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ABSTRACT Brain extraction is a process of removing non-brain tissue in the brainmagnetic resonance (MR)
images and serves as a first step towards more delicate brain segmentation. Although many brain extraction
methods have been proposed in the literature, most of them are either laborious or time consuming, and lack
of instant visualization. This leads to a time lag between image acquisition and comprehensive visualization.
Especially for intraoperative image based neurosurgery navigation, the time lag from image acquisition to
brain visualization should be reduced as much as possible. In this paper, we propose an end-to-end fast
brain extraction and visualization framework. The input is a T1-weighted MR volume and the output is
comprehensive brain visualization. An improved brain extraction tool (BET) algorithm is proposed to evolve
a 3D active mesh model to fit the brain surface in the 3D image. Then the brain mask is generated per
slice using a polygon fill algorithm. At last, a ray-casting volume rendering algorithm is used to visualize
the brain surface with the help of the generated mask. All the operations are performed using the modern
OpenGL pipelines running on a graphics processing unit (GPU). Experiments were performed on two
publicly available datasets and one clinical dataset to compare our method with five state-of-the-art methods
including the original BET in terms of segmentation accuracy and time cost. Our method achievedmeanDice
coefficients of 96.8%, 97.1%, 98.5% and mean time cost of 361 ms, 341 ms, 502 ms on the three datasets,
outperforming all the other methods.

INDEX TERMS Brain extraction, image segmentation, active contour, visualization, neurosurgery.

I. INTRODUCTION
Brain extraction (also known as skull stripping) is a first
step towards brain image analysis and is widely performed
prior to more delicate brain segmentation [1]. It refers to the
process of removing non-brain tissue such as skull, dura, and
scalp in the brain magnetic resonance (MR) images. It is
also regarded as the brain/non-brain segmentation in which
the brain mainly consists of white matter (WM), gray mat-
ter (GM), cerebrospinal fluid (CSF), and cerebellum. After
brain extraction, brain model generation and/or fine brain
tissue classification (e.g., WM, GM, CSF, cerebellum) can
be performed to facilitate the following brain image analysis
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which is eventually employed for brain disease diagnosis,
therapy, and prediction [2]–[5].

In neurosurgery navigation [6]–[8], the brain structure
from MR images is visualized as the atlas to guide the
interventional procedure which requires brain extraction to
be performed in advance. In addition, the details of the
brain structure such as cerebral cortex, vessels, sulci and gyri
are supposed to be vividly visualized so that the surgeon
could make appropriate interventional path. In general, brain
segmentation is a challenging problem due to the nonho-
mogeneous intensity distribution of brain structures and the
intensity overlap with surrounding non-brain structures, call-
ing for sophisticated algorithms and significant human input
for parameter tunning. High inter-subject variability across
individual brains and presence of pathological regions further
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reduce the generalization of the algorithms. Although many
brain/non-brain segmentation methods exist, most of them
are labour-intensive and time consuming and lack of instant
brain visualization. The output of existing brain segmenta-
tion methods needs further to be processed (e.g., 3D mesh
generation, reduction, smoothing) for the final visualization.
The visualization cannot reflect the change of segmentation
results in real time. For intraoperative MR image based neu-
rosurgical navigation [9]–[11], it is preferred that the time
lag from image acquisition to fine visualization should be
reduced as much as possible.

In this paper, we are not addressing the brain segmentation
problem at the finest level, instead we focus on the integrated
framework of fast whole brain extraction and accurate vivid
visualization using modern OpenGL pipelines running on a
graphics processing unit (GPU).

II. RELATED WORK
Existing brain extraction methods can be divided into
the following four categories: low-level image process-
ing with histogram analysis and connected component
filtering [12]–[19], atlas matching [20]–[24], active contour
models [25]–[30], and learning-based approaches [31]–[35].
Each of the existing methods has strengths and weaknesses.
Most of the methods work in a 2D manner (i.e., segmentation
is performed slice by slice). In addition, some hybrid methods
that combine at least two of aforementioned methods have
also been proposed [36]. For example, atlas model and active
contour model are often combined to make use of both local
image features and prior global shape information to achieve
better segmentation results [37], [38].

