
Received September 24, 2019, accepted October 17, 2019, date of publication October 21, 2019, date of current version October 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948658

Assessing Optimizer Impact on DNN Model
Sensitivity to Adversarial Examples
YIXIANG WANG1, JIQIANG LIU 1, (Member, IEEE), JELENA MIŠIĆ2, (Fellow, IEEE),
VOJISLAV B. MIŠIĆ 2, (Senior Member, IEEE), SHAOHUA LV 1,
AND XIAOLIN CHANG 1, (Member, IEEE)
1Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China
2Department of Computer Science, Ryerson University, Toronto, ON M5B 2K3, Canada

Corresponding author: Jiqiang Liu (jqliu@bjtu.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61672092, and in part by the Fundamental
Research Funds for the Central Universities of China under Grant 2018JBZ103.

ABSTRACT Deep Neural Networks (DNNs) have been gaining state-of-the-art achievement compared with
many traditional Machine Learning (ML) models in diverse fields. However, adversarial examples challenge
the further deployment and application of DNNs. Analysis has been carried out for studying the reasons of
DNNs’ vulnerability to adversarial perturbation and focused on model architecture. No research has been
done on investigating the impact of optimization algorithms (namely, optimizers in DNNs) employed in
training DNN models on models’ sensitivity to adversarial examples. This paper aims to study this impact
from an experimental perspective.We analyze the sensitivity of amodel not only from the aspect of white-box
and black-box attack setups, but also from the aspect of different types of datasets. Four common optimizers,
SGD, RMSprop, Adadelta, and Adam, are investigated on structured and unstructured datasets. Extensive
experiment results indicate that an optimization algorithm does pose effects on the DNNmodel sensitivity to
adversarial examples. That is, when training models and generating adversarial examples, Adam optimizer
can generate better quality adversarial examples for structured datasets, and Adadelta optimizer can generate
better quality adversarial examples for unstructured datasets. In addition, the choice of optimizers does not
affect the transferability of adversarial examples.

INDEX TERMS Adversarial examples, deep neural network, machine learning, stochastic gradient descent
optimization algorithm, transferability.

I. INTRODUCTION
Deep neural networks (DNNs) determine model parameters
through a large number of training examples to learn the map-
ping relationship between inputs and outputs, which later can
be applied to predict the output of new inputs. The past years
witnessed the amazing development of deep learning (DL)
neural networks, in particular convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), in various
applications of diverse fields, such as object detection and
classification in computer vision [1]–[3], natural language
processing [4], and time-series data analysis [5]–[7]. The
emergence of massive data and the requirements of effective
analysis methods for big data in recent years further advance
the development of neural networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Benyun Shi .

Recently, Szegedy et al. [8] revealed an intriguing property
(also called as vulnerability) of neural networks: slightly
perturbed inputs which are imperceptive to human beings can
easily result in the trained model producing inaccurate out-
puts. These inputs are called adversarial examples [14], which
can make DNNmodels predict wrong results with high confi-
dence. The aforementioned vulnerability of neural networks
caused by adversarial examples reflects the sensitivity of a
model’s outputs to its inputs. It further indicates that neural
network models after being trained are not as generalized as
they are expected to be. Therefore, it raises a challenge on var-
ious DNN applications. For instance, in automatic-driving,
adversaries can cheat those applications through purposefully
synthesized disguises and traffic accidences can occur during
the error in discerning traffic signals. The application of
neural networks in security-critical fields, such as intrusion
detection and malware detection [38], is also vulnerable to

152766 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1147-4327
https://orcid.org/0000-0001-7760-9920
https://orcid.org/0000-0003-1886-5283
https://orcid.org/0000-0002-2975-8857
https://orcid.org/0000-0003-2734-3794


Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

adversarial attacks caused by adversarial examples. These
phenomena reflect that adversarial examples do pose a poten-
tial security threat to DNN models.

One property of adversarial examples is transferability [27].
That is, adversarial examples generated through one model
can cause another model misclassification even though the
two models have different structures and are trained on
different datasets. The transferability of adversarial examples
makes black-box attacks possible [23], which means that
adversaries don’t need to get knowledge of model details
regarding architecture and/or training data.

Previous work on adversarial examples included assessing
the ability of neural networks in defending against adversarial
attacks [9], [10], verifying the influence of adversarial exam-
ples in real-world applications [11], [12] or providing defense
strategies [13]–[16] in order to strengthen the robustness of
DNNs models, and the existing analysis of DNNs’ vulnera-
bility towards adversarial examples mainly focused on model
architecture [23] such as layer numbers. But there is no study
on the impact of adversarial examples from the perspective of
DNNs’ training phase, especially the optimizer aspect.

