 + K 2ε2 + K 3ε12 (24)

where K 1,K 2,K 3
∈ R.

III. APPLICATIONS TO SIGNAL AND IMAGE PROCESSING
A. APPLICATIONS TO SPARSE REPRESENTATION
MODELS FOR IMAGE PROCESSING
For image processing, the sparse representation model based
on dictionary learning plays an important role. Taking advan-
tages of the sparse representation, a color image can be
well-represented as a sparse linear combination of elements
from an appropriately chosen over-complete dictionary,

rather than being separated into independent components.
The singular value decomposition (SVD), as the most pop-
ular method for sparse representation, have recently attracted
intensive interest and achieved great success. Since pure vir-
tual quaternion can be perfectly embedded the spectral data
of RGB channel of color image, the spectral information and
spatial information of color image can be fully explored by
quaternion. As a result, Xu et al. [8] propose a vector sparse
representation model for color images based on quaternion
matrix analysis, namely QSVD, which represents the color
image as a quaternion matrix on account of the compatibility
between quaternion matrix and color image to avoid losing
the correlation information of three-color channels. In par-
ticular, a quaternion-based dictionary learning algorithm is
proposed with the K-quaternion singular value decomposi-
tion, which generalized K-means clustering for QSVD. It is
significant for color images that QSVD is able to uniformly
transform the channel images to an orthogonal color space,
preserving the inherent color structures completely during
vector reconstruction.

Octonions provides an elegant mathematical tool to deal
with octonion signals and the closest in its mathematical
properties gives a formidable strategy for multi-dimensional
signals which are no more than octonion signals. With origi-
nal visual features, spectral normalization is performed under
the framework of octonion algebra framework, Gao and
Lam [9] further propose a new computational model for
detecting salient regions in color images, which can accom-
modate more feature channels than quaternion. A singular
value decomposition algorithm for octonion signal, namely
OSVD, which is proposed by Shen andWang [10]. Anym×n
octonion matrix F , its SVD is represented as

F = U6VH
= U

[
6′ 0
0 0

]
VH (25)

where UUH
= IM×M , VVH

= IN×N , I is an identity matrix.
Wang et al. [11], [12] apply a new algorithm corre-

sponding dictionary learning algorithm, namely K-GASVD,
the details of K-GASVD algorithm are shown in Table 1.
GA is used to map the color image into a high dimensional
space for color image analysis and shows the superior perfor-
mance compared with competing methods on color images.
However, compared with traditional K-SVD algorithm [13],
the proposed K-GASVD algorithm has higher computational
complexity, because of noncommutativity of multiplication
of GA.

Aiming at solving the shortage of K-GASVD which suffer
from high computational complexity, taking advantage of
the RGA theory, a novel multivector sparse representation
model based on RGA is designed by Shen et al. [7], using
K-RGA-based singular value decomposition (K-RGASVD)
which not only considers the spatial and spectral information
in multispectral images, but also achieves the removal of the
redundancy among color channels and reduces low computa-
tional complexity.
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TABLE 1. The details of GA-based dictionary learning using K-GASVD
method.

Therefore, the sparse representation model has been
extended to multi-dimensional space for image processing,
and the results have been demonstrated the sparse repre-
sentation model based on GA achieve the state-of-the-art
performance. The GA-based models treat color image as a
multivector in the GA form and preserve the relationships of
the multiple channels to avoid the loss of structures informa-
tion among different channels.

B. APPLICTIONS TO SUPPORT VECTOR MACHINES
Support Vector Machines (SVM) [14] is originally designed
for binary classification. Themain idea of the SVM algorithm
is to separate the samples from different classes with a surface
that maximize the boundary between classes. Each training
point is processed equally and assigned to one class and
only one class when using the traditional SVM to solve two
classification problems.

However, some training points are damaged by noise in
many practical applications and some points in the training
data may be misclassified. Thus, Lin and Wang [15] propose
Fuzzy Support Vector Machine (FSVM) to solve such prob-
lem. For FSVM, each sample has a fuzzy membership which
represents the attitude of the corresponding point toward
one class. Membership denotes how important is samples to
the decision surface. Therefore, different input points have
different contributions to the learning of decision surface.
However, the performance of existing SVM algorithms are
not very satisfying for multiple classes.

