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ABSTRACT The multiwindow discrete Gabor transform (M-DGT) is a useful time-frequency analysis tool
for non-stationary signal processing. Given an arbitrary Gabor frame, a parallel lattice structure of block
time-recursive algorithm for fast and efficient computation of dual/analysis Gabor windows for M-DGT is
presented. By using a multiple window dual Gabor frame, the dual Gabor windows can be expressed by
synthesis and analysis windows with a block-circulant matrix. Then, a parallel lattice structure of block
time-recursive can be derived to solve the dual Gabor windows by the block-circulant matrix computed by
the fast discrete Fourier transform (FFT). When compared to three existing methods, the proposed algorithm
can reduce computational complexity and save computational time. Experimental results indicate that the
proposed algorithm is valid to compute the dual windows of theM-DGT, whichmake the algorithm attractive
for fast time-frequency signal analysis and processing.

INDEX TERMS Multiwindow discrete Gabor transform (M-DGT), parallel lattice structure, block time-
recursive methods, dual (analysis) Gabor windows, block-circulant matrix, time-frequency analysis.

I. INTRODUCTION
The Gabor transform (GT) [1] is a widely-utilized time-
frequency analysis tool to represent, analyze, and process
signal which can be constructed from a window function
by translation in both time domain and frequency domain.
Recently, various advances have emerged in fast computing
algorithms for discrete Gabor transform [2], [3] and fast
computing algorithms for real-valued discrete Gabor trans-
form [4]–[8]. There has also been an expanding scope of
applications which include for examples, audio processing
[9]–[11], speech processing [12], ultrasound processing [13],
noise reduction for NMR FID signals [14], image process-
ing [15]–[17], face recognition [18], [19], object recognition
[20], [21], and so on. However, due to the Heisenberg
uncertainty principle, the Gabor representation with a single
window is insufficient to analyze signals with dynamic time-
frequency components. To solve this issue, multiwindow
Gabor analysis using multiple windows with different time-
frequency localizations has been utilized to process multiple
frequency components of a signal.
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Computing the Gabor dual/analysis windows involve
inverting a matrix operator associated with a given Gabor
frame composed by synthesis windows. Recently, A num-
ber of studies on Gabor dual windows have been presented
[22]–[27]. A method for solving Gabor dual windows with
linear constraints was proposed in [28]. By using the duality
and support conditions of the Gabor frame [29], a linear
system can be devoted to compute the Gabor dual win-
dows based on Moore-Penrose pseudo inverse. Also an opti-
mal modified `2 norm for finding Gabor dual windows
was presented in [30]. To solve the Gabor dual windows
problem of the M-DGT, a method based on multi-Gabor
frame was presented in [31]. On the other hand, a number
of bi-orthogonal analysis methods with `2 norm constraints
[32]–[35] derived from the completeness condition of the
M-DGT, have been presented to compute the analysis win-
dows of the M-DGT. Nevertheless, all the above methods
involve an inverse matrix calculation problem. If such a
matrix has large dimensions, it could lead to computational
instability and requires a huge amount of memory and com-
putation. To over this issue, the FFT was used in [36] to
compute the dual window in the DGT, which can avoid com-
puting the inverse matrix of a given frame. The parallel lattice
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structure of a block time-recursive method was presented
in [37] to compute the dual/analysis window of the DGT for
a constructed Gabor frame, but can only apply to a window
function that can form a Gabor frame. The above methods
only address the dual/analysis window problem of the DGT
in a serial computing mode or are limited to constructing
a Gabor frame. However, a fast parallel computation of the
dual/analysis of the M-DGT has not been addressed.

In this paper, an efficient algorithm for computing the
Gabor dual windows of the M-DGT is proposed for a given
multiwindow Gabor frame, in which the inversion of a Gabor
framematrix with block circulant characters can be computed
by the FFT, followed by the design of the parallel lattice struc-
ture of the block time-recursive method for implementation.
The proposed algorithm does not require a matrix inversion
which is computationally intensive especially when the asso-
ciated matrix dimensions are high. The proposed algorithm is
simple to be implemented in software or hardware. Analysis
of the computational complexities of the proposed algorithm
and other algorithms clearly show that the proposed algorithm
can provide a faster approach to compute the Gabor dual
windows in the M-DGT.

The rest of the paper is organized as follows. In section II,
the equations required for computing the multiwindowGabor
system will be given. In section III, the block time-recursive
method for computing the Gabor dual windows of the
M-DGT will be used to design the unified parallel lat-
tice structure for implementing the proposed algorithm.
In section IV, a detailed analysis and comparison will be
given to demonstrate the amount of computational savings
of the proposed algorithm as compared to other existing
algorithms. Section V will present computational examples
and results. Finally, conclusions are given in section VI.

II. MULTIWINDOW GABOR FRAME
Let f be periodic sequences of length L, the standard dual
frame of the multiwindow Gabor representation [31], [36],
[38], [39] is defined as (1).

Sf =
P−1∑
p=0

M−1∑
m=0

N−1∑
n=0

〈
f , g(p)m,n

〉
g(p)m,n, (1)

where S be the frame operator for synthesis sequences{
g(p)m,n

}
formed by translations and modulations of windows

g as in (2).

g(p)m,n(k) = g(p)
(
k − mN̄

)
exp

(
j2πnk
N

)
0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1, 0 ≤ p ≤ P− 1, (2)

where j =
√
−1, N̄ is the time translation step, N is the

number of frequency sampling bins, and L = MN̄ = M̄N .
If the frame operator S is invertible, then (1) can be rewritten
as (3).

f =
P−1∑
p=0

M−1∑
m=0

N−1∑
n=0

〈
f ,S−1g(p)m,n

〉
g(p)m,n, (3)

and let

γ (p)
m,n(k) = S−1g(p)m,n(k)=g(p)

(
k−mN̄

)
exp

(
j2πnk
N

)
0 ≤ m ≤ M − 1, 0 ≤ n ≤ N−1, 0 ≤ p ≤ P−1,

(4)

be the dual multiwindow analysis sequences of a multiwin-
dow Gabor system, where

γ (p)
= S−1g(p). (5)

The multiwindow discrete Gabor expansion (M-DGE) can be
defined as (6).

f (k) =
P−1∑
p=0

M−1∑
m=0

N−1∑
n=0

c(p)(m, n)g(p)m,n(k), (6)

and the transform coefficients c(p)(m, n) can be obtained
by the multiwindow discrete Gabor transform (M-DGT)
as in (7).

c(p)(m, n) =
L−1∑
k=0

f (k)γ (p)
m,n(k). (7)

III. PARALLEL ALGORITHM FOR COMPUTING DUAL
GABOR WINDOWS IN M-DGT
To derive a relationship between a window and its dual win-
dow, substituting (5) into (1) leads to

g(p) =
P−1∑
p̄=0

M−1∑
m=0

N−1∑
n=0

〈
γ (p), g(p̄)m,n

〉
g(p̄)m,n

= Gγ (p), (8)

where G is a L × L matrix constructed by

G(k, k ′) =
P−1∑
p̄=0

G(p̄)(k, k ′), (9)

where

G(p̄)(k, k ′)

=


N

M−1∑
m=0

g(p̄)
(
k − mN̄

)
g(p̄)

(
k ′ − mN̄

)
, N | |k − k ′|

0, otherwise

=


N

M−1∑
m=0

g(p̄)
(
k + mN̄

)
g(p̄)

(
k ′ + mN̄

)
, N | |k − k ′|

0, otherwise,

(10)

and 0 ≤ k ≤ L − 1, 0 ≤ k ′ ≤ L − 1.

Theorem 1: Let G(p̄)
u,v denote N̄ × N̄ matrix with element(

G(p̄)
u,v

)
r,s
= G(p̄) (r + uN̄ , s+ vN̄ ) , (11)

where 0 ≤ p̄ ≤ P−1, 0 ≤ u, v ≤ M−1, and 0 ≤ r, s ≤ N̄−1.
Then G can be expressed as a block right circulant matrix.
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Proof: The matrix G(p̄) can be rewritten as (12).

G(p̄)
=


G(p̄)
0,0 G(p̄)

0,1 · · · G(p̄)
0,M−1

G(p̄)
1,0 G(p̄)

1,1 · · · G(p̄)
1,M−1

...
...

. . .
...