This paper aims to investigate the impact of optimization
algorithms on models’ sensitivity to adversarial examples.
The sensitivity of a model is examined under both white-
box and black-box attack setups. Four general optimiza-
tion algorithms, Stochastic Gradient Descent (SGD) [37],
RMSprop [36], Adadelta [21] and Adaptive Moment Esti-
mation (Adam) [20], are chosen for evaluation. Both struc-
tured and unstructured datasets are adopted to investigate the
impact of data types on optimizer effectiveness. By structure
dataset, we mean that data (structured data) in it is like the
table in the database [41]. By unstructured dataset, we mean
that data in it is like audio, video, images etc. [41]. For the
unstructured dataset, we use MNIST [35]. For the structured
dataset, we use NSL-KDD [18] and DREBIN [19]. To the
best of our knowledge, we are the first to investigate the effect
of optimizer on model sensitivity to adversarial attacks from
an experimental perspective. Extensive experiment results
indicate that the optimization algorithm does pose an effect on
the DNN model sensitivity to adversarial examples. In addi-
tion, experimental results show that the types of input exam-
ples affect the performance of an optimizer. The specific
contributions are summarized as follows:
• We craft adversarial examples on MNIST, NSL-KDD
and DREBIN datasets using four types of deep neural
network models, denoted as SGD-model, RMS-model,
Adadelta-model, and Adam-model respectively. They
have the same structures but different optimizers.
Moreover, we investigate the impact of optimizers on the
quality of the crafted adversarial examples in terms of
metrics described in Section III.D.We find that on struc-
tured datasets, the DNNmodel with Adam optimizer can
generate adversarial examples with high convergence
rate, low perturbation rate, and high generation rate.
But on the unstructured dataset, the optimizer with the
same effect is Adadelta optimizer.

• We assess optimizer effect on sensitivity by implement-
ing white-box attacks against SGD-model, RMS-model,
Adadelta-model, and Adam-model by using adversarial
examples crafted by themselves individually. We find
that adversarial examples generated by the DNN model
with Adam optimizer can maximize the misclassifica-
tion on the structured datasets, and on the unstructured
dataset, the optimizer with the same effect is Adadelta
optimizer.

• We assess optimizer effects on sensitivity by imple-
menting black-box attacks against traditional machine
learning classifiers as well as CNN and RNN to evaluate
cross-model attack performance of four perturbed exam-
ples. These examples are crafted by SGD-model, RMS-
model, Adadelta-model, and Adam-model respectively.
We find that optimizers have a limited effect on the
transferability of adversarial examples.

The rest of the paper is organized as follows. Section II
presents background and related work. Section III describes
the methodology of establishing experiments. Experiment
result discussions are given in Section IV. Section V
concludes this paper and presents future work.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
This section first describes some primary concepts men-
tioned in this paper and then describes the models used in
experiments. We mainly introduce the four common opti-
mizers used to train DNNs. At last, a brief description of
Jacobian-based Saliency Map Attack (JSMA) [17] is given.

A machine learning model aims to learn the mapping
between its inputs and outputs. In general, given input x
composed of n features, a model produces output y, which
is the vector of m dimensions, representing the probability of
x being classified as each category. There are some typical
machine learning models to be used in our experiments,
including Random Forest [29], Decision Tree [30], and Sup-
port Vector Machine (SVM) [31]. Decision Tree is created by
continuously maximizing the information gain arising from
the selection of a condition as a way of dividing the data
in two subsets according to the value of an input feature.
Given the training data (X, Y), SVM computes a (n − 1)-
dimensional hyperplane with the largest margin to solve a
convex optimization problem. Random Forest is an ensemble
learning method for classification and regression. Its oper-
ation is by constructing a large number of decision trees at
training time and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of the
individual trees.

CNN and RNN are based on the architecture of the neural
network, which is composed of interconnected neural layers
and activation functions for each layer. A neural network
learns the mapping function f between inputs and out-
puts, which is a nonlinear and non-convex function. Neural
networks transmit output error to each neuron in hidden

VOLUME 7, 2019 152767



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

layers through the backward propagation algorithm [34] and
update the connection weights of each neuron iteratively
using the gradient descent algorithm to reduce error values
continuously. J (θ) is defined as the model error function,
where θ denotes the parameters to be updated in the training
phase. These are generally the connection weights and biases
between the nodes in the network. According to the gradient
descent algorithm, the formula for parameters updating is:

θ = θ − ε · g

where g is the gradient of the cost function with respect to
model parameters θ , ε is the learning rate which determines
the stride of decrease of θ in the opposite direction of the gra-
dient. There are four advanced gradient descent optimization
algorithms considered in this paper as follows:
• Stochastic Gradient Descent. It is by far the most com-
mon method for optimizing neural networks, and is one
of the most popular algorithms for performing optimiza-
tion. Many optimization algorithms are optimized and
upgraded based on gradient descent.

• RMSprop. It is an unpublished and adaptive learning
rate method proposed by Geoff Hinton in his lecture.
RMSprop divides the learning rate by an exponentially
decaying average of squared gradients as well, which is
similar to Adadelta. The core iteration formula is shown
below:

θ = θ −
ε√

β · E
[
g2
]
t−1 + (1− β) · g

2
t + ε

gt

where t denotes the t th epoch, E
[
g2
]
is the accumulation

of squared gradients. β is the exponential decay rate. ε
is a small positive number to avoid the divisor of 0.

• Adadelta. It was proposed by Zeiler [21]. The learning
rate decreases gradually during training iterations.
Unlike previous gradient descent algorithms, this
method performs different learning rate ε for each
parameter in neural networks. Adadelta performs
smaller changes on frequently updated parameters and
performs larger changes on infrequently updated param-
eters. The iteration formula is:

θ = θ −

√
β · E

[
1θ2

]
t−1 + (1− β) ·1θ

2 + ε√
β · E

[
g2
]
t−1 + (1− β) · g

2 + ε
gt

where 1θ is the change value of the parameter.
• Adam. It was proposed by Kingma et al. in 2015 [20]
and also calculates the adaptive learning rate for each
parameter. It combines the algorithm ideas of momen-
tum and RMSprop. Adam integrates the advantages of
the momentum optimization algorithm and the Adagrad
[22] optimization algorithm in order to accelerate con-
vergence in the early stage of training, while reducing
the learning rate continuously during the training phase.
The iteration formula is shown below. Compared with
other adaptive learning rate algorithms, the convergence

speed is faster and the learning performance is more
effective.