Therefore, extending SVM algorithms to GA space can
solve above problem better. Bayro-Corrochano et al. [16]
design the kernel function of nonlinear SVM by using

Clifford algebra framework. [16] presents a design method
for SVM for classification, which will be called Clifford
SVM (CSVM). In [16], the real valued SVM is generalized to
CSVM. The kernels involve Clifford algebra and geometric
product can be used for nonlinear classification.

Thismethod can also design recurrent Clifford SVM. Thus,
Bayro-Corrochano et al. [17] introduce the recurrent Clifford
Support Vector Machines (RCSVM). This method uses Clif-
ford or geometric product to design the kernels so that non-
linear mappings can be used for nonlinear classification and
recursive CSVM. By using CSVM with only one kernel can
greatly reduce computational complexity. The mainly reason
is that a Gramm matrix compact can be defined according
to the formulation in terms of multivectors which needs less
computations for multiple classes than for real-valued SVM.

Taking advantages of Clifford algebra theory, the multiple
classes can be represented according to the dimension of
Clifford algebra. Bayro-Corrochano and Arana-Daniel [18]
propose the CSVM method which defines the optimization
variables as a Clifford algebra multivector, which can be
applied to classification, regression and recurrence. This
method accepts multiple multivector inputs and multivector
outputs, which similar to the Multiple-Input Multiple-Output
(MIMO) architecture, so it can be applied to multiple classes.
The complex, quaternion, and hyper-complex SVM algo-
rithms can be recovered from CSVM. The proposed CSVM
method appears wide range of applications, especially in
image processing, pattern recognition, geometric computing
and their applications, such as graphics, augmented reality,
robot vision, etc.

Although CSVM learns the decision surface from multi
distinct classes of the multiple input points, in many appli-
cations, each multiple input point may not be fully assigned
to one of these multi-classes. Wang et al. [19] present the
Clifford Fuzzy SVM (CFSVM), which applies a fuzzy mem-
bership to each multiple input point, and CSVM for multiple
classes is reconstructed, so that different input points have
different contributions to the learning of decision surface.

This method improves the CSVM in reducing the effect of
outliers and noise in data points. CFSVM is suitable for appli-
cations where data points have unmodeled characteristics.
The CFSVM extends the multiclass classification application
range of [20], which can solve various kinds of tasks by
setting different types of fuzzy membership.

C. FEATURE EXTRACTION ALGORITHMS
Image interest point extraction algorithm as an important
branch of image feature extraction, plays an important role
in image analysis and is regarded as an indispensable basis
for complex visual tasks, including image segmentation,
image registration, image mosaic and motion recognition.
Image interest point extraction is the process of extract-
ing image interest points which are one type of local invariant
feature for image. Local invariant feature can resist changes
such as luminance reduction, rotation, image blur and scale
variations.
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Common feature extraction algorithms such as SURF [21]
and SIFT [22] are widely used in various fields of image
processing due to their high performance. However, most of
these feature extraction algorithms are aimed at processing
grayscale images. While those algorithms are used to extract
interest points in multispectral images, multi-channel images
usually are converted into grayscale images and then pro-
cessed. This method ignores the correlation of each channel
of the image, which is harm to the performance of feature
extraction. To solve this issue, Li et al. [23] propose the
GA-SIFT method, which is a novel algorithmic framework
based on the SIFT for multispectral images. The GA-SIFT
incorporates the GA theory into the traditional SIFT frame-
work. Taking advantage of the GA theory, a multispectral
image can be regarded as an embedding of a manifold in a
higher dimensional spectral-spatial space. Both of the spec-
tral and spatial information of the multispectral image can
be retained. Based on the GA representation of multispectral
images, GA-SIFT can make most use of spectral and spatial
information and detect the feature points not only in the
spatial space but also in the spectral space, that leads to a great
performance for multispectral images.

However, GA-SIFT still has some shortcomings. Due to
SIFT method has high complexity, GA-SIFT as the improved
SIFT method is time-consuming in processing multispectral
images. To solve this problem, Wang et al. [24] propose
GA-SURF which incorporates the GA theory into the tradi-
tional SURF framework. Compared with SIFT, SURF uses a
box filter to approximate the high complexity of the second
Laplace derivative, which is faster to extract image inter-
est points. Therefore, the improved method GA-SURF has
higher calculation efficiency. The GA-SURF proposes a new
Hessian matrix in GA space as following:

H (x, y, σ ) =
[
ϕ (Lxx (x, y, σ )) ϕ

(
Lxy (x, y, σ )

)
ϕ
(
Lxy (x, y, σ )

)
ϕ
(
Lyy (x, y, σ )

)] (26)

where Lxx (x, y, σ ), Lyy (x, y, σ ) and Lxy (x, y, σ ) are the
second-order derivatives of L(x, y), the function ϕ is used to
retain the chromaticity image, more details are given in [24].