G(p̄)
M−1,0 G(p̄)

M−1,1 · · · G(p̄)
M−1,M−1

 . (12)

Due to the periodicity of g(p̄),(
G(p̄)
u+k,v+k

)
r,s
= G(p̄) (r + uN̄ + kN̄ , s+ vN̄ + kN̄ )
= N

M−1∑
m=0

g(p̄)
(
r + uN̄ + (k + m)N̄

)
× g(p̄)

(
s+ vN̄ + (k + m)N̄

)
= N

M−1∑
m′=0

g(p̄)
(
r + uN̄ + m′N̄

)
× g(p̄)

(
s+ vN̄ + m′N̄

)
=

(
G(p̄)
u,v

)
r,s
, (13)

and 0 ≤ k ≤ M − 1, substituting (13) into (12) leads to G(p̄)

which can be rewritten as a block right circulant matrix as

G(p̄)
=


G(p̄)
0 G(p̄)

1 · · · G(p̄)
M−1

G(p̄)
M−1 G(p̄)

0 · · · G(p̄)
M−2

...
...

. . .
...

G(p̄)
1 G(p̄)

2 · · · G(p̄)
0


= C

(
G(p̄)
0 ,G

(p̄)
1 , · · · ,G

(p̄)
M−1

)
, (14)

where

G(p̄)
m = G(p̄) (

·, · + mN̄
)
, (15)

and 0 ≤ m ≤ M − 1, then

G =
P−1∑
p̄=0

C
(
G(p̄)
0 ,G

(p̄)
1 , · · · ,G

(p̄)
M−1

)
. (16)

The above leads to G in the form of a block right circulant
matrix thus completing the proof of Theorem 1.

In this section, an efficient algorithm will be developed
to compute the dual Gabor windows without computing the
inverse matrix ofG. According to the Theorem 1, it can be see
that the matrix G has a block right circulant structure, hence
G can be rewritten as

G = C (G0,G1, · · · ,GM−1)

=


G0 G1 · · · GM−1

GM−1 G0 · · · GM−2
...

...
. . .

...

G1 G2 · · · G0

 , (17)

where Gi is an N̄ × N̄ matrix. The discrete Fourier transform
(DFT) of G can be computed by [36]

F (G) = C
(
Ḡ0, Ḡ1, · · · , ḠM−1

)
, (18)

where

Ḡs =
M−1∑
r=0

Gr exp
(
−
j2πrs
M

)

=

M̄−1∑
u=0

G
u
(
M
M̄

) exp(− j2πus
M̄

)
. (19)

Let β = N
N̄
=

M
M̄
, s = v + ūM̄ , v = 0, 1, · · · , M̄ − 1, and

ū = 0, 1, · · · , β − 1, then (19) can be simplified as

Ḡv+ūM̄ =
M̄−1∑
u=0

Guβ exp

(
−
j2πu

(
v+ ūM̄

)
M̄

)

=

M̄−1∑
u=0

Guβ exp
(
−
j2πuv

M̄

)
. (20)

Obviously, (20) can utilize M̄ -point FFT to compute Ḡv+ūM̄ .
According to (9) and (10), one can easily conclude that Guβ
is a diagonal matrix composed of nonzero elements in its
principal diagonal. By utilizing the results of the block circu-
lant matrices theorem [40], if and only if the Ḡs is invertible,
the inverse matrix of G can be solved by

G−1 = C (B0,B1, · · · ,BM−1)

=


B0 B1 · · · BM−1

BM−1 B0 · · · BM−2
...

...
. . .

...

B1 B2 · · · B0

 , (21)

where

Br =
1
M

M−1∑
s=0

Ḡ
−1
s exp

(
j2πrs
M

)
, 0 ≤ r ≤ M − 1, (22)

which has a similar structure to (19) and can be simplified by
utilizing FFT. Substituting (21) into (8) leads to

γ
(p)
0

γ
(p)
1
...

γ
(p)
M−1

=


B0 B1 · · · BM−1
BM−1 B0 · · · BM−2
...

...
. . .

...

B1 B2 · · · B0



g(p)0

g(p)1
...

g(p)M−1

 , (23)

and then (23) can be rewritten in following form

γ
(p)
0 = B0g

(p)
0 + B1g

(p)
1 + · · · + BM−1g

(p)
M−1

γ
(p)
1 = BM−1g

(p)
0 + B0g

(p)
1 + · · · + BM−2g

(p)
M−1

...

γ
(p)
M−1 = B1g

(p)
0 + B2g

(p)
1 + · · · + B0g

(p)
M−1. (24)

Let g(p)t denotes block time signal, which can be putted into
a block delay line in arrays range t = 0 to M − 1 as
shown in Fig. 1. The dual Gabor windows γ (p) at block time
t ∈ {0, 1, · · · ,M − 1} can be utilized to derive a block time
recursive relation between the current state (the current block
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FIGURE 1. Block delay line (p = 0,1, · · · ,P − 1).

time signal taking in) and the previous state (the previous
block time signal taking out) from the line, so

γ
(p)
0 (t) = B0g

(p)
t + B1g

(p)
t+1 + · · · + BM−1g

(p)
t+M−1

γ
(p)
1 (t) = BM−1g

(p)
t + B0g

(p)
t+1+· · ·+BM−2g

(p)
t+M−1

...

