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ABSTRACT Magneto-Acousto-Electric Tomography with coil detection, known as Magneto-Acousto-
Electric Tomography with Magnetic Induction (MAET-MI), is a non-contact resistivity-based imaging
method that employs a coil to detect the induced current generated by the ultrasound in biological tissue,
which lie under a static magnetic field. To reconstruct an image of the tissue’s conductivity, we propose a
reciprocal model to describe the relationship between the inducted voltage of a coil and its conductivity.
Previous work on the reciprocal theorem demonstrates that reconstructing conductivity using this method is
effective. The forward and inverse problem are usually not verified both numerically and experimentally.
In this paper, different approaches are adopted to calculate the forward and the inverse problems for
verification of the reciprocal model. This verifies that the reconstruction method based on electrode detection
can be applied to MAET-MI. This means that the inverse problem of MAET-MI can be transformed into
an inverse source reconstruction of a wave equation based on the coil detection. In the forward problem,
the moment method is employed to calculate the Radon transform and generate the ultrasonic signals. For the
inverse problem, the filtered back projection method is chosen to reconstruct the ultrasound sources, which
are related to the curl of the current density in the reciprocal process. Based on the curl of the current density
in the reciprocal process, four sets of correlation coefficients of the original and reconstructed images’ model
are all greater than 90%. The uniform error criterion is obtained via multiple reconstructions and comparison
of multiple models. The reciprocal model exhibits a good uniformity and stability when describing the
actual physical process. It also provides additional effective ideas for solving the inverse problem quickly to
reconstruct the ultrasonic sources, which is corresponding to the actual distribution of the conductivity.

INDEX TERMS MAET-MI, forward problem, filtered back projection method, reciprocity theