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ABSTRACT Online learning platforms provide an opportunity to better understand students’ weaknesses by
tracking both their learning behavior and knowledge. This information can then be used to assist teachers in
making instructional decisions and to further guide those who are at risk of failure. In this paper, we tracked
student learning data from a C++ programming course over a whole semester of their freshman year via the
Trustie platform. A total of 17,854 code submissions were collected. We then used CppCheck, SonarQube
and Trustie to capture the quality characteristics and submission characteristics of the code, including
lineOfCode, cyclomaticComplexity, codeSmell, syntacticError, averageScore, submission, and logicError,
and analyzed the impact of code quality on the assignment work results. Several factors were discovered that
we believe can help teachers to develop more effective teaching strategies.

INDEX TERMS Engineering students, code quality, programming course, teaching strategy.

I. INTRODUCTION
Computer science (CS) is a popular college course requir-
ing fundamental practical abilities, such as programming.
There are many e-learning platforms that offer students more
practical opportunities in order to help them achieve better
results, such as CodingBat [1], CloudCoder [2], [3], and
Trustie [4], [5].

Programming is a challenging practice for many begin-
ners, particularly the process of determining the meaning
of compiler error messages, and they often cannot over-
come syntactic and semantic errors [6]–[8]. Moreover, log-
ical errors can present an even greater challenge for novices
[9]–[12]. Past research in this area is mainly based on surveys
and interviews due to difficulties in data collection. However,
with the development of technology and the diversification
of educational resources, corresponding tools and platforms
have also been enriched. Data collection is now more auto-
mated, and analysis of these data would help researchers to
understand the shortcomings of students. Commonly men-
tioned platforms are WebCAT [13], [14] , BlueJ [15], [16],
and BlueJ extensions [17], CodeWrite [18] and its plugins,
and Athene [19]. For example, Brown et al. [20] described
how Blackbox is used to collect information submitted by

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

students in the BlueJ environment and store it in a central
repository. Keuning et al. [21] analyzed code snapshots writ-
ten by novice programmers using BlueJ IDE and found that
there were a considerable number of code quality issues,
and they do not seem to get fixed, especially when they
are related to modularization. Tabanao et al. ’s work [22]
focused on syntactic errors. They collected compilation errors
from novice programmers and examined the relationship
between these errors and student course performance. Then,
they built a linear regression model to predict students’
scores on a midterm exam, but the predictions were not
sufficiently accurate. However, BlueJ is an integrated devel-
opment environment (IDE) for Java programming languages
only. Such limitations on language type thus narrow the
scope of observations. More noteworthy is that there is no
distinction between user levels in BlueJ. The program was
likely written by a novice or more experienced developer.
Norris et al. used ClockIt to inspect the behavior of novice
programmers in introductory programming courses, typically
known as CS1 andCS2 [23]. They found that the performance
of students in projects seems to affect the percentage and type
of compilation errors. However, this specific type of error was
not analyzed. Pettit et al. [19] analyzed the quality of code
written by novice programmers from a code style perspec-
tive and mainly focused on the complexity of the program,
including the source lines of code, the cyclomatic complexity,
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the state space (number of unique variables), and the six
Halstead (Vocabulary, Length, Computed Length, Volume,
Difficulty, and Effort). This work also did not analyze the
specific types of errors.

There seems to be great potential to understand students’
learning through analysis of their coding behavior, but most
works focus on students’ compilation behavior [24]. There
is still plenty of scope to explore the correlation between
programming behavior and learning outcomes [25]. The
exploration of code quality can break the limitation that
the compiler can only detect errors in the code, so if it
can be combined with the analysis of compilation behavior,
students’ programming behavior can be more comprehen-
sively understood. Quantifying code quality and compila-
tion behavior will help reveal the rules of programming
behavior and better help teachers improve their strategies.
Therefore, the contribution of this paper is the analysis of
student programming behavior from the perspective of code
quality the determination of why beginners often struggle
to improve their programming abilities. We examine the
practice data in CS1 at the NUDT (National University of
Defense Technology, China), a programming-based course
for first-year students using the C++ programming language.
More specifically, we collected 17,854 code submissions
from CS1 from the Trustie platform. SonarQube was then
used to perform quality checks on each code submission,
which were ultimately analyzed.