Low-level image processing methods isolate the brain
region in the axial slice by carrying out thresholding or
edge detection followed by a series of morphology opera-
tions to break the thin bridging area between brain and non
brain tissues. Then a connected component filter is applied
to extract the isolated brain region. Preprocessing such as
anisotropic diffusion filtering may help in improving the
brain isolation. Instead of applying morphology operations,
Sadananthan et al. propose to use graph cuts to isolate the
brain region [39]. The disadvantages of these low-level pro-
cessing based methods include high sensitivity to signal noise
ratio (SNR) and edge discontinuity, difficult parameter tun-
ing, and low robustness against different imaging protocols.

Atlas matching methods first construct manually labeled
brain atlases and then match the atlases against the target data
volume using a deformable image registration algorithm. The
labels are therefore mapped to the target volume space either
simply using the resulting transformation, or through a more
complicated label fusion procedure [40]. Apart from high
computational cost, atlas based segmentation methods suffer
from registration failure and misalignment if an inappropriate
registration model is chosen or the target volume lies far from
the atlas population.

Active contour models are frequently used in image seg-
mentation tasks to find the boundary of region of interest

(ROI). The core idea is to minimize a functional defined
by the contour representation and image features. The min-
imization is eventually converted to solving partial differen-
tial equations using Euler equations. The resulting behav-
ior is that the contour is being attracted onto the image’s
salient edges. According to the representation of the contour,
the active contour model has two main forms: snakes [41]
and geodesic active contours [42]. Compared with snakes,
geodesic active contours use the level set of a higher dimen-
sional function to represent the contour which can natu-
rally handle curve splitting and merging. Active contour
models are driven by local image features and may pen-
etrate into the boundary if the local edge feature is not
salient. Besides, an initial contour should be placed nearby
the target boundary as the start point of contour evolu-
tion. To overcome this limitation, Leventon et al. pro-
pose to incorporate prior shapes into the framework of
geodesic active contours [26]. However, the prior shapes
suffer from inter-subject variation across different individ-
ual brains. The trade-off between the global shape guidance
and the local feature fidelity is difficult to balance in a real
application.

Learning-based approaches include parameter learn-
ing [32], hidden Markov model [31], generative and discrim-
inative model [43], and convolutional networks [33]–[35].
Recently, deep convolutional networks have gained great
success and outperform traditional methods in various
image segmentation tasks. In the brain segmentation,
deep convolutional networks are mainly proposed to per-
form fine tissue classification after brain extraction [34].
Hwang et al. employ 3D U-Net [44] for skull stripping,
however, no quantitative evaluations were presented. The
performance of learning-based methods heavily rely on
the training data and they perform well mostly on the
specific dataset on which the learner is trained or tuned.
It is difficult to obtain adequate well labeled datasets
which can reflect the variability across large-scale individual
brains.

It has been realized that every method has both strengths
and weaknesses, and no single method generalizes well for
a large scale of datasets. Local feature based methods have
difficulty in parameter tuning and suffer from imaging noise.
Statistical model/learning based methods struggle with the
model generalization and local fidelity. Our method is based
on the BET algorithm [28] which is a local feature based
method with the advantages of being computationally effi-
cient and less sensitive to parameter choice. Our contribu-
tion has two folds: 1. as the methodology innovation we
have modified and improved the original BET algorithm to
increase the segmentation accuracy of cerebral cortex with
deep sulci and gyri; 2. as the practical implementation we
have designed and implemented a very fast GPU-based par-
allel processing pipeline for the improved BET and instant
comprehensive brain visualization. Instant visualization is
very important for quickly and intuitively tuning parameters
of segmentation algorithms [45].

156098 VOLUME 7, 2019



J. Wang et al.: Fast 3D Brain Extraction and Visualization Framework Using Active Contour and Modern OpenGL Pipelines

FIGURE 1. Brain extraction using BET algorithm.