θ=θ − ε ·
[β1 · mt−1 + (1− β1) · gt ]

/(
1− β t1

)√[
β2 · vt−1 + (1− β2) · g2t

]/(
1− β t2

)
+ ε

where β1, β2 are the exponential decay rates, mi and vi
means the 1st and the 2nd moment vector in the t th epoch.

The reason of selecting these four optimization algorithms
is that they are used in a variety of deep learning tasks
and the tasks have achieved excellent results based on these
optimizers. Therefore, it is meaning to choose these four opti-
mizers. More comprehensive optimization algorithm analysis
can refer to [22].

Adversarial examples can be crafted based on the JSMA.
The two most important elements of JSMA algorithm are
the Jacobian matrix and the saliency map. Jacobian matrix
can evaluate the sensitivity of the output to each input of the
model. The formula of the Jacobian matrix is:

JF (X) =
∂F (X)
∂X

where F is a mapping function which the deep learning
model learns after training. If the input X and the output of
F are multi-dimensional, then the JF (X) is a matrix. The
saliency map illustrates which input features adversaries are
interested in producing adversarial examples. The formula of
the saliency map is:

S (X , k) =


0 if Jik (X) < 0

or
∑

j 6=k
Jij (X) > 0

Jik (X)
∣∣∣∑

j 6=k
Jij (X)

∣∣∣ otherwise

where i is the index of the input X . j and k are the
index of the output of F . JSMA algorithm first obtains the
Jacobian matrix according to the mapping function F , and
the saliency map is constructed on the Jacobian matrix.
Then the saliency map tells which input dimensions should
be perturbed and we modify the selected features slightly.
We continue these steps until we reach the misclassification
or maximum perturbation.

B. RELATED WORK
Adversarial examples in DNNs were discovered in [8]. They
demonstrated a method of reliably detecting these perturba-
tions through a box-constrained optimization method, which
depended on internal network states. Another technique was
introduced in [14]. Their fast gradient sign method (FGSM)
linearizes the cost function of the model around the input to
be perturbed and selects the perturbation by differentiating
the cost function to the input during the training phase. Based
on FGSM and the raw gradient of loss, Rozsa et al. [24]
introduced a new adversarial example generation method,
the hot/cold (HC) approach, which is capable of crafting
multiple adversarial examples for each input efficiently. Also,
Papernot et al. [17] introduced a method to produce pertur-
bations by utilizing the mapping relations between inputs

152768 VOLUME 7, 2019



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

and outputs of the model. They used the forward derivative
to evaluate the sensitivity of the model’s output to each
input using Jacobian matrix. His follow-up work [25] intro-
duced approaches that crafted adversarial input sequences for
RNNs. The attacks described above are white-box attacks.
Different from these works, our paper aims to verify that the
optimizer poses impact on the quality of adversarial example.
One thing to declare is that the purpose of our experiment is
not to evaluate the effect of the optimizer on the convergence
of the cost function in model training and we did not compare
the differences between the two models from the perspec-
tive of the accuracy performance in classification. In fact,
the work has been done in [22].

Besides researches of white-box attacks, there were studies
on the black-box attacks. Gao et al. [39] introduced the sub-
stitute training and linear augmentation to boost the targeted
black-box attacks. Shi et al. [40] introduced a new black-
box attack using Curls iteration and Whey optimization,
which can diversify the trajectory and squeeze the noise.
Papernot et al. [23] introduced a black-box attack with sub-
stitute dataset and proposed that the architecture of DNN had
a limited impact on the transferability of adversarial exam-
ples, but they fixed the optimizer. In this paper, we choose
four optimizers and want to analysis the effect of optimizer
on adversarial examples.

Mechanisms for detecting and defending adversarial exam-
ples have also been proposed. Breiman et al. [29] proposed
an approach of detecting adversarial examples by using the
statistics of convolutional layer outputs. Papernot et al. [13]
introduced a defensive mechanism to reduce the effect of
adversarial examples on DNNs. Szegedy et al. [8] used
crafted examples to train models and demonstrated that the
overall performance and the adversarial robustness of the
trained models can be improved. Tramér et al. [15] further
introduced ensemble adversarial training, which augments
training data with perturbations transferred from other mod-
els. Their results show that the technique yield model with
strong robustness to black-box attacks. Our paper provides a
new perspective from the optimizer for defenders to make the
model more robust.

The reason why adversarial examples can affect the model
performance was examined in [14], and they focused on
the linearity of the model architecture. Our paper focuses
on the effect of optimizer algorithm on model robustness,
which extends the impact factors in the process of adversarial
example generation and provides a new idea to the follow-up
researchers.

III. METHODOLOGY
This section presents the methodology for comparing the
performance of four optimizers, SGD, RMSprop, Adadelta,
and Adam, regarding model robustness against white-box
and black-box adversarial attacks. We first introduce the
datasets to be used in experiments of Section III.A. Then
the white-box attack is described to generate adversarial
examples in Section III.B. In Section III.C, black-box attacks

TABLE 1. Overview of NSL-KDD, MNIST and DREBIN datasets.

against some traditional and deep classifiers are conducted
to evaluate the influence of optimizers to transferability of
the adversarial examples. Finally, we use evaluation indi-
cators described in Section III.D to quantify the impact of
different optimizers on the white-box and the black-box
attacks.