The rest of the paper is structured as follows. In Section 2,
we present detailed information on the Trustie platform and
the code quality characteristics on the SonarQube. We also
introduce the data characteristics and data collection in this
section. In Sec. 3, we analyze the results of the SonarQube
analysis and the submitted behavioral data and determine
which features highly affect the pass rate. Based on the analy-
sis in Sec. 3, we provide suggestions for formulating teaching
strategies in Sec. 4. These suggestions aim to improve student
pass rates, as well as increase self-confidence in the early
stages of learning. Finally, in Sec. 5, we summarize the main
conclusions, present the limitations of this paper, and propose
a future research agenda.

II. MATERIALS AND METHODS
A. E-LEARNING PLATFORM
1) TRUSTIE
TRUSTIE1 (Trustworthy Software tools and Integration
Environment) is an e-learning platform that not only pro-
vides hosting services for school courses but also includes
two systems, a container-based online programming system
and a Git-based version control system. Thus, Trustie can
record both students’ learning behavior and their submitted
code. It supports several programming languages, including
C/C++, Python and Java.

Teachers can create or select assignments from the exercise
repository in Trustie and provide them to students as an online

1https://www.trustie.net

coding practice. To create such assignments, teachers must
first build a test set for each exercise to verify the logical cor-
rectness of the students’ programs in the future. Students can
code anytime, anywhere, so long as it is before the deadline.
Trustie subsequently collects the data generated during the
students’ practice, as shown in Fig. 1.

2) SONARQUBE
SonarQube is an open-source platform used for the contin-
uous checking of code quality, with its main detection rules
provided by various language plugins. Thus far, it has been
able to detect up to 25 programming languages, including
Java, C/C++, Objective-C, C, PHP, Flex, Groovy, JavaScript,
Python, PL/SQL, COBOL, and Swift. The platform is flexible
enough to integrate various test, code analysis, and continu-
ous integration tools. Because the Trustie platform can host
both the developer’s project and the various courses in the
university, the diversity of programming languages is the first
thing researchers need to consider, and SonarQube perfectly
meets our needs. More importantly, the severity of the quality
rules in SonarQube can be adjusted to meet demand. In our
scenario, teachers can raise the severity level of rules that
students often violate and cultivate students’ good code style
at the beginning of learning. The version of SonarQube used
in this article is 5.6.1.

SonarQube can detect three types of issues: bugs, secu-
rity vulnerabilities, and code smells. Specifically, bugs can
track code that is evidently incorrect or highly likely to yield
unexpected behavior. Vulnerabilities identify code that is
potentially vulnerable to the exploitation of hackers. Code
smells can confuse a developer or maintainer such that they
may inadvertently introduce bugs. A code smell is a concept
in programming that is also known as a bad smell. Any bad
symptoms in the source code may indicate a deeper problem,
such as long methods, cyclomatic complexity and duplicated
code. Thus, it is important for novice programmers to develop
a good programming style, which will lay a solid foundation
for writing more complex programs in the future. A good
programming style usually means that the code is easy to read
and understand and that the code is well organized.

B. PROGRAMMING COURSE PROFILE
The students’ programming data for the CS1 programming
course at the University of Defense Technology (NUDT) was
recorded for analysis. All exercises completed by the students
were released through the Trustie platform and required the
students to code online. For each exercise, the teacher must
provide a set of test cases to evaluate the correctness of the
submitted code. The automated scoring system will score the
submitted program based on the test cases. When a submit-
ted program passes all test cases, the automatic evaluation
system will give it full marks. Students can try to submit
multiple times andwill always obtain feedback fromTrustie’s
test system. The CS1 programming course at the NUDT
is a programming-based course for first-year students using
the C++ programming language. Each year, approximately
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FIGURE 1. Trustie online programming system. Students can program in the editing area at the top left and run it online after editing. The platform will
return the results of each test.

120 first-year computer science students take this course. The
objectives of this course are as follows. After completing
the course, the students should be able to: 1) correctly use
the syntax of the C++ programming language; 2) correctly
apply programming skills to solve problems; and 3) identify
a good programming style.

C. DATA CHARACTERISTICS
The experimental data used in this work are described as
follows.

1) CODE SUBMISSIONS
After programming in the editing area, students submit their
program and wait for the results. Regardless of whether the
code can be compiled or tested, the database records each
submission and submits the behavior. Students can submit
as many times as they wish until the deadline. In the fol-
lowing content, the code submission is expressed as the
‘‘submission’’.

2) TEST RESULTS
Following the code submission by the students, the code will
be compiled and tested on the server. If the code is success-
fully compiled, no syntactic error is observed in the code.

If the code passes all of the test cases, it has logically taken
into account all of the circumstances; otherwise, the system
will return a hint for compilation errors or a failed test set.
The database will store all submitted code and the feedback
from the platform. In the following content, syntactic error
and logic error are expressed as ‘‘syntacticError’’ and ‘‘log-
icError.’’

3) SCORES
Students must pass all test cases to obtain full marks. If the
output does not match the correct answer, the score will
decrease accordingly. If a program fails to compile, a score
of 0 will be given. In the following content, the average score
for each assignment is expressed as the ‘‘averageScore.’’

4) QUALITY FEATURES
Following the analysis, the quality features of each sub-
mission will be recorded in the SonarQube database. Such
features include LOC (lines of code), error, code smell, and
cyclomatic complexity. In the following content, lines of
code, cyclomatic complexity and code smell are expressed as
‘‘lineOfCode,’’ ‘‘cyclomaticComplexity’’ and ‘‘codeSmell’’.

The data collection process is shown in Fig. 2. Note that,
although SonarQube is an open-source platform, the C/C++
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FIGURE 2. The data collection process. Students submit code to Trustie,
which checks the correctness of the program in the background and
stores the program and corresponding test results in the database. The
entire.csv file that recorded all of the students’ code was then extracted
from the Trustie database and split into multiple.cpp files. CppCheck will
perform quality checks on the program according to its own quality rules
and then send the results to SonarQube. SonarQube will calculate the
results and provide additional analysis of LOC and cyclomatic complexity.

language plugin is not free. Therefore, CppCheck is selected
for use. It is a free code quality checker for C/C++, not an
official plugin. To prepare the data, the entire .csv file was
extracted from the Trustie database, which records all of the
students’ code and splits it into multiple .cpp files. A quality
check is then performed on these files.

III. RESULTS
In the following sections, CppCheck and SonarQube are used
to check the code quality of the raw data retrieved from
Trustie.

To analyze the reasons for the late submission and
nonsubmission of assignments, the relationship between
the frequency of submissions, late submissions, and non-
submissions was evaluated, and the results are shown
in Fig. 3. From the distribution of the data in Fig. 3(a), the fre-
quency of late submission and nonsubmission is much lower
than that of submission, indicating that the vast majority of
students were able to submit their code on time. Outliers
are present in all three groups at the top of the violin plots.
It is assumed that, the more submissions there are, the more
challenging the exercise is. Thus, we assert that the exis-
tence of more submissions for an assignment is associated
with a higher frequency of late submissions and nonsubmis-
sions. Therefore, it is predicted that the outliers appearing in
the three groups belong to the same assignment. However,
the data suggest otherwise.

As shown in Fig. 3(b), the frequency of submission for
assignments 15 and 20 is much higher than that of other
assignments. However, the frequency of late submission and
nonsubmission is much lower than the average. Alternately,
the frequency of late submission and nonsubmission for
assignments 26 and 27 is significantly higher than that for
other assignments. Surprisingly, the frequency of submission
for the former is close to the median of all assignments,
and the frequency of submission for the latter is the smallest
among all assignments. Data trends were analyzed to iden-
tify the causes for this observation, as shown in Fig. 3(c).

FIGURE 3. The relationship between the frequency of code submission,
late submission, and nonsubmission of assignments. We counted their
frequency for each of the 27 assignments to explore their trends and the
main reasons for late submissions and nonsubmissions.