III. METHOD
A. IMPROVED BET
For the details of the BET algorithm we refer readers to the
original paper [28]. Here we only give necessary description
of BET and conclusive formula for the understanding of our
approach. The BET algorithm evolves an icosphere to fit the
brain surface in the MR volume as shown in Fig. 1. The
icosphere is generated by tessellating an icosahedron and is
coarsely placed in the center of the brain. At each iteration of
the evolution, the displacement vector u of each vertex of the
icosphere is composed of three terms:

u = 0.5st + f2sn + 0.05lf3n (1)

which control the within-surface vertex spacing, surface
smoothness and brain surface attraction, respectively. n is the
unit normal vector of the local surface at the vertex in question
(current vertex); l is the mean distance from the current vertex
to its adjacent vertices; and sn = (n · s)n, st = s − sn
where s is the vector pointing from the current vertex to the
mean position of its adjacent vertices. Figure 2 illustrates the
relationships between sn, st , s and n.
Different with the original algorithm, we propose to calcu-

late f2 using a sigmoid function:

f2 =
1

1+ e
r−β
α

(2)

r =
l2

2|sn|
(3)

where r approximates the local radius of curvature; α and
β are smoothness parameters empirically taking 1 mm and
8 mm respectively. Only β needs to be adjusted adaptively in
rare cases where self-intersection happens during the surface
evolution. Increasing β will prevent self-intersection. f2 can

FIGURE 2. Relationships between sn, st , s and n.

FIGURE 3. Choice of d affects the direction of the image force.

be seen as an internal force that make the evolving surface
smooth.
f3 is given by:

f3 =
2(Imin − t1)
Imax − t2

(4)

t1 = (Imax − t2)bt + t2 (5)

Imin = max (t2,min (tm, I (0), I (1), · · · , I (d))) (6)

Imax = min (tm,max (t, I (0), I (1), · · · , I (d))) (7)

t = 0.9t2 + 0.1t98 (8)

where t2 and t98 are the 2- and 98-percentile intensities of
the histogram of the brain MR volume; tm is the median
intensity within the initial icosphere; bt is an input parameter
usually taking the value of 0.5; Imin and Imax are the robust
estimates of minimum and maximum intensities of the line
profile along the negative norm vector with the intensity
function I (i) = I (v− in), i = 0, 1, · · · , d where v represents
the current vertex; d is the intensity searching depth which
is recommended to take 20 mm in the original algorithm.
Therefore the update position of the current vertex vk at the
step k is given by:

vk+1 = vk + uk (9)

f3 can be seen as an image force that makes the evolving
surface stick to the brain surface in the MR volume. It is
determined by the line intensity profile starting at the current
vertex and going along the negative normal vector into the
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FIGURE 4. Constant d leads to problematic brain extraction. (a) and (b) overestimation and underestimation with constant d . (c) Improved extraction
using the proposed d field.

depth of d . Let us assume t2 = 0, bt = 0.5 then we
have f3 = (2Imin − Imax)/Imax. If the line profile up to d is
approximately a horizontal line (Imin ≈ Imax), f3 approaches
one leading to a surface expansion. Otherwise if a step is
present, f3 approaches minus one leading to a surface con-
traction. With a more intuitive explanation, horizontal profile
means tissue homogeneity indicating that the current vertex
is still in the brain part while a step profile means CSF is
encountered indicating the current vertex is running out of the
brain part. The choice of d is important because the larger
it is, the more likely a step is present. As shown in Fig 3,
a smaller d makes the local surface move outwards while a
larger d makes the local surfacemove inwards under the force
of f3. To conclude, a larger d tends to underestimate brain
tissue (conservative) while a smaller d tends to overestimate
brain tissue (aggressive).

In the original BET algorithm, d remains constant every-
where once specified. As illustrated in Fig. 4(a) and (b),
we found that the constant d led to problematic brain extrac-
tion. Because in the region of cerebral cortex with deep sulci
and gyri, a smaller d is desired for the evolving surface to
penetrate CSF between GM. While in the region of pitu-
itary and cerebellum, a larger d is desired for robust tissue
discrimination. We therefore make a hypothesis that varying
d according to different surface locations may overcome
this problem. In this case, d actually becomes a scalar field
defined on the evolving surface. As shown in Fig 5(a), note
that in the region of cerebral cortex the brain’s local shape
has relatively high curvature (i.e., small radius of curvature).
We propose to perform a sigmoid nonlinear mapping from the
local radius of curvature r to the depth d .