A. DATA PREPROCESSING
We choose the following three datasets: MNIST handwritten
digital dataset, NSL-KDD network-based intrusion detec-
tion system dataset and DREBIN android malware detection
dataset. The reason of choosing these three datasets is that
they are used in different research fields and there are dif-
ferences in data types among these three selected datasets.
MNIST dataset is unstructured dataset. Both NSL-KDD and
DREBIN are structured datasets. Table 1 describes the main
features of three datasets and detailed descriptions are given
below:
• MNIST—MNIST handwritten digit dataset contains

60,000 black and white images with width and height
of 28 pixels, of which 50,000 are for training and
10,000 for testing. This dataset is mainly used to train
and test the machine learning classification models in
image recognition.

• NSL-KDD—NSL-KDD is an improved version of the
KDDCUP99 dataset for network intrusion detection that
solves a variety of issues in the original dataset. Each
connection record in the dataset contains 41 features.
The connection types can be divided into 5 categories,
of which 4 attack types can be subdivided into 39 attack
types.

• DREBIN—DREBIN is a widely used Android malware
detection dataset and it contains the Android software
from 2010 to 2012, including benign and malicious
applications. Also, its advantages lie in apparent features
and labels, diversity of software.

We train each model with different optimizers on three
different datasets. Before we train models, each dataset
needs to be preprocessed. MNIST dataset contains plenty
of handwritten images, and the traditional way of deal-
ing with images is feature scaling, which scales all pixel
values between −1 and 1. For KDD dataset, the origi-
nal dataset is not suitable to train neural networks. Thus,
we quantify and normalize the record features in the dataset.

VOLUME 7, 2019 152769



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

After preprocessing the dataset, we get a multi-dimension
vector for each training record. For DREBIN dataset, we use
the binary indicator vectors to represent the features and nor-
malize the binary indicator vectors to preprocess theDREBIN
dataset.

B. WHITE-BOX ATTACK
The model attack itself with self-generated adversarial exam-
ples is defined as the white-box attack in this paper. There
are various algorithms for crafting adversarial examples. For
example, the Fast Gradient Sign Method (FGSM) [14] and
the Jacobian-based Saliency Map Attack (JSMA). Both these
methods were first proposed in image recognition problem.
FGSM generates perturbation by applying the derivative of
the cost function to the input. JSMA method is based on
the Jacobian matrix of the function the model learned during
training. While FGSM perturbs all the components of input,
JSMA tries to modify the salient features that contribute
to the target class. We consider that adversarial examples
should hide itself as much as possible to avoid being detected,
especially in malware-detection fields. Therefore, adversarial
examples generated on the JSMA algorithmmeet our require-
ments. Also, Researchers applied JSMA to both NSL-KDD
(the network-based intrusion detection system dataset) and
DREBIN (an android malware detection dataset) in order
to verify the suitability for intrusion detection and malware
detection tasks in [26]. These discussions motivate the appli-
cation of JSMA to synthesize adversarial examples in our
experiments.

A deep neural network model with three hidden layers is
trained on MNIST, NSL-KDD and DREBIN datasets with
SGD, RMSprop, Adadelta and Adam optimizers respec-
tively. Then we have four models, SGD-model, RMS-model,
Adadelta-model, and Adam-model, for crafting adversarial
examples. Then JSMA is used to generate the adversarial
examples. The crafting rate and the perturbation rate of
crafting adversarial examples against legitimate examples are
compared between those models. All the hyperparameters of
these models are the same except for the optimizer to be used
and learning rate. The reason is that we consider learning rate
is part of the optimizer, and different optimizer has different
optimal learning rate to help it update the model’s parameters
quickly. Therefore, we adjust an optimal learning rate for
each optimizer so that the model based on this optimizer can
converge fastest and reach the best performance. More details
about the model we build are that three hidden layers are in
turn 256, 512, 128 nodes. ReLU is chosen as the activation
function to guarantee the non-linearity of the model. And
then dropout method with rate 0.5 is adopted to regularize the
model and prevent overfitting. The input dimensions and the
output dimensions correspond to each preprocessed dataset.
For example, the input dimension and the output dimension
of the KDD dataset is 122 and 5.

We train each model via dataset and optimizer, and craft
adversarial examples using JSMA. In order to facilitate the
comparison of experimental results, we choose the class

‘Normal’ in KDD, class ‘0’ in MNIST and class ‘Benign’
in DREBIN as the adversarial target. Concretely, we aim
to deceive the model to classify those perturbed samples as
‘Normal’, ‘0’ and ‘Benign’ no matter which category the
origin inputs should belong to. According to JSMA, in terms
of specific input X, we calculate the Jacobian matrix J of the
function F learned by the model after training, which is called
forward derivative. Then a saliency map is constructed based
on the forward derivative. Perturbed features are identified by
the saliency map and modified until we achieve our adversar-
ial goal to misclassify X as the adversarial target or reach the
upper limits of iterations. In addition, we set epoch to 20 in
order to investigate changes of metrics in adversarial example
generation in each epoch under different optimizers, so as
to get the most suitable optimizer for adversarial example
generation.

C. BLACK-BOX ATTACK
The black-box attack means that the adversary makes use of
transferability of adversarial examples to implement attacks
on the target model. We select classifiers such as decision
trees, random forests, and linear support vector machine
along with CNNs and RNNs to implement the cross-model
attack capabilities of the adversarial examples against the
traditional machine learning models and deep learning mod-
els. The CNN layers we construct is conv16-conv32-full32.
Here, convN means a convolutional layer with N filters,
and fullN means a fully-connected layer with N nodes. The
RNN layers is as follows: LSTM30-LSTM60-full32, where
LSTMN means a LSTM layer with N units. According to
the thread model taxonomy, an adversary does not know
the architecture and specific parameters of the model. Thus,
we consider it as a black-box attack.