We found that the frequency of late submission increased con-
tinuously from assignment 23 and peaked at assignment 26,
while the frequency of nonsubmission was relatively stable
and peaked at assignment 26. After further analysis, it was
found that assignments 26 and 27 were released and ter-
minated at the same time towards the end of the semester.
This demonstrates that code submission before the deadline
is related to workload rather than difficulty of the assignment.
We then counted the frequency of syntactic errors, logic
errors, and code smells in the submissions. Here, a syn-
tax error refers to a violation of the syntax rules of the
programming language. Syntax errors are fatal because the
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FIGURE 4. A trend comparison chart of syntactic errors, logical errors and
code smells in 27 assignments. The red, yellow, green, and blue bars
represent submission, logicError, syntacticError, and codesmell,
respectively.

compiler will not know what the coder means. One syntax
error is enough to prevent the compilation of the program
into executable code. Logical errors refer to violations of
the meaning rules of the programming language, including
incorrect modeling of objects. In most cases, the compiler is
not able to identify logical errors because the code follows the
syntax rules. Identifying logical errors can be tricky because it
requires the programmer to debug by checking the program’s
output to determine exactly what has gone wrong. Code smell
is used to describe bad programming styles in SonarQube.
In the short term, a bad programming style will not affect
the execution of a program, but it poses potential risks to
the code. However, the compiler will not provide an alarm
for a code smell, and it will thus not affect the correctness
of the output if no error is produced. In Fig. 4, trends of the
syntactic errors, logical errors and code smells are presented
to explore which training method has a far-reaching and
positive effect on the learners. As seen, the frequency of syn-
tactic error in the first five assignments exceeds the frequency
of logical error. This implies that most errors appearing at
the beginning of the learning period are due to unfamiliar-
ity with syntax. However, the most obvious trend is that,
while logical errors increase significantly as the assignments
become more challenging, the frequency of syntactic error
remains constant. The data also confirm that logical errors
are undoubtedly the most common type of error, and they are
also the most difficult to identify and correct. When a student
triggers a syntax error, they can quickly resolve the problem
if they can follow the compiler’s instructions to find the error.
Logical errors, however, are influenced by way of logical
thinking and thus cannot be corrected quickly [12], [26].

Additionally, contrary to our expectations, the frequency of
code smell does not exhibit a clear trend as the assignments
became more challenging. This may be limited by file size.
Empirical validation by Kessentin and Nascimento found a
strong correlation between code smell and bugs when the
code smell categories were BlobClass (a class that contains
almost all of the functionality in a given application) and
FeatureEnvy (a function or method that is more interested
in the data of other classes and modules) [27], [28]. How-
ever, few of the 27 assignments surveyed involved class-level
programming.

As shown in Fig. 5, in addition to syntactic and logical
errors, there are five common rules violated by students
that do not cause compilation or run-time errors. These
are ‘‘uninitvar,’’ ‘‘unreadVariable,’’ ‘‘unusedVariable,’’ ‘‘vari-
ableScope,’’ and ‘‘arrayIndexOutOfBounds.’’ Three of these
rules are programming style issues that are part of the code
smell (‘‘unreadVariable,’’ ‘‘unusedVariable,’’ and ‘‘variable-
Scope’’). The remaining two, ‘‘uninitvar’’ and ‘‘arrayIndex-
OutOfBounds,’’ are semantic errors. The presence of seman-
tic errors will lead to unexpected results, which is different
from a style problem. However, there were exceptions. For
example, uninitializing global variables (or static variables)
does not change the results of the program because they are
automatically initialized once executed. However, forgetting
the initialization of local variables may create unexpected
results. An out-of-bounds array may not prevent us from
obtaining the correct results when it does not overwrite essen-
tial data. Notably, we only calculated the frequency at which
the program obtained correct results but violated these two
semantic rules. This is different from the logical error that
caused a true error in the previous analysis.