L (x, y) = Gn+2 ⊗ f ⊗ Gn+2

=
1

M2N 2

M−1∑
l=0

N−1∑
s=0

M−1∑
p=0

N−1∑
q=0

(
n∑
i=1

n∑
j=1

gifig′jej

+

n∑
i=1

n∑
j=1

n∑
k=1

gifjg′k
(
ei3ej3ek

)
) (27)

The new Hessian matrix can fully retain spectral informa-
tion and spatial structure information ofmultispectral images.
And the GA-SURF experiments demonstrate GA-SURF in
comparison to the state-of-the-art algorithms is faster to
compute, while not sacrificing performance, and show its
potential as a homogeneous and efficient tool in various
applications of multispectral image analysis.

In order to real-time multispectral image processing,
Wang et al. [25] propose a novel feature extraction method,

FIGURE 1. The distribution of each element in space.

geometric algebra based oriented fast and rotated brief
(GA-ORB), for multispectral images based on the the-
ory GA. GA-ORB can extract multi-spectral image interest
points in near real time, and improve performance by using
spectral information and spatial information. The GA-ORB
outperforms some previous algorithms with respect to dis-
tinctiveness and robustness in extracting and matching inter-
est points, and it can be computed much faster.

GA can not only extract image interest points, but
also be extended to three-dimensional space to extract
spatio-temporal interest points (STIPs). Spatio-temporal
interest point (STIP) is one type of local invariant feature
for video and can be detected directly from video to describe
moving objects, without the need for background modeling
and foreground segmentation. Extracting STIPs often is an
important step in action recognition. Wang et al. [26] incor-
porate the GA theory into the traditional Harris 3D algorithm
and Gaussian pyramid framework and propose GA-STIP
method which can obtain the scale space of multi-channel
videos by GA representation. GA-STIP proposes a novel
3-dimensional Gaussian function in GA space as following.

Gn+3 (x, y, t; σ, τ) =
1

(2π)
3
2 σ 2τ

exp
(
−
x2 + y2

2σ 2 −
t2

2τ 2

)
(28)

In Gn+3, the Gaussian convolution kernel from (28) is

described as FIGURE 1, where gijk =
n∑
l=1

gijklel and gijkl ∈ R,

and i, j, k denote the 3-dimension coordinate of spatial and
temporal information, l denotes the corresponding channel.
GA-STIP can extracted more robust spatio-temporal interest
points by using spectral information in GA space. GA-STIP
has improved performance in extracting features from a
multi-channel video and can recognize complicated human
activities.

D. APPLICATIONS TO FILTERING ALGORITHMS
With the development of adaptive filters, many adaptive fil-
tering algorithms are applied to signal processing domain
in the past few years. However, the performance of exist-
ing filtering algorithm will decrease in the non-gaussian
noise environment. Thus, adaptive filtering algorithms based
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on higher-order statistics is proposed in signal processing
domain, such as the Least-Mean-Kurtosis (LMK) algorithm,
which is first proposed by Tanrikulu and Constantinides [27].
It can be seen from the weight updating rule that the computa-
tional complexity of LMK is higher than Least-Mean-Square
(LMS) algorithms, which is the reason why less attention is
paid to the LMK algorithm.When dealingwith the 3D and 4D
signal, LMS and LMK algorithms process each dimension of
signals separately, which may lead to performance loss due
to neglecting the correlation between different components.
Fortunately, representing 3D and 4D signal as a quaternion
variable can solve such problem efficiently.