D. EVALUATION METRICS
As mentioned in Section III.B, we divide all the classes into
target classes and non-target classes so it is a binomial clas-
sification problem. For binomial classification, we consider
confusion matrix and its derived indicators to evaluate the
performance of black-box attack. The definition of the confu-
sion matrix is given in Table 2. We only select representative
Accuracy, F1-score, and AUC value, the area of ROC curve,
to measure the classification results of the black-box attack.
The reason is that the accuracy shows the classification results
intuitively. F1-score avoids the output of the classifier being
biased towards one result, indicating the reliability of Accu-
racy. ROC curve applies False Positive Rate as the horizontal
coordinate, and True Positive Rate as the vertical coordinate
to draw the figure. The size of the curve area, denoted as
AUC, reflects the performance. The details of calculation
indicators are shown in Table 2 and Table 3.

As for the evaluation of white-box attack, we choose
Dvalue, crafting rate of generating adversarial examples and
the perturbation rate when generating adversarial examples.
The indicator of the crafting rate of generating adversar-
ial examples can intuitively reflect whether the adversarial

152770 VOLUME 7, 2019



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

FIGURE 1. ACC on datasets and optimizers.

TABLE 2. Confusion matrix.

TABLE 3. Evaluation indicators.

examples are successfully generated or not. The accuracy-
adversarial score is the accuracy score on the adversarial
examples, which demonstrates the quality of adversarial
examples generated by JSMA based on the trained model.
The perturbation rate is the percent of perturbed features
of total features for generating adversarial examples, indi-
cating the degree of adding noise to the original sample
when generating adversarial samples. Also, we introduce an
advanced evaluation metric called Dvalue shown in Table
3, where Xorig denotes original examples and Xadv denotes
adversarial examples. Dvalue shows the difference between
accuracy score on original examples and accuracy-adversarial
score on adversarial examples. The value of Dvalue rep-
resents the degree of misclassification caused by adver-
sarial examples. Generally speaking, the white-box attack
succeeds when the crafting rate of adversarial example
generation is high, the perturbation rate is low, and Dvalue
is large.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section first presents the results of the generated
adversarial examples. Then results of adversarial example
transferability are present. At last, the summary is given after
analyzing those experiment results.

A. SENSITIVITY ANALYSIS UNDER WHITE-BOX
ATTACK SETTINGS
This section presents the results of generating adversarial
examples under four optimizers. SGD-samples,
RMS-samples, Adam-samples, and Adadelta-samples denote
the adversarial examples generated by SGD-model,
RMS-model, Adadelta-model, andAdam-model, respectively.

We draw the curves of ACC, Dvalue, the crafting rate
and the perturbation rate of adversarial example generation
as the number of epochs increased under different datasets
and optimizers. The results are shown in Figure 1. Since the
curves of Figure 1(b) and Figure 1(c) are similar to those
in Figure 1(a), we focus on analyzing Figure 1(a).We observe
that the yellow curve is always at the top and the blue curve is
always at the bottom of the four curves, which indicates that
Adam optimizer is the fastest convergence optimizer and the
slowest is SGD optimizer and all the models does not overfit
under different datasets, which is in line with our expectation.
RMS is closest to the convergence rate of Adam. As for
Adadelta optimizer, its convergence rate is slightly inferior
to that of Adam and RMS. Therefore, from the perspective
of the convergence rate of the DNN model, no matter which
dataset, Adam and RMS optimizers perform best, followed
by Adadelta, and SGD optimizer is the worst.

Dvalue reflects the aggression of adversarial examples
on the model in the white-box attacks. As can be seen in
Figure 2, in the structured data (DREBIN and NSL-KDD),
Dvalue of Adam-samples is large as a whole considering the
fluctuations, and RMS, SGD, and Adadelta are followed by
Adam. However, in the unstructured data (MNIST), the trend
of Adadelta-samples rises steadily, but the trend of Adam-
samples and RMS-samples drops continuously, indicating
that only Adadelta-samples maintain and improve the aggres-
sion of adversarial examples. So merely considering Dvalue,
Adam optimizer is the best choice to generate adversarial

VOLUME 7, 2019 152771



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

FIGURE 2. Dvalue on datasets and optimizers.

FIGURE 3. Crafting rate on datasets and optimizers.

FIGURE 4. Perturbation rate on datasets and optimizers.

examples on the structured dataset and Adadelta optimizer
is the best choice to generate adversarial examples on the
unstructured dataset.

In terms of the curves of crafting rate in Figure 3, the craft-
ing rate of Adam and SGD optimizer is stable around
1 in DREBIN dataset. The curves of RMS and Adadelta
fluctuate considerably, especially the RMS curve. In KDD
dataset, the SGD and Adadelta curves stabilize at 1, and the
Adam curve and RMS curve oscillate violently. But Adam
is still acceptable because the crafting rate is still over 92%.
In MNIST dataset, Adadelta and SGD are stable at 1. But
the interesting thing is that the Adam curve and RMS curve
show a downward trend as a whole. So only considering the
crafting rate, no matter what dataset, the best choice is SGD,

and Adam and Adadelta are candidate optimizers. In particu-
lar, Adam and Adadelta are more compatible with structured
data, and Adadelta is more compatible with non-structured
data.