‘‘variableScope’’ in Cppcheck is described as ‘‘the scope
of variable ’xxx’ can be reduced.’’ As shown in Fig. 5(a),
the frequency of ‘‘variableScope’’ is much higher than that
of the other four rules, and this trend becomes more obvious
in the early and middle term. It can be seen that students
prefer to use global variables rather than local variables in
early and mid-term assignments. Unused variables are con-
sidered inoperable code and should be removed for more
efficient maintenance. As shown in Fig. 5(b), the frequency
of ‘‘unusedVariable’’ is relatively high compared to that of
the other three rules and is also relatively stable. In addition
to the syntactic and logical errors, there are many hidden risks
in the student code, even when the file size is small. Although
code smell is not an error, it still has rules to follow. Violation
of these rules can be easily avoided if students are told early
on to pay more attention to programming style.

In addition to the four features provided by Trustie (aver-
ageScore, submissions, logicError and syntacticError), three
additional features are available through SonarQube: lineOf-
Code, cyclomaticComplexity and codeSmell. To determine
whether these features are related and whether they can aid
students in passing the exams, it is necessary to analyze
the correlation between them. For this, we must first decide
which method to use for the correlation analysis.
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FIGURE 5. The five most common rules violated by students. The cyan, green, blue, red, and purple bars represent uninitvar, unreadVariable,
unusedVariable, variableScope, and arrayIndexOutOfBound, respectively.

Many coefficients are applied to measure the correlation
between variables. Among them, the three most popular
coefficients are the Pearson coefficient (r), Spearman’s rho
coefficient (rs) and Kendall’s tau coefficient (τ ) [29].
To confirm whether the Pearson coefficient can be used

to measure the correlation between any two variables, it is
necessary to first confirm: (1) whether the data distribution
of the variables conforms to the bivariate normal distribution;
and (2) whether there are outliers in the variables [30].
If the data have a multivariate normal distribution, then each
variable should have a univariate normal distribution; how-
ever, if each variable has a univariate normal distribution,
it cannot be ascertained that the data have a multivariate
normal distribution [31]–[33]. Thus, the data distribution

for each of the features must first be checked to diag-
nose whether a deviation is observed. It can be seen from
Fig. 6 that the features codeSmell, submission and log-
icError have right-skewed distributions, while the feature
averageScore has a left-skewed distribution. Therefore, it is
unlikely that the seven features have a bivariate normal joint
distribution.

Box plots were then generated to explore the outliers of
the features. As seen in Fig. 7, there are clearly many outliers
in the features averageScore, codeSmell, submission and log-
icError. Thus, given that our data violates both assumptions
(bivariate normal distribution and no outliers), the Pearson
coefficient is excluded and thus not used to measure the
correlation between features.
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TABLE 1. The ties found in the data of the seven features. Among them, averageScore, logicError and syntacticError have 2 ties each, and codeSmell has
4 ties.

TABLE 2. A feature-pair correlation matrix with the significance levels. The p-value of the feature pair (codeSmell, logicError) is less than 0.05, while the
p-values of the feature pairs (lineOfCode, cyclomaticComplexity), (submissions, logicError), (submissions, syntacticError) and (logicError, syntacticError)
are less than 0.01.

FIGURE 6. The univariate distribution of each feature. The features
codeSmell, submission and logicError have right-skewed distributions,
while the feature averageScore has a left-skewed distribution.

According to the literature, if ties exist in the data, regard-
less of whether the proportion of the ties is large or small,
the Spearman method is superior to the Kendall method [34].
Thus, we investigated and confirmed the existence of ties in

FIGURE 7. Outliers in the averageScore, codeSmell, submission, and
logicError features.

the data. All the ties are highlighted in Table 1. This result
implies that the Spearman method is more suitable for our
data for measuring the correlation between features.