Took and Mandic [28] propose the quaternion LMS
(QLMS) algorithm and augment QLMS algorithm (AQLMS)
for adaptive filtering of 3D and 4D signal, such as wind,
vector fields modeling. Actually, QLMS operates inherently
based on the ‘‘augmented’’ statistics, i.e. both the covariance
E
{
xxT

}
and pseudo-covariance E

{
xxH

}
of the tap input

vector x are considered. However, the cost function of quater-
nion variables is a non-analytic function, thus the derivative
of the cost function cannot be calculated directly in the
quaternion domain. [28] uses pseudo-derivatives to address
this problem which define the real-valued cost function by
four real-valued components of quaternion variables, and
then take the real-valued derivatives separately. The updating
rule of QLMS algorithm obtained by pseudo-derivatives are
described as follows:

w(n) = w(n− 1)+ µe(n)x∗(n) (29)

This approach is a real-valued analytic mapping of cost
function between quaternion and real-number domain. How-
ever, reformulating the cost function in real-valued domain is
not conductive to the calculation of their gradients. Therefore,
Mandic et al. [29] introduce the LMS algorithm based on the
Hamilton-real (HR) calculus, which use the HR calculus to
calculate derivatives of cost function directly in quaternion
domain. According to HR calculus, the maximum change
direction of the gradient is the conjugate gradient, which is
consistent with the corresponding solution in the complex
domain. Thus, HR calculus can be seen as an extension of
the complex-real calculus (CR calculus) used in the complex
domain to quaternion domain. The HR calculus in quaternion
domain is given respectively as:

∂f (q, qi, qj, qk )
∂q

=
1
4
[
∂f
∂qa
− i

∂f
∂qb
− j

∂f
∂qc
− k

∂f
∂qd

]

∂f (q∗, qi∗, qj∗, qk∗)
∂q

=
1
4
[
∂f
∂qa
+ i

∂f
∂qb
+ j

∂f
∂qc
+ k

∂f
∂qd

]

(30)

where f (·) is a quaternion-valued function and q is a quater-
nion variable, qi,qj,qk are the involutions of q and q∗ is the
quaternion conjugate.

The form of the weight updating rule of the QLMS
algorithm based on the HR calculus is the same as that
of [28]. This approach reduces the computational complex-
ity with respect to the QLMS algorithm proposed in [28].

Nevertheless, the disadvantage of this method is that the
traditional product and chain rules cannot be used due
to the non-commutativity of quaternion variables. Besides,
Took et al. [30] aim to address the uniqueness of the solu-
tions to the stochastic gradient optimization problems, and
provide an unified framework for the derivation and analysis
of QLMS algorithm. [30] defines a new quaternion gradient
(i-gradient) based on involutions and uses it to derive
the updating rule of QLMS algorithm. I -gradient can be
expressed as

Owη f (q, qi, qj, qk ) =
∂f
∂q∗
+

1
2
∂f
∂qa

(31)

The additional term ∂f
∂qa makes the convergence rate of

the QLMS algorithm based on I gradient faster than that
of [28], [29]. This approach uses the HR calculus to cal-
culate the gradient, the traditional product and chain rules
also cannot be used. Thus, Xu et al. [31] use the gener-
alized HR (GHR) calculus to derive the updating rule in
quaternion domain and propose a new QLMS algorithm
which is based on the GHR calculus. The GHR calculus
adds the product and chain rules to HR calculus, which is
advantage to quaternion analysis. Actually, GHR derivatives
have the left GHR derivatives and the right GHR derivatives,
[31] focuses on the left GHR derivatives. Experiment results
show that the performance of the proposed QLMS algo-
rithm based on the GHR calculus outperforms other existing
QLMS algorithm. Took and Mandic [32] propose a widely
linear QLMS (WL-QLMS) method to process Q-proper and
Q-improper signals, which improves accuracies compared
to the QLMS class of algorithms. Due to QLMS originates
from the LMS algorithm, which may result in performance
degradation in the non-Gaussian environment. Thus, LMK
algorithm is extended to quaternion domain because of its
excellent performance in non-Gaussian environment in order
to enhance the performance of adaptive filters.

Chen et al. [33] propose QLMK to process 3D and 4D
signals. The cost function of QLMK algorithm is defined
by the negative kurtosis of the error signal in order to adapt
the non-Gaussian data. The analysis shows that QLMK pro-
vides a new way that is responsive to dynamically changing
environments. QLMK has a faster convergence rate and a
smaller steady-state error compared with QLMS algorithm
because its cost function is defined by high-order statistics.
The weight updating rule of the QLMK algorithm is repre-
sented as follows:

w(n+ 1) = w(n)+ µ
∂JQLMK
∂w

= w(n)+ 8µ(|e(n)|2 − 3E(|e(n)|2)) |e(n)| x∗(n)