d = (dmax − dmin)
1

1+ e−
r−b
a

+ dmin (10)

where dmax and dmin are the maximum and minimum d to be
mapped to; a and b are parameters that clamp the effective
mapping range of r to be [b − 3a, b + 3a]. We found that
setting a = 1 mm and b = 8 mm works well for almost
all cases. dmin is empirically chosen to be 1 mm and dmax is
given according to the region division described as follows.
As shown in Fig 5(b), assume that the brain volume has
been oriented in the LPS (Left-Posterior-Superior) coordinate

FIGURE 5. Nonlinear mapping from r to d . (a) Mean curvature
distribution of the brain surface. (b) Region division of dmax.

FIGURE 6. Topology of the surface. (a) Local connectivity. (b) Triangle
tessellation. Note that the tessellated vertices are not in the same plane
as V1-V2-V3.

system whose origin is located at the center of gravity (COG)
of the brain. dmax is set to be d2 for those vertices of the
evolving surface whose projection in the sagittal plane fall
into the pole angle range of [θ, π], and to be d1 for the
rest vertices. θ is an input parameter that controls the region
where a smaller d2 is desired and is set to be 0 by default.
d1 and d2 are by default set to be both 20 mm. For those
brains which has deep sulci and gyri as shown in Fig. 4, d2
is usually decreased to 5 mm. With the proposed d field,
the problematic brain extraction in the original BET could
be improved as shown in Fig. 4(c).

By testing on many datasets we have found some parame-
ters can be fixed after optimizing, therefore in our approach
we have only three parameters that are available for user
tuning: d2, bt , and θ . Comparedwith the original BET that has
only one input parameter bt , the extra two input parameters
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FIGURE 7. OpenGL pipeline for surface evolution.

d2 and θ control the d-field for fine estimation in the region
of cerebral cortex.

B. DATA STRUCTURE AND PARALLEL PROCESSING
Surface evolution can be inherently implemented in parallel
by exploiting vertex shaders in modern OpenGL. The shader
program is executed on all vertices of the surface. In each
vertex shader instance, a vertex’s position is updated and
many shaders are invoked at the same time on a GPU so that
the surface evolves in a parallel way. The updated surface
vertices in the shaders are captured back using OpenGL’s
transform feedback mechanism and are used in the next
iteration.

We represent the evolving surface using two arrays: ver-
tex array VA and connectivity array EA. VA stores vertex
coordinates in the order of (xi, yi, zi), i = 1, · · · , n where n
is the number of vertices and has the form of n = 20 · 4m

with m being the number of tessellation times. Each vertex
can be referenced by its index in VA. EA stores the ordered
indices of each vertex’s neighboring vertices and has the form
of (ind1i , ind

2
i , ind

3
i , ind

4
i , ind

5
i , ind

6
i ), i = 1, · · · , n where

ind ji represents the index of the j-th neighboring vertex of the
vertex i as shown in Fig. 6 (a). Because the evolving surface is
derived from an icosphere and the topology ismaintained dur-
ing evolving, the maximum number of neighboring vertices
is six and EA remains unchanged. In OpenGL, we implement
VA and EA as two buffer objects using the glCreateBuffers
API. Once VA and EA are initialized by tessellating an icosa-
hedron, VA is bound to GL_ARRAY_BUFFER for rendering.
glDrawArrays(GL_POINTS, 0, n) is then called to invoke the
vertex shader on all vertices. In the shader, Eq. (1)–Eq. (9)
are implemented to update the position of the current vertex
that is being processed. The brain volume data is accessed in
the shader by 3D texture fetching. The index of the current
vertex is obtained using the built-in variable gl_VertexID
in the shader. To access the neighboring vertices of the
current vertex, we have to access the contents of VA and
EA in the shader. This can be achieved by attaching the

two buffer objects VA and EA to two texture buffer objects
and accessing the contents by texture fetching. Once the
neighboring vertices are available, the unit normal vector
n of the current vertex can be calculated by averaging the
normals of its adjacent triangle faces. After the vertex is
updated, the new position is written to a variable whose
value is captured to a buffer object (namely, TA) which
is bound to GL_TRANSFORM_FEEDBACK_BUFFER. The
buffer object TA containing the updated surface geometry
is then bound to GL_ARRAY_BUFFER for the next iter-
ation (rendering pass) and the buffer object VA is bound
to GL_TRANSFORM_FEEDBACK_BUFFER for receiving
the updated geometry. By alternately binding VA and TA to
GL_ARRAY_BUFFER andGL_TRANSFORM_FEEDBACK_
BUFFER, we can avoid data transferring between the GPU
and CPU thus saving the time cost. Figure 7 illustrates the
shader-based OpenGL pipeline for surface evolution.