To determine whether and how the seven features are
related, we remove the influence of other control variables
and perform partial Spearman’s rank correlation on the fea-
ture pairs. Fig. 8 presents the Spearman partial correlation
of the seven features. Furthermore, we run statistical sig-
nificance tests to confirm whether our data can represent a
correlation in the population, with the result shows in Table 2.
A p− value < 0.05 demonstrates significant correlation, and
a p− value < 0.01 demonstrates very significant correlation.
As seen in Table 2, we can trust that the correlation of these

feature pairs is statistically significant, while the correlation
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FIGURE 8. The partial correlations of the seven features. The decimal number in the lower left triangle presents the Spearman partial
correlation coefficients of the paired variables, and trend lines on the scatter plots were used to obtain an intuitive visual perception
of the correlation. In addition, feature pairs with a p − value < 0.05 are marked in green, and feature pairs with a p − value < 0.01 are
marked in yellow.

coefficients of the remaining feature pairs are considered
accidental, regardless of effect size.

Again, we use the same color codes in Table 2 to mark
the feature pairs that demonstrate a significant correlation
in Fig. 8. We observe the following:

(1) The value of the Spearman partial correlation coef-
ficient is 0.93, proving that there is an extremely strong
positive correlation between the feature pair (submissions,
logicError). This result also confirms our previous analysis,
that is, logical errors are themain type of error that determines
whether a student passes the test.

(2) The Spearman partial correlation coefficient for the
feature pair (lineOfCode, cyclomaticComplexity) is 0.71,
demonstrating a strong positive correlation. Although earlier
studies reported a strong correlation between the lines of
code and cyclomatic complexity, Landman et al. observed
different results when applying cyclomatic complexity at the
method level instead of the project level. More specifically,
there is no strong linear correlation between these two vari-
ables [35]. In our case, none of the 27 assignments reached
the project level, while the source lines of code demonstrate
a strong positive correlation with cyclomatic complexity. For
beginners, solely aiming to pass the test without any effort to

reduce cyclomatic complexity is not advisable. In addition,
a Spearman partial correlation coefficient value of 0.86 sug-
gests a strong positive correlation between the features ‘‘sub-
mission’’ and ‘‘syntacticError’’. The feature ‘‘syntacticEr-
ror’’ also directly affects the frequency of submission by
students, yet it is not themain reason preventing students from
passing the test.

(3) Interestingly, the partial correlation coefficient between
‘‘logicError’’ and ‘‘syntacticError’’ is −0.73, which means
they are strongly negatively correlated, yet the scatter plot
is positively correlated. According to the scatter plot of this
feature pair, the distribution of its points is almost equal to
that of the feature pair (submissions, syntacticError), which
indicates that the ‘‘submission’’ feature seriously affects the
relationship of the feature pair (logicError, syntacticError).
To clearly see the true correlation of the feature pair (log-
icError, syntacticError), we performed regression analysis to
calculate the residuals of (submissions, logicError) and (sub-
missions, syntacticError), as shown in Table 3. We denote the
residual of (submissions, logicError) as RESsl , and the resid-
ual of (submissions, syntacticError) as RESss. Each residual
needs to be added to the corresponding average, expressed as
AVGlogicError and AVGsyntacticError, to correct the data.
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TABLE 3. The residuals of the feature pairs (submissions, logicError) and (submissions, syntacticError).

FIGURE 9. Partial correlation scatter plot of the residuals RESsl and
RESss. We denote the residual of (submissions, logicError) as RESsl and
the residual of (submissions, syntacticError) as RESss.

The corrected data are represented as: RES ′sl and RES ′ss,
where:

RES ′sl = AVGlogicError + RESsl (1)

RES ′ss = AVGsyntacticError + RESss (2)

Based on these two values, a partial correlation scatter
plot of the feature pair (logicError, syntacticError) is plotted,
as shown in Fig. 9. The feature pair (logicError, syntacticEr-
ror) is strongly negatively correlated once the effects of other
features are excluded. In other words, the more syntactic
errors students have in these 27 assignments, the fewer logical
errors there are; the fewer syntactic errors there are, the more

logical errors there are. We suspect that the reason for this
phenomenon is that the logic of the assignments is relatively
simple at the beginning of the course, and thus there are
mainly syntactic errors. After further study, students will
struggle with increasingly complex programming logic, but
they are now more familiar with syntax.