(32)

where E(|e(n)|2) = βE(|e(n− 1)|2)+ |e(n)|2 , 0 < β < 1
However, the computational complexity of this approach

is high because it is also needed to map the cost function
from quaternion to real-number domain and the cost function
of QLMK algorithm is complex. Thus, in [34], they propose
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a novel QLMK adaptive filtering algorithm for 3D and 4D
signal processes by using the GHR calculus. The weight
updating rule are as follows:

w(k + 1) = wk − µs(Ow ∗ Jk )

= wk + µs(3p̂k − eke∗k )ekx
∗
k (33)

where the step size µs controls the convergence rate and the
steady-state error of the QLMK algorithm and p̂k = λp̂k−1+
eke∗k , 0 < λ < 1, λ is the forgetting factor.
The proposed QLMK algorithm minimizes the negated

kurtosis of the error signal as a cost function in the quater-
nion domain, thus it solves the trade-off problem between
the convergence rate and steady-state error of QLMS-type
algorithm. Moreover, the proposed QLMK algorithm has a
robust behavior for a wide range of noise signals due to its
kurtosis-based cost function. The GHR calculus can reduce
the computational complexity when compared with [33]. Due
to the multi-dimensional signal cannot be represented by
quaternion variables, some scholars propose to extend the
adaptive filtering algorithm to GA space.

Lopes et al. [35] exploit GA theory to design a new
adaptive filtering strategy and apply it to rotation estimation
problem. For the Least-Squares cost function, the gradient is
calculated according to geometric calculus (GC), which is the
extension of GA to handle differential calculus.

The novel GA Least-Mean-Squares (GA-LMS) adaptive
filtering algorithm, which retains characteristics of the stan-
dard adaptive filters and GA, and is developed to recursively
estimate multivector. The multivector is a hypercomplex
quantity to describe rotations in any dimension.

Besides, Al-Nuaimi et al. [36] exploit GA-LMS to
recover the 6-degree-of-freedom alignment of two-point
clouds related by a set of point correspondences. However,
both [35] and [36] use GA-LMS algorithm for rotation esti-
mation problem. Thus, Lopes and Lopes [35] present a new
class of adaptive filters, namely GA adaptive filters (GAAFs).
They are generated by formulating the minimization problem
(a deterministic cost function) from the perspective of GA.
The instantaneous cost function J (i) is defined as follows:

J (wi−1) = |D(i)− ui ∗ wi−1|2 = |E(i)|2 (34)

where ui is the input array,D(i) is the desired signal, the scalar
product between two multivectors is ui ∗ wi−1 = 〈uiwi−1〉,
it is the scalar part (0-grade) of the geometric multiplication
between ui and wi−1.

According to GA theory and GC, the new GA-LMS updat-
ing rule is:

wi = wi−1 + µuie(i) (35)

The obtained updating rule is shown how to recover the
following LMS adaptive filter variants: real-entries LMS,
complex LMS, and quaternions LMS. The development
of GAAFs is an attempt to unify different adaptive fil-
tering methods under the same mathematical language.
The GA-LMS algorithm can be used to estimate any kind

of multivector, and the shape of its updating rule is invariant.
However, GA-LMS also originates from the LMS algorithm,
and its performance will also degradation in non-Gaussian
environment. Thus, the LMK algorithm is extend to GA space
in order to enhance the performance of adaptive filters for
multi-dimensional signals processing.

Wang et al. [37] propose a novel Least-Mean-Kurtosis
adaptive filtering algorithm based on geometric algebra
(GA-LMK) which represents the multi-dimensional signal as
a GA multivector. The cost function of GA-LMK algorithm
is:

J (wi−1) = 3E2
|E(i)|2 − E|E(i)|4 (36)

where E(i) is the error signal and E is the expectation
operation.

The GA-LMK updating rule is given by:

wi = wi−1 − µ[∂wJ (wi−1)]

= wi−1 + µhi(3P̂iE(i)− E(i) ∗ Ẽ(i) ∗ E(i)) (37)

whereP̂i = E
{
|E(i)|2

}
and it can be estimated by P̂i =

βP̂i−1 + E(i) ∗ Ẽ(i), 0 < β < 1, β is the forgetting factor.
The proposed GA-LMK algorithm minimizes the cost

function based on the negated kurtosis of the error signal
in GA space, and solves the trade-off problem between
convergence rate and steady-state error better. Meanwhile,
the misadjustment conditions of the GA-LMK algorithm
under Gaussian noises is acquired, so as to better under-
standing the GA-LMK algorithm. The results show that the
proposed GA-LMK algorithm outperform existing adaptive
filtering algorithms in terms of multi-dimensional signal.
GA-LMK algorithm has a faster convergence rate and a
smaller steady-state error due to its cost function is defined
by high-order statistics when compared with GA-LMS algo-
rithm. Therefore, the performance of adaptive filter is greatly
improved when processing multi-dimensional signals.