As for the curves of perturbation rate in Figure 4, Adam,
Adadelta and RMS curves are falling in fluctuation in three
datasets. The perturbation rate curve of SGD optimizer rises
slowly on the three datasets. We think the model based on
the SGD optimizer does not converge in the previous epochs
and learn about potential data connections. Thus, the accu-
racy is a bit low on the test set and the JSMA algorithm
based on the model parameters does not need to add too
much noise. With the increase of epochs, the perturbation
rates based on the SGD optimizer are basically the same

152772 VOLUME 7, 2019



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

TABLE 4. Comparison of cross-model attack regarding adversarial examples transferability on DREBIN dataset.

as the other optimizers’ rates. In DREBIN dataset, Adam
adds less noise on average. In KDD and MNIST datasets,
Adadelta adds less noise and Adam is slightly inferior to
Adadelta. Therefore, when only considering the perturbation
rate, Adam or Adadelta can be used as candidate optimizer
based on the actual perturbation rate on the structured datasets
but Adadelta is the only choice on the unstructured datasets.

In summary, on the structured data, Adam optimizer is a
choice as a part of adversarial example generation because
of the faster convergence rate, better quality of adversarial
example generation, acceptable adversarial example crafting
rate and perturbation rate. Adadelta plays the same role in the
unstructured data.

B. SENSITIVITY ANALYSIS UNDER BLACK-BOX
ATTACK SETTINGS
This section mainly investigates the effectiveness of
optimizers under the black-box attacks in terms of adversarial
example transferability. We first examine the results with
the indicators against cross-model attacks using adversarial
examples generated by models with different optimizers
and datasets. The results are shown in TABLE 4, TABLE
5 and TABLE 6. Here, the original sample means legitimate
test sample, Adam-samples means the adversarial examples
generated on the Adam optimizer and so on. We can get
an intuitive conclusion: optimizers have limited effects on
the transferability of adversarial examples. This means that
the influence of the adversarial examples generated on the
optimizer on the transferability of some models is apparent,
but the effect on others is not apparent. We highlight the min-
imum value for each column in the following three tables and

make a detailed analysis. We start with an analysis of Table 4,
showing the cross-model attack comparison results between
four types of adversarial examples on DREBIN dataset.
Adversarial examples generated on different optimizers have
different considerable influence on various machine learning
models. For example, RMS-samples has the greatest impact
on the Decision Tree model, because the metrics, ACC,
F1-score, AUC, are the minimum in the classification results
of all types of adversarial examples by Decision Tree. As for
the Random Forest model and Linear SVM model, Adam-
samples has the greatest influence on the performance of
these model. Deep learning models, CNN and RNN, are also
affected by the adversarial examples crafted on the different
optimizers. Adadelta-samples have the greatest influence on
the CNN model, and SGD-samples have the impact on the
RNN model.

We compare the results of NSL-KDD dataset and
DREBIN dataset since both datasets are structured dataset.
Table 5 shows the cross-model attack comparison results
between four types of adversarial examples on NSL-KDD
dataset. As seen in Table 5, we observe that the performance
of adversarial examples generated on different optimizers
varies from model to model. And the result is totally different
from the results on DREBIN dataset. From Table 5, we can
see that for Decision Tree, the most influenced examples
generated on the optimizer is Adadelta, which is different
fromRMS optimizer on DREBIN dataset. As for the Random
Forest, the most influential optimizer is RMS, differing from
Adam on DREBIN. SGD examples affect the Linear SVM
the most, but Adam examples affect the Linear SVM on
DREBIN dataset the most. SGD examples also affect two

VOLUME 7, 2019 152773



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

TABLE 5. Comparison of cross-model attack regarding adversarial examples transferability on NSL-KDD dataset.

TABLE 6. Comparison of cross-model attack regarding adversarial examples transferability on MNIST dataset.

deep learning models, CNN and RNN, where the evaluation
indicator values drop the most. But on DREBIN dataset,
the most affected adversarial examples of these two models
are Adadalta and SGD.

It can be seen from the results of two datasets, DREBIN
and NSL-KDD, adversarial examples generated on different
optimizers have excellent transferability in some models,
but the transferability is not so prominent in other models.
This indicates that adversarial examples generated on the

same optimizer may not have the same degree of transfer-
ability for all models and this difference are not regular.
Therefore, we think that optimizers have a limited impact
on the transferability of adversarial examples in terms of
structured datasets.

Table 6 shows the cross-model attack comparison results
on MNIST dataset. The conclusion is the same with
NSL-KDD and DREBIN datasets. As seen in Table 6,
each model has a set of adversarial examples with the best

152774 VOLUME 7, 2019



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

performance of transferability. For instance, Adam examples
perform best on Decision Tree and RNN, SGD examples
perform best on Random Forest and CNN, and Adadelta
examples perform best on Linear SVM. Associated with
Table 4 and Table 5, we can conclude that the impact of
optimizers on the transferability of adversarial examples is
limited.

C. SUMMARY
This sectionmakes a summary through the experiment results
and the above analysis of Section IV.A and IV.B as follows:
(1) In terms of white-box attacks, the DNN model with

Adam optimizer can generate adversarial examples
with high convergence rate, low perturbation rate and
high generation rate on structured datasets. But on the
unstructured dataset, the optimizer with the same effect
is Adadelta optimizer.

(2) In term of black-box attacks, the impact of optimizers
on the transferability of adversarial examples is limited.