γ
(p)
M−1(t) = B1g

(p)
t + B2g

(p)
t+1 + · · · + B0g

(p)
t+M−1, (25)

then, at block time t+1, the dual Gabor windows γ (p) can be
expressed as follows

γ
(p)
0 (t+1) = B0g

(p)
t+1 + B1g

(p)
t+2+· · · + BM−1g

(p)
t+M

γ
(p)
1 (t+1) = BM−1g

(p)
t+1 + B0g

(p)
t+2+· · ·+BM−2g

(p)
t+M

...

γ
(p)
M−1(t+1) = B1g

(p)
t+1 + B2g

(p)
t+2 + · · ·+B0g

(p)
t+M . (26)

Hence, the following relationship of the dual Gabor windows
γ (p) at block time t and block time t+1 can be obtained as

γ
(p)
0 (t + 1) = γ (p)

1 (t)+ BM−1
(
g(p)t+M − g

(p)
t

)
γ
(p)
1 (t + 1) = γ (p)

2 (t)+ BM−2
(
g(p)t+M − g

(p)
t

)
...

γ
(p)
M−2(t + 1) = γ (p)

M−1(t)+ B1

(
g(p)t+M − g

(p)
t

)
γ
(p)
M−1(t + 1) = γ (p)

0 (t)+ B0

(
g(p)t+M − g

(p)
t

)
. (27)

Steps: (a) reset all the units of the block delay line before the
recursion begins at t = 0 and set γ (p)

i (p = 0, 1, · · · ,P−1,
i = 0, 1, · · · ,M − 1) to zero; (b) if t = M − 1, all of the
block units of g(p)(p=0, 1, · · · ,P−1) are inputted into delay
line in series and γ (p) can be computed by (27); (c) when
t = M , due to the periodicity of g(p), the recursive process
goes into a stable state in (27). The above procedure is listed
as Algorithm 1 which can be implemented using the parallel
lattice structure as shown in Fig. 2.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
AND COMPARISON
Since the computational time of the proposed parallel algo-
rithm is equal to the computational time of each single unified
parallel lattice module, while the computational time of a
serial algorithm is equal to the total computational time of
each of its modules connected in series.

The computational complexity for computing G−1 of
the proposed algorithm is of the order of O

(
2L log2(M̄ )

)
.

In Fig. 2, each unified parallel channel carries N̄ additions and

Algorithm 1 Block Time-Recursive Method for Computing
Dual Gabor Windows of M-DGT
1: (a) Let p = 0 : P−1, i=0 : β−1, j=0 : M −1,t = 0.
2: γ

(p)
i = 0.

3: (b) For p = 0 : P− 1, i = 0 : M − 1
4: γ

(p)
i (t + 1) = γ (p)

i+1(t)+ BM−i−1
(
g(p)t+M − g

(p)
t

)
.

5: if (t=M̄−1)
6: break.
7: else
8: t = t + 1.
9: g(p)t+M = g(p)t .
10: endif
11: Endfor

FIGURE 2. Parallel lattice structure of block time-recursive method for
computing dual Gabor windows of M-DGT (p = 0,1, · · · ,P − 1).

N̄ multiplications at each block time. Therefore, the computa-
tional complexity of the proposed algorithm is of the order of

O
(
L + 2L log2(M̄ )

)
. (28)

A comparison of the computational complexity of the pro-
posed algorithm and other algorithms [31]–[33] is given
in Table 1.

V. COMPUTATIONAL EXAMPLES AND RESULTS
Example 1: In this example, we compare the proposed algo-
rithmwith other algorithms in terms of numerical complexity.
According to Table 1, Table 2 gives a numerical comparison
of the computational complexity in terms of the total number
of multiplications between the proposed algorithm and the
other three algorithms using different sets of Gabor sampling
patterns. It can be seen from Table 2 that the computational
complexity of the proposed algorithm is far less than those of
the other three serial algorithms.
Example 2: In this example, the proposed method was used

to compute the dual (analysis) windows. Four Gaussian win-
dows g(p)(k) are defined in (29) and plotted in Fig. 3, where
L=256, P=4, and σ = [σ0, σ1, σ2, σ3] = [2, 16, 32, 64].

g(p)(k) = 2−p/2 · exp

(
−
[k − 0.5(L − 1)]2

σ 2
p

)
, (29)

VOLUME 7, 2019 152725
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TABLE 1. Comparison of computational complexity between proposed algorithm and other algorithms.