The last problem concerning computational efficiency lies
in icosphere tessellation. As shown in Fig. 6 (b), in each time
of tessellation, a triangle is tessellated into four triangles by
adding three new vertices V12, V13 and V23. However, the new
vertices may have already been generated when tessellating
adjacent triangles who share the same edge. Therefore vertex
duplication should be tested. Because we do not want redun-
dant vertex data during the tessellation, a common idea is to
delete duplicated vertex data after tessellation is completely
done, which has the time complexity of O(n2). We propose to
detect vertex duplication using a self-balancing binary search
tree when adding tessellated vertices into the vertex array,
which reduces the time complexity to O(n log2 n). Assumewe
are tessellating a triangle V1-V2-V3 represented by the vertex
indices. Take the V12 vertex as an example, we first encode
the vertex into a 64-bit integerK by packing the 32-bit integer
representation of the smaller number among V1 and V2 into
the lower 32 bit and packing the larger one into the higher
32 bit ofK . Then, we search the binary tree forK . IfK already
exists in the tree which means V12 already exists, its index is
retrieved to add new triangles. Otherwise K is inserted into
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FIGURE 8. Brain surface. (a) Front view. (b) Lateral view. (c) Top view.

the tree and the coordinates of V12 are calculated using V1 and
V2. At last, the coordinates of V12 are added into the vertex
array with the resulting index being used to add new triangles.
A good implementation of the self-balancing binary search
tree is the Map container in the standard template library of
C++. After the final tessellation, we obtain a vertex array
without repetition and a triangle list defining the topology of
the icosphere. The connectivity array EA is then generated
from the triangle list by traversing every edge and adding the
vertices of each edge to their mutual adjacent vertex lists. The
adjacent vertices of a vertex are finally clockwise re-ordered.

C. MASK GENERATION
After surface evolution stops (e.g., reach the maximum num-
ber of iterations or a convergence is detected), a smooth,
closed brain surface mesh is obtained as shown in Fig. 8.
Next, a binary 3D mask of the original brain volume is gener-
ated according to the brain surface (brain segmentation). The
voxels inside the brain surface are set to be 1 and those outside
the brain surface are set to be 0. The mask is used for skull
stripping and vivid volume rendering of the brain. Although
the brain surface generated by the improved BET algorithm is
a fine mesh model, it has weak shape resolution in the region
of cerebral cortex due to the inclusion of CSF between GM
inside the brain surface. By combining the binary mask and
the opacity/color transfer function in the volume rendering,
we can achieve high-resolution comprehensive visualization
of the brain.

To generate themask, one possible method is to iterate over
every voxel of the mask and test the voxel whether inside the
surface or not by counting the number of intersection points
between the ray emitted from the voxel and the surface. How-
ever this method is impractical due to the high computational
cost.We propose amore efficient approach by first computing
2D closed polygonal contours where the brain volume’s axial
slices intersect with the brain surface, and then filling the
contours slice by slice.

A geometry shader is used to generate the intersection
polygonal contours. Since the brain surface is a triangle mesh,
in the geometry shader we calculate the intersection line

(if exists) between the axial plane and the triangle of being
processed. If two edges of a triangle intersect with a plane,
there exists a intersection line. Assume t1-t2 are one edge of
a triangle, the intersection point p with a plane passing an
point op with the unit normal vector np is given by:

a = (op − t1) · np (11)

b = (op − t2) · np (12)

α = |a|/(|a| + |b|) (13)

p =

{
(1− α)t1 + αt2 if ab ≤ 0
no intersection otherwise

(14)