V. CONCLUSION AND FUTURE WORK
In this paper, we investigate models’ sensitivity to adversarial
examples with different optimizer algorithms. We construct
experiments to compare the four most used optimizers,
Adam, Adadelta, RMSprop, and SGD in terms of their
model robustness against adversarial examples. Meanwhile,
we train the models with different optimizers on struc-
tured datasets (NSL-KDD and DREBIN) and unstructured
dataset (MNIST) and then compare diverse behaviors of
models. Experimental results indicate that (1) for structured
datasets, Adam optimizer can generate higher quality adver-
sarial examples when the white-box attack is implemented;
(2) for unstructured datasets, Adadelta optimizer can generate
higher quality adversarial examples in the white-box attack.
We conclude that the gradient descent optimizer has a greater
impact on the generation of adversarial examples on neural
network models.

This paper uses only one adversarial example attack
method and one target class to assess the effect of optimizer
on the adversarial examples. In the future work, research
on experimental analysis of scenarios of more representative
attacks, more complex network architectures and more com-
plicated datasets should be conducted. Moreover, the reason
why optimizer can affect the adversarial examples will be
explored as well.

REFERENCES
[1] G. Gkioxari, R. B. Girshick, P. Dollár, and K. He, ‘‘Detecting and recog-

nizing human-object interactions,’’ in Proc. IEEE Conf. CVPR, Jun. 2018,
pp. 836–859.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[3] Z. Deng, J. Chen, Y. Fu, and G. Mori, ‘‘Probabilistic neural programmed
networks for scene generation,’’ in Proc. NIPS, 2018, pp. 4032–4042.

[4] Y. Adi, N. Zeghidour, R. Collobert, N. Usunier, V. Liptchinsky, and
G. Synnaeve, ‘‘To reverse the gradient or not: An empirical comparison of
adversarial and multi-task learning in speech recognition,’’ in Proc. IEEE
Conf. ICASSP, May 2019, pp. 3742–3746.

[5] K. Zhang, G. Lv, E. Chen, L. Wu, Q. Liu, and C. L. P. Chen, ‘‘Context-
aware dual-attention network for natural language inference,’’ in Proc.
PAKDD, 2019, pp. 185–198.

[6] D. Brooks, O. Schwander, F. Barbaresco, J. Schneider, and M. Cord,
‘‘Exploring complex time-series representations for Riemannian machine
learning of radar data,’’ in Proc. ICASSP, May 2019, pp. 3672–3676.

[7] X. Liu, Z. Deng, and Y. Yang, ‘‘Recent progress in semantic image seg-
mentation,’’ Artif. Intell. Rev., vol. 52, no. 2, pp. 1089–1106, Aug. 2019.

[8] C. Szegedy,W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ in Proc. ICLR
(Poster), 2014, pp. 1–10.

[9] N. Carlini and D. A.Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ in Proc. IEEE Conf. SP, May 2017, pp. 39–57.

[10] A. Fawzi, O. Fawzi, and P. Frossard, ‘‘Analysis of classifiers’ robustness
to adversarial perturbations,’’ Mach. Learn., vol. 107, no. 3, pp. 481–508,
2017.

[11] A. Kurakin, I. J. Goodfellow, and S. Bengio, ‘‘Adversarial examples in the
physical world,’’ in Proc. ICLR (Workshop), 2017, pp. 1–14.

[12] A. Graese, A. Rozsa, and T. E. Boult, ‘‘Assessing threat of adversar-
ial examples on deep neural networks,’’ in Proc. ICMLA, Dec. 2016,
pp. 69–74.

[13] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami, ‘‘Distillation
as a defense to adversarial perturbations against deep neural networks,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2016, pp. 582–597.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ in Proc. ICLR (Poster), 2015, pp. 1–11.

[15] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. D. McDaniel,
‘‘Ensemble adversarial training: Attacks and defenses,’’ in Proc. ICLR
(Poster), 2018, pp. 1–20.

[16] M. Cissé, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, ‘‘Parseval
networks: Improving robustness to adversarial examples,’’ in Proc. ICML,
2017, pp. 854–863.

[17] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’ in
Proc. EuroS&P, Mar. 2016, pp. 372–387.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. CISDA, 2009, pp. 1–6.

[19] D. Arp, M. L. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
‘‘DREBIN: Effective and explainable detection of Android malware in
your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[20] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. ICLR (Poster), 2015, pp. 1–15.

[21] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ 2014,
arXiv:1412.6980. [Online]. Available: https://arxiv.org/abs/1412.6980

[22] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747. [Online]. Available: https://arxiv.org/abs/1609.
04747

[23] N. Papernot, P. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, ‘‘Practical black-box attacks against machine learning,’’ in
Proc. ASIA CCS, New York, NY, USA, 2017, pp. 506–519.

[24] A. Rozsa, E. M. Rudd, and T. E. Boult, ‘‘Adversarial diversity and hard
positive generation,’’ in Proc. CVPR Workshop, Jun. 2016, pp. 410–417.

[25] N. Papernot, P. D. McDaniel, A. Swami, and R. E. Harang, ‘‘Crafting
adversarial input sequences for recurrent neural networks,’’ in Proc. MIL-
COM, 2016, pp. 49–54.

[26] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,
‘‘Adversarial examples for malware detection,’’ in Proc. ESORICS, 2017,
pp. 62–79.

[27] A. Rozsa, M. Günther, and T. E. Boult, ‘‘Are accuracy and robustness
correlated,’’ in Proc. ICMLA, Dec. 2016, pp. 227–232.