E. GEOMETRIC ALGEBRA FOURIER TRANSFORMATIONS
The Fourier transform is an indispensable tool for many fields
of physics, mathematics and computer science. In particular,
image processing and solution and analysis of differential
equations or signal cannot be imagined without Fourier trans-
form any more. Based on GA, each multivector has a natural
geometric interpretation. Therefore, it is very reasonable for
multi-dimensional signals to generalize the Fourier transform
to multivector valued functions in GA.

Different definitions of Fourier transform in GA have been
developed. In the field of signal processing, a strategy is the
usage of Clifford Fourier transform (CFT) for detecting and
filtering particular components of signals, which is proposed
by Jancewicz [38], a color image is considered as a function
f ∈ L2

(
R2
;R1

4,0

)
described by:

f (x, y) = r(x, y)e1 + g(x, y)e2 + b(x, y)e3 + 0e4 (38)

where r , g and b correspond to the red, green and blue levels.
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Let f be a color image and B be an element of S23,0. The
Clifford Fourier transform of f with respect to B is the valued
function is described as:

f̂b(u, v) =
∫
R2
f (x, y) ⊥ φ̃u,v,B,0,0,C (−x,−y)dxdy (39)

The concept of CFT provides a powerful framework used
in image processing and analysis fields and can transforms
vectors into general GA multivectors. The readers can find a
detailed overview of the modern development of CFT in [39].

Sommer [2] consider study harmonic transforms, QFT and
a type of CFT; Bülow and Sommer [2] consider study har-
monic transforms, the quaternionic Fourier transform (QFT),
and a type of CFT.

Actually, several attempts have been made to extend the
classical approach of image processingwith the Fourier trans-
form to multi-dimensional signals. Batard and Berthier [40]
introduce a spinor representation for images processing,
focusing on segmentation and Clifford Fourier analysis. The
grayscale image is processed by using the geometric infor-
mation given by the Gauss map variations of the image. One
main contribution is that the Riemannian geometry of the
image surface is considered by this new transform, involving
the bivector field coding the tangent plane and the spinor
field that parametrizes the normal. Furthermore, a harmonic
decomposition of the parametrization and applications to
filtering are introduced. Mennesson et al. [41] propose a
new set of Fourier-Mellin descriptors using CFT for color
images, namely parallel-orthogonal Fourier-Mellin Descrip-
tors (poFMD), Color Fourier-Mellin Descriptors (CFMD)
and Color Fourier-Mellin Moment invariant (CFMDi), which
are different extensions of the FourierMellin moments [42]
computed from the CFT for grayscale images. These are
invariant an dare avoided in direct similarity transformations
(translation, rotation, scaling) andmarginal treatment of color
images, as a result, Their retrieval rates of proposed method is
favourably compared to standard feature descriptors, testing
with the purpose of object recognition on well-known color
image databases.

Batard and Berthier [43] propose a new spinor Fourier
transform for both gray-level and color image processing,
which treats all the colorimetric information in a really non
marginal way for color image processing. The construction
involves group actions via spin characters, which are being
parametrized by bivectors of the GA. Meanwhile, applica-
tions to low-pass filtering interpreted as diffusion process
with heat equation are proposed. Yuan et al. [44] propose
a template matching method which is constructed on the
foundation of CFT, this method is applied to similar domain
to extract the template forced spatial distribution pattern.
Through the experiments test with ENSO forced global ocean
surface wind segmentation, the results suggest that this algo-
rithm is able to extract more attractive information which
cannot be measured directly from the original data.

However, CFT has high computational complexity, espe-
cially for big data. To solve the problem with big data,

Hassanieh et al. [45] develop a new approach of sparse fast
Fourier transform (sFFT), especially sparse data. But when
dealing with big data problems, this approach uses only a
small subset of the input data to calculate a compressed
Fourier transform. Therefore, a new algorithm called sparse
fast CFT (SFCFT) is created by Wang et al. [46], combin-
ing sFFT and CFT to operate on multi-dimensional signals,
which has advantages of the computing performance in scalar
and vector fields. This method can not only can choose
‘‘large’’ coefficients for calculation with sFFT, but also can
reduce useless data.