Because the shader is invoked on all triangles of the brain
surface, these individual intersection lines are captured back
using the transform feedback mechanism of OpenGL and
compose the polygonal contour. Shaders are invoked in paral-
lel, therefore this procedure is extremely fast. The last step is
to fill the polygonal contour slice by slice to generate the 3D
mask. A scan line polygon fill algorithm is employed to fill
the polygon. For each horizontal scan line of the slice image,
calculate the intersection points with the polygonal contour
and arrange the intersection points from left to right in terms
of the column coordinates. The pixels between 2i− 1-th and
2i-th (i = 1, 2, · · · ) intersection points are filled with 1.
Figure 9 shows the mask generation result using the proposed
approach.

D. VISUALIZATION
A mask based ray casting algorithm is implemented to visu-
alize the brain volume using OpenGL. A fragment shader
is used to cast a ray passing through the volume data. The
ray’s mathematical representation is determined by the cam-
era model in the form of the model-view-projection matrix.
For each sample point on the ray with the mask value
being nonzero, its color and opacity are calculated using
color/opacity transfer functions provided by the user. The
sample point is further shaded using the color with a lighting
model. A front-to-back composition algorithm is applied to
synthesize the final color of the ray contributed by all the
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FIGURE 9. Mask generation.

FIGURE 10. Brain visualization. Compared with Fig. 8, the sulci and gyri is clearly present.

sample points whose mask values are nonzero. The fragment
shader runs in parallel on all fragments that comprises the
final rendering image. Figure 10 demonstrates the brain visu-
alization result and Figure 11 illustrates the entire processing
framework for brain extraction and visualization.

For sample point shading, the normal vector of the implicit
surface embedded in the 3D volume is necessary, calling
for the computation of the 3D gradient images of the origi-
nal brain MR volume. The 3D Sobel kernels are convolved
with the volume to obtain the gradient images in x, y and
z directions. However, 3D convolution is time consuming.
We adopt a compute shader to perform the convolution in
parallel. A work group with 16× 16× 4 threads is designed
to simultaneously calculate the gradients within a sub region
of 14 × 14 × 2. A thread is one invocation of a computer
shader. A 3D grid of work groups that covers the whole
brain volume is then dispatched to compute the gradient
images.

IV. EXPERIMENTS AND RESULTS
A. SETUP
The proposed framework for fast brain extraction and visual-
ization was implemented using C++ and OpenGL 4.5 APIs.
We have developed a GUI desktop application1 integrating
the framework using Qt 5.11 for display and user interaction
as shown in Fig. 12. The application provides data loading
(supporting image formats of NifTI, DICOM, mhd, hdr, etc.),

1https://mrs.buaa.edu.cn/?page_id=342

brain extraction, mask generation, interactive volume/surface
rendering, and data serialization functionalities. The appli-
cation was running on a workstation with an Intel Xeon
E5-2609 CPU (1.90GHz) and a GeForce GTX Titan X GPU.
The surface evolution process automatically stops by check-
ing whether the maximum displacement of vertices is below
a threshold of 0.25 mm. The number of tessellation times
was 5 yielding an icosphere of 10242 vertices. By default,
the parameters used in our method were bt = 0.5, d2 =
20, θ = 0. The number of maximum iterations was set to
be 10000. We compared our method with publicly available
widely used skull stripping tools (BET in FSL v6.0,2 Brain-
Suite 19a,3 FreeSurfer V6.0,4 AFNI V19.1.26,5 FireVoxel
(build 301)6) in terms of computational time and segmen-
tation accuracy on three brain MR image datasets. Since
brain extraction results are affected by parameter choice in
almost all methods, in our evaluation we took the best results
for comparison by fine-tuning parameters of each candidate
method. The parameter tuning process of our method is
simple:

• Run the algorithm using the default parameters.
• If the segmentation is entirely smaller than the real brain,
decrease bt to 0.4.

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
3http://brainsuite.org/
4https://surfer.nmr.mgh.harvard.edu/
5https://afni.nimh.nih.gov/
6https://wp.nyu.edu/firevoxel/
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FIGURE 11. Integrated framework for brain extraction and visualization.

FIGURE 12. GUI desktop application for fast brain extraction and
visualization.