TABLE 2. Numeric comparison of total number of multiplications between proposed algorithm and other algorithms.

FIGURE 3. Four Gaussian windows g(p)(k) (p = 0,1, · · · ,3).

where 0 ≤ p ≤ P − 1 and 0 ≤ k ≤ L − 1. Figs. 4-7 show
examples of different dual Gabor windows corresponding to
given Gaussian windows g(p)(k) in (29) under different Gabor
sampling schemes. Fig. 4 shows the dual Gabor windows
γ (p)(k) computed using M = 32 and N = 32, with Gabor
sampling rate β = 4. Figs. 5-7 show the dual Gabor windows
γ (p)(k) computed with β = 16 (M = 64, N = 64), β = 32
(M = 128, N = 128), and β = 256 (M = 256, N = 256),
respectively. From the Figs. 4-7, as the Gabor sampling rate
increases, the dual Gabor windows γ (p)(k) becomes more
similar to its synthesis windows g(p)(k).
Example 3: Fig. 8 shows a segment of electrocar-

diogram (ECG) signal x(k) (from MIT-BIH Arhythmia
Database [41]), with samples length L = 512. The signal
x(k) is analyzed by the M-DGT with a narrow window and
a wide window by setting P = 2, M = 256, N = 256,
and σ = [2, 100]. The Gabor time-frequency spectra shown
in Figs. 9-10 are computed by using a narrow window and a
wide window, respectively, where the Gabor time-frequency

FIGURE 4. Dual Gabor windows γ (p)(k) with Gabor sampling rate β = 4
(M = 32, N = 32).

FIGURE 5. Dual Gabor windows γ (p)(k) with Gabor sampling rate β = 16
(M = 64, N = 64).

spectrum S(p)(m, n) is defined by (30)

S(p)(m, n) =
∣∣∣c(p)(m, n)∣∣∣2, p = 0, 1, (30)

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. The combined
Gabor time-frequency spectrum S(m, n) defined by (31) and
shown in Fig. 11 is computed by the geometric average of
the narrow Gabor time-frequency spectrum S(0)(m, n) and the
wideGabor time-frequency spectrum S(1)(m, n). Note that the
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FIGURE 6. Dual Gabor windows γ (p)(k) with Gabor sampling rate β = 64
(M = 128, N = 128).

FIGURE 7. Dual Gabor windows γ (p)(k) with Gabor sampling rate β = 256
(M = 256, N = 256).

FIGURE 8. A segment of ECG signal.

FIGURE 9. Gabor time-frequency spectrum using a narrow window.

FIGURE 10. Gabor time-frequency spectrum using a wide window.

energy of the signal x(k) is concentrated on specific discrete-
time and discrete-frequency

S(m, n) = S(0)(m, n)× S(1)(m, n) (31)

FIGURE 11. Gabor time-frequency spectrum using a narrow window and
a wide window.

points. The original signal x(k) is also reconstructed by the
proposed algorithm as plotted in Fig. 11, the reconstruction
error is less than 10−17 which is close to virtually error-free
reconstruction.

VI. CONCLUSION
In multiwindow Gabor analysis, solving the dual Gabor win-
dows for a given multiwindow Gabor frame is an impor-
tant issue in the M-DGT. Traditional methods to compute
dual Gabor windows based on minimum `2 norm, require
the inverse matrix computation of a frame operator with
a high computational complexity especially if the matrix
dimensions are high which could also lead to numerical
instability. To address this issue, an efficient algorithm for
computing dual Gabor windows in the M-DGT based on the
canonical dual Gabor frame has been presented, which can
avoid computing the inverse matrix of the frame operator.
According to the properties of the block circulant matrix,
the inverting frame matrix can be solved by utilizing the FFT
and the parallel lattice structure of the block time-recursive
method can be used to design and implement the proposed
algorithm. Computational complexity analysis and compar-
ison have clearly indicated that the proposed algorithm can
provide a fast approach to compute the dual Gabor windows
as compared to the other three existing methods.
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