F. IMAGE EDGE DETECTION
In this section, edge detection of color images and multi-
spectral images are reviewed. Edge detection of color images
is usually performed by applying the traditional techniques
for grayscale images to the three color channels separately.
An overview of edge detection techniques for color images is
provided in [47].

Several edge detection methods treat RGB color triples
as vectors and color images as vector fields, for instance,
Schlemmer et al. [49] propose a novel approach based on
Sobel operator and use vector value filter masks to detect
color edges. Color value triples are converted in lumi-
nance and chrominance components. The chrominance part
is detected by Clifford convolution with proper vector-value
filters and a standard grayscale edge detection method is
applied to the luminance component.

Then, an enhanced algorithm has been proposed in the
Clifford algebra framework to extend the traditional concepts
of convolution and Fourier transform to vector fields [49],
which uses Canny method for edge detection on the grayscale
component. Moreover, a hysteresis thresholding is exploited
for both grayscale and color components. Compared to
component-wise Canny color edge detector [50], the pro-
posed Clifford color edge detector algorithm can not only
achieves a comparable detection performance, but also
reduces computational times. To achieve further speedup
against the state-of-the-art color edge detection schemes.
Franchini et al. [52] propose a hardware implementation of
an edge detection method for color images, which define geo-
metric product of vectors under the Clifford algebra frame-
work to extend the convolution operator and the Fourier
transform to vector fields. A prototype implementation of the
specialized hardware structure on a field programmable gate
array (FPGA) board has been introduced. And the proposed
hardware architecture has been successfully applied for edge
detection of multispectral magnetic resonance images.

Multispectral images such as medical images or remote
sensing images, usually contain hundreds of spectral channels
of the same scene, which provide a great deal of informa-
tion. Of particular importance is the computationally efficient
dealing with multispectral images formed by multiple spec-
tral bands. In many cases, the applications of the multispec-
tral image are based on edge detection to extract informa-
tion, which is the most difficult process in image processing.
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Therefore, the quality of the application depends on the
accuracy of edge detection. Generally, most multispec-
tral image edge detection algorithms are based on vector
algebra [52], [53].

Because of the shortages of vector algebra which cannot
completely express the correlation among the different lay-
ers of the multispectral image. As a consequence, such a
strategy of edge detection algorithms cannot completely fully
utilize the information associated with different spectrum
layers. Xu et al. [55], Hui et al. [56] present a novel algo-
rithm of multispectral image edge detection, which defines
the pixel as a GA value rather than putting a pixel as an
n-dimensional vector. Suppose multispectral image data is a
matrix IMG[n,w, h] where n is the number of spectra,w is the
width and h is the height. They define the spectral gradient
mClifford(X ) of a pixel X as the following form:

∂X f (X ) = E i∂xi f (X ) = E ifi(X )

= e1f1(X )+ e2f2(X )+ · · ·

+ enfn(X )+ e1 ∧ e2f1,2(X )

+ · · · +e1 ∧ e2 · · · ∧enf1,2,...,n(X ) (40)

The derivative of f (X ) in the ‘‘direction’’ of a multivector
A ∈ Gn with A := aiEi, is given by

(A ∗ ∂X )f (X )=A ∗ (∂X f (X ))=A ∗ (E ifi(X ))=aifi(X ) (41)

where A ∗ ∂X represents the directed multivector derivative
operator.

Compared with the maximal entropy edge detection algo-
rithm, the proposed edge detection algorithm based on GA
shows excellent performance at retaining and identifying
edge information of a multispectral image and exhibits the
possible application to help doctors make effective diagnose.

IV. SUMMARY AND CHALLENGES
A. SUMMARY
As an important tool for signal and image processing, GA is
suitable for representation and computation of different geo-
metric data, by either constructing geometric structure in
multi-dimensional space, or extending a set of existing algo-
rithms for multi-dimensional signals. Here, we place the
focus on GA and review a wide variety of applications based
on GA in signal and image processing including, the sparse
representationmodels, Support VectorMachines (SVM), fea-
ture extraction algorithm, filtering algorithms, Fourier-type
transform and image edge detection.