• Check the segmentation in the region of cerebral cortex,
if underestimation happens, decrease d2 to 5 mm.

• Check the segmentation in the region of posterior
meningeal septa, if overestimation/underestimation hap-
pens increase/decrease θ by a step of 0.1π .

Because the brain extraction results can be visualized
instantly, the tuning process is very fast and intuitive. For
other methods, the recommended parameters with trial-and-
error were adopted:

• BET: start with bt = 0.5 and adjust it according to the
result.

• BrainSuite: automatic parameter tuning on by the pro-
gram.

• FreeSurfer: (preweight the input image using atlas
information)-w = 0.82, (use the basins merging atlas
information)-b= 0.32, (presize the preflooding height)-
h = 10,-seedpt,-ta,-wta.

• AFNI: -shrink fac bot lin = 0.65 -shrink fac = 0.72 for
the IBSR dataset and -shrink fac bot lin = 0.65 -shrink
fac = 0.6 for other datasets.

• FireVoxel: plane for seed search = axial, SI low =
0.528 relative to seed average, SI high = 1.35 relative
to seed average, peel distance = 2.9 mm, grow distance
= 6.4 mm, strict CoreSet surface = true, use edges =
off, Subvoxel level = 1.

B. DATASET
• IBSR_V2.0 skull-stripped NifTI [46] obtained from the
Internet Brain Segmentation Repository (IBSR)7 con-
tains 18 subjects, 1.5 mm T1-weighted scans in NifTI
format with hand labelling brain mask as ground truth.

• NFBS skull-stripped images [47] obtained from The
Neurofeedback Skull-stripped (NFBS) repository8 is a
database of 125 T1-weighted anatomical MRI scans
that are manually skull-stripped. The data was collected
from 125 participants, 21 to 45 years old, with a variety
of clinical and subclinical psychiatric symptoms. The
resolution of the images is 1 mm3 and each file is in
NiFTI format.

• Anonymous clinical data obtained from our collaborated
hospital contains 8 subjects, 0.9 mm T1-weighted head
scans with the series protocol of t1_mpr_sag_p2_iso
in DICOM format. The average image resolution is
168x264x218. The example slices are shown in Fig. 13.
Brain masks were delineated by professional neurosur-
geons as the ground truth.

C. RESULTS
Dice coefficient (DC) is adopted to calculates the similarity
of two masks A and B as follows:

DC(A,B) =
2|A ∩ B|
|A| + |B|

(15)

7https://www.nitrc.org/projects/ibsr
8http://preprocessed-connectomes-project.org
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FIGURE 13. Example slices of the clinical data.

TABLE 1. Mean DICE and time cost on three datasets.

TABLE 2. Surface metrics on three datasets (unit: mm).

We calculate the Dice coefficient between the ground truth
and the output mask of each method to evaluate the accuracy
of the brain extraction. In addition, the running time of each
method was also recorded. Our method achieved highest
mean Dice coefficients of 96.8%, 97.1%, 98.5% and lowest
mean time cost of 361 ms, 338 ms, 502 ms on the three
datasets, outperforming all the other methods (with p-values
less than 0.01). The mean Dice coefficients and time cost
of each method on the three datasets are listed in Table 1.
The statistical results are graphically represented in Fig. 14
using the box plot. Note that the time axis is logarithmic. In
addition, our method provides instant comprehensive brain
visualization by virtue of the integrated OpenGL pipeline,
yielding a rendering speed of more than 60 frames per
second (fps).

In addition to voxel overlap evaluation, we have also
calculated surface metrics of Hausdorff distance (HD),
average symmetric surface distance (ASSD), maximum sym-
metric surface distance (MSSD), surface distance devia-
tion (SDD) to evaluate geometric differences between the
ground truth and the segmented brain. The results on the
three datasets (average over the whole dataset) are shown
in Table 2. Our method achieved the optimal metrics on all
the datasets.