(4) The Spearman partial correlation coefficient value
of 0.44 confirms that there is a moderate positive correlation
between features codeSmell and logicError, which is not sur-
prising. Because a smelly code segment is not easy to main-
tain, the likelihood of bug initiation in these segments is very
high [36]. However, the frequency of codesmell per assign-
ment in the experimental data is not large, which may be
related to the size of files that were analyzed. However, intro-
ducing good programming patterns to students will improve
the pass rate of the exam.

(5) As we expected, ‘‘averageScore’’ is independent of
the other features, which may be an accidental phenomenon
because all significance levels are greater than 0.05. However,
we speculate that, even if its level of significance meets the
requirements, ‘‘averageScore’’ is still unrelated to the other
features. This is attributed to Trustie’s scoring mechanism:
students can modify and submit the code multiple times until
they get a satisfactory score, thus making the average scores
for each assignment very close to each other.

IV. LESSONS LEARNED
Several interesting observations were made from the analysis
of the learning data of the CS1 programming course.
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First, the frequency of issuing online assignments has
a strong effect on the quality of students’ submissions.
We find that the frequencies of late submission and nonsub-
mission increase greatly when two assignments are submit-
ted very closely together. However, the frequencies of late
submission and nonsubmission do not increase greatly when
the assignment is relatively more difficult. This indicates that
the difficulty of assignments has little impact on students’
enthusiasm for learning. Moreover, intensive assignments,
in terms of submission, will make students extremely busy.
To enhance the teaching impact, we recommend that teach-
ers maintain a suitable publication frequency, preferably not
publishing twice within five days. This is because students
will not have much time to complete all assigned work at the
end of the semester.

Second, programming logic training is more important
than syntax training in programming courses. Beginner
students always focus on grammar training rather than logic
training. However, when difficulty levels increase, the fre-
quency of syntactic errors does not increase very much,
while logic errors increase greatly. Therefore, when stu-
dents pay more attention to logic training, their learning
of programming will be more successful in the long-term.
Hence, instructors should concentrate more on logic training
to improve the ability of students to think logically. This is
also very helpful for students in building a solid foundation
of programming, and even for their future career.

Third, a good programming style helps students to pass
the test in a shorter period of time. A badly styled program
is more at risk of error, and the experimental results also
show a moderate positive correlation between code smell and
logic errors. In other words, a good programming style helps
reduce the frequency of logical errors. Therefore, in addition
to strengthening logic training, teachers should also focus
on fostering students’ programming styles. It is wise to let
students know how bad practice can pose unexpected risks to
programs, and the sooner the better. Aside from discussions
in class, reviewing the code among students and reading well-
written code are also recommended.

Fourth, students need to improve their awareness of
optimizing code as early as possible. The 27 assignments
used in this study are far from reaching project-level, yet the
source lines of code had a strong positive correlation with
cyclomatic complexity. Although beginners can gain a sense
of accomplishment from the amount of code, we still recom-
mend that students develop an awareness for optimizing code
as early as possible, which can diminish their risk of error in
the future and greatly reduce debugging time.

V. CONCLUSION
In this paper, we tracked students’ learning data through the
Trustie platform and analyzed the submitted code frommulti-
ple aspects using CppCheck and SonarQube. We determined
several factors that can help teachers develop more targeted
teaching strategies. For example, the timing of an assignment
release has an impact on the submission; logic errors are the

main challenge for students; and code smell also contributes
to logic errors. Such automated code quality analysis over-
comes the limitations of the current literature on language
types and can be used for up to 25 common programming
languages, or even for multilanguage mixed projects. The
limitation of this paper is that none of the assignments in
the CS1 course have reached project level, so we do not have
evidence to prove that code smell is strongly correlated with
logical errors. At present, we can only prove that code smell
and logical errors are moderately correlated.

Future work will focus on: (1) analyzing the relevance of
code smell and logical errors in projects at the project level;
(2) analyzing the optimal separation of assignment releases;
and (3) analyzing whether the code review commonly used
in software development plays a positive role in improving
students’ logic building and improving student programming
style and how much can be gained. We believe that our work
can assist teachers in developing more diverse and personal-
ized teaching strategies.
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