[28] X. Li and F. Li, ‘‘Adversarial examples detection in deep networks with
convolutional filter statistics,’’ in Proc. ICCV, 2017, pp. 5775–5783.

[29] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[30] T. Wang, Z. Li, Y. Yan, and H. Chen, ‘‘A survey of fuzzy decision tree
classifier methodology,’’ in Proc. ICFIE, 2007, pp. 959–968.

[31] N. Cristianini and B. Schölkopf, ‘‘Support vector machines and kernel
methods: The new generation of learning machines,’’ AI Mag., vol. 23,
no. 3, pp. 31–42, 2002.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

VOLUME 7, 2019 152775



Y. Wang et al.: Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples

[33] K. Anders and J. A. Hertz, ‘‘A simple weight decay can improve general-
ization,’’ in Proc. NIPS, 1992, pp. 950–957.

[34] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal
representations by error propagation,’’ California Univ. San Diego La Jolla
Inst. Cogn. Sci., San Diego, CA, USA, Tech. Rep. ICS-8506, 1985.

[35] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, ‘‘Handwritten digit recognition with a
back-propagation network,’’ in Proc. NIPS, 1989, pp. 396–404.

[36] T. Tijmen and G. E. Hinton, ‘‘Lecture 6.5-RmsProp: Divide the gradient
by a running average of its recent magnitude,’’ COURSERA: Neural Netw.
Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012.

[37] C. Darken, J. Chang, and J. Moody, ‘‘Learning rate schedules for faster
stochastic gradient search,’’ in Proc. IEEE Workshop Neural Netw. Signal
Process. II, Aug. 1992, pp. 3–12.

[38] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang, ‘‘Droidensemble:
Detecting Android malicious applications with ensemble of string and
structural static features,’’ IEEE Access, vol. 6, pp. 31798–31807, 2018.

[39] X. Gao, Y. Tan, H. Jiang, Q. Zhang, and X. Kuang, ‘‘Boosting targeted
black-box attacks via ensemble substitute training and linear augmenta-
tion,’’ Appl. Sci., vol. 9, no. 11, p. 2286, 2019. doi: 10.3390/app9112286.

[40] Y. Shi, S. Wang, and Y. Han, ‘‘Curls & whey: Boosting black-box adver-
sarial attacks,’’ presented at the IEEE Conf. CVPR, CA, USA, Jun. 2019.

[41] P. Chandarana and M. Vijayalakshmi, ‘‘Big data analytics frameworks,’’ in
Proc. IEEE Conf. CSCITA, Apr. 2014, pp. 430–434.

YIXIANG WANG received the B.S. degree from
Beijing Jiaotong University, China, in 2018, where
he is currently pursuing the Ph.D. degree with the
Beijing Key Laboratory of Security and Privacy
in Intelligent Transportation. His research inter-
ests include adversarial examples and security in
machine learning.

JIQIANG LIU received the B.S. and Ph.D. degrees
from Beijing Normal University, in 1994 and
1999, respectively. He is currently a Professor
with the School of Computer and Information
Technology, Beijing Jiaotong University. He has
published more than 80 scientific articles in var-
ious journals and international conferences. His
main research interests include trusted computing,
cryptographic protocols, privacy preserving, and
network security..

JELENA MIŠIĆ (M’91–SM’08–F’18) is currently
a Professor of computer science with Ryerson
University, Toronto, Ontario, Canada. She has
published four books, more than 125 articles
in archival journals and close to 190 papers at
international conferences in the areas of com-
puter networks and security. She is a member of
ACM. She serves on editorial boards of the IEEE
TRANSACTIONSONVEHICULARTECHNOLOGY, the IEEE
INTERNET OF THINGS JOURNAL, the IEEE NETWORK,
Computer Networks, and Ad hoc Networks.

VOJISLAV B. MIŠIĆ (M’92–SM’08) is currently
a Professor of computer science with Ryerson
University, Toronto, Ontario, Canada. His research
interests include performance evaluation of wire-
less networks and systems, and software engi-
neering. He is a member of ACM. He serves on
the editorial boards of the IEEE TRANSACTIONS

ON CLOUD COMPUTING, Ad hoc Networks, Peer-to-
Peer Networks and Applications, the International
Journal of Parallel, and Emergent and Distributed
Systems..

SHAOHUA LV was born in 1993. He received the
B.S. degree from Donghua University, in 2016,
and theM.S. degree from Beijing Jiaotong Univer-
sity, in 2019. His research interests include mainly
in network intrusion detection and nature language
processing.

XIAOLIN CHANG is currently a Professor with
the School of Computer and Information Tech-
nology, Beijing Jiaotong University. Her current
research interests include edge/cloud computing,
network security, and security and privacy in
machine learning.

152776 VOLUME 7, 2019

http://dx.doi.org/10.3390/app9112286

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	BACKGROUND
	RELATED WORK

	METHODOLOGY
	DATA PREPROCESSING
	WHITE-BOX ATTACK
	BLACK-BOX ATTACK
	EVALUATION METRICS

	EXPERIMENTAL RESULTS AND DISCUSSIONS
	SENSITIVITY ANALYSIS UNDER WHITE-BOX ATTACK SETTINGS
	SENSITIVITY ANALYSIS UNDER BLACK-BOX ATTACK SETTINGS
	SUMMARY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YIXIANG WANG
	JIQIANG LIU
	JELENA MIŠIC
	VOJISLAV B. MIŠIC
	SHAOHUA LV
	XIAOLIN CHANG