We begin this survey by introducing the basis of GA: the
definition and properties of GA. These approaches can be
very effective in solving the multi-dimensional signal prob-
lem with different geometric frameworks in a unified way.
Next, the applications of GA are presented in detail:

(1) The sparse representation models based on GA are
introduced, which attract wide interests and achieve great
success in a wide range of image processing fields. We show
that GA improve the effectiveness of SVD.

(2) Furthermore, SVM is introduced by using GA frame-
work for various tasks. GA-based SVM models are suitable
for processing multiclass SVM, using geometric product and
redefining the optimization variables as multivectors. It has
shown that GA-based SVM models for classification have
better performance compared with traditional SVMmethods.

(3) The feature extraction algorithms are discussed,
GA-based feature extraction algorithms are powerful for
signal and image processing, including color images, mul-
tispectral images and video. GA-based feature extraction
algorithms use GA theory to detect and describe the local
interest points in multiple channels. The results show that
GA-based feature extraction algorithms show potential per-
formance compared with state-of-the-art algorithms while
not sacrificing performance.

(4) The adaptive filtering algorithms are represented,
extending from quaternion to higher dimension. GA-based
filtering algorithms represent a multi-dimensional signal as
a GA multivector, the results show that proposed GA-based
filtering algorithms can outperform significantly existing
state-of-the art algorithms in terms of convergence rate and
steady-state error.

(5) It is important for multi-dimensional signals to gener-
alize the Fourier transform to multivector valued functions
in GA, which is an extension of Fourier transform to vector
fields based on Clifford product of multivectors. Meanwhile,
the GA-based Fourier transform algorithms have a great
influence on signal and image processing.

(6) Finally, GA is applied to image edge detection, which
exhibits an excellent performance on image processing.
GA-based image edge detection algorithms are better at pre-
serving and identifying edge information of images.

B. CHALLENGES
Future research will include:

(1) The construction of appropriate GA space aims at
specific multi-dimensional signals and image processing.
In different cases, the corresponding GA models are built
for processing different inputs. However, recently, the archi-
tecture of the models based on GA are designed relatively
simple, which cannot satisfy the various inputs in real world.

(2) The cost of time and space of the GA-based algorithms
are more than the traditional algorithms, such as GA-based
feature extraction algorithm, GA-based image edge detec-
tion, etc. The reason is that GA-based algorithms have some
multi-cycles with non-commutative multiplications.

(3) Investigate various applications of signal and image
processing based on GA. As expected, GA is potential in
multi-dimensional domain, many applications of GA still
need to be explored.

(4) How to derive algorithms based on analytical demands
using the basic GA operators. The generalization of tra-
ditional operators into GA space is a complicated work,
which needs to select proper function or derive specific
algorithms.
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V. PROSPECTS
In the field of image and signal processing, GA has attracted
many researchers’ attention. However, there are many chal-
lenges mentioned above needed to be solved. Therefore,
GA will still be a hot research topic in the future, and there
are some research prospects as follows.

(1) Most of the existing algorithms in signal and image
processing, split the correlation between the spatial domain
and the temporal domain, ignoring the important structural
correlation. It has shown that the GA can achieve better
performance, preservingmore correlation information among
multi-dimensional signals and images. Therefore, in order
to deal with various signals and images, it is significant
to design a framework and application platform combin-
ing the theoretical GA framework, expression and analysis
of multi-dimensional signals, and multi-dimensional image
models.

(2) Signal and image processing based on GA has been
wildly applied in the multi-dimensional space. These appli-
cations are required to reduce computational complexity,
so the efficiency of GA-based algorithms must be improved
to achieve better performance with less time consumption and
less space complexity. The future research can combine with
parallel computing to improve the efficiency of computation
for multi-dimensional signals and image processing.

(3) Future works should pay more attention on enhanc-
ing the adaptability of GA-based algorithms and considering
more extensive applications for signal and image processing.

(4) Currently, how to derive GA-based algorithms depend
on analytical demands using basic GA operators. In the
future, different GA operators should be unified in one frame-
work, unifying existing GA variables and operations.

VI. CONCLUSION
In conclusion, this paper presents a comprehensive review on
GA in signal and image processing. The application of GA
has been summarized, with the analysis of their advantages
and shortcomings. Also, the challenges and prospects of var-
ious applications proposed by many researchers have been
given. With continuous developments in computer vision
field and the improvement of computer hardware perfor-
mance, we believe that the existing problems can be solved
step by step via GA-based algorithms. And it is expected that
the GA-based theories and algorithms will be a competitive
alternative in applications of signal and image processing.
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