The secondly well performed algorithm was BET. Our
method defeated the original BET in those cases where a
large amount of CSF exists between GM in the region of
cerebral cortex (deep sulci and gyri). A typical case is shown
in Fig. 15(a) from a patient suffering from encephalatrophy.
Figure. 15(b) shows the best segmentation result by BET
with bt = 0.2. Segmentation errors are observed in the
region of sulci and gyri. In contrast, our method gives better
segmentation result as shown in Fig. 15(c) with bt = 0.4,
d2 = 5, θ = −0.4π . Figure. 15(d) shows the instant volume
rendering result of the skull-stripped brain.

V. DISCUSSION
Since every subject has common statistical characteristics
with individual variations, there is no such a gold segmen-
tation algorithm that can generalize well for a large scale
of datasets. For a specific algorithm, there is also a trade-
off between the number of parameters available for tuning
and fineness of segmentation. To improve the segmentation
fineness, you may have to open more parameters for tuning,
this however calls for more patience and tricks, leading to
increased time cost and labors which may prevent the preva-
lence of the tool in clinical practice. Our method introduces
two additional parameters d2 and θ for tuning compared with
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FIGURE 14. Performance of our methods compared with other methods.

the original BET to achieve good segmentation in the region
of cerebral cortex. In most cases d2 has only three choices:
20, 10 or 5. θ can be adjusted with a step of 0.1π from−π/2
to π/2. Because we have instant visualization of the seg-
mentation result, these parameters can be easily and quickly
determined by visual inspection. The brain extraction pro-
cessing framework is implemented using modern OpenGL
APIs and is seamlessly integrated with the rendering pipeline.
The whole framework achieves an end-to-end functionality
from MR image input to comprehensive brain visualization
within 1-2 seconds by virtue of a GPU. Because the instant

brain visualization is provided, the parameter tuning becomes
simple and intuitive and can be finished in several sec-
onds. Our method is very suitable for intraoperative image
guided neurosurgery, because the time lag between the image
acquisition and accurate comprehensive brain visualization is
within several seconds.

Themethodology innovation of our method compared with
the original BET lies in the concept of d-field. The image
force f3 is determined by the local intensity profile up to
the depth d . As illustrated in Fig. 3, the choice of d affects
the direction of the image force. The larger d is, the more
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FIGURE 15. MR image of encephalatrophy. (a) MR images show the deep sulci and gyri. (b) BET extraction results with
segmentation errors observed in the superficial cortical layers (bt = 0.2). (c) Segmentation results using our method (bt = 0.4,
d2 = 5, θ = −0.4π) with improved segmentation accuracy. (d) Instant brain visualization provided by our method.

damping effect of the surface expansion. In the view of
machine learning, d serves as an important local feature to
discriminate brain and non-brain tissues. In the region of
superficial cortical layers with deep sulci and gyri, a smaller
d is desired to drive the surface to penetrate CSF between
GM, while in the other regions a larger d is needed for robust
convergence of the evolving surface to the real brain surface.
The constant d apparently has not enough discrimination
power, and the tuning of bt only leads to entire expansion or
contraction. By using the r (curvature)-d (searching depth)
mapping with region division, we create a varying field of
d that has good discrimination power for fine segmentation.
The purpose of region division is to identify the brain part
where a smaller d2 is applied to avoid underestimation of
superficial cortical layers. The current setting includes the
part of upper cerebral cortex and θ is used to possibly exclude
the posterior meningeal septa as shown in Fig. 5(b) for some
cases where the brain tissue is squeezing against the posterior
meningeal septa.

VI. CONCLUSION
In this paper we propose and implement a fast brain extrac-
tion and visualization framework based on modern OpenGL
pipelines which can fully exploit the parallel computing capa-
bility of a GPU. A 3D surface evolution algorithm based
on the BET algorithm is presented with the innovation of
d-field to improve the segmentation accuracy in the region
of cerebral cortex with deep sulci and gyri. The proposed
framework achieves an end-to-end functionality from brain
MR image input to comprehensive brain visualization within
1-2 seconds and yields a rendering frame rate of more than
60 fps. Experiments were performed on two publicly avail-
able datasets and one clinical dataset to compare our method

with five state-of-the-art skull stripping tools including the
original BET in terms of segmentation accuracy and time
cost. The proposedmethod is supposed to fill the gap between
intraoperative image acquisition and accurate comprehensive
3D visualization in neurosurgical navigation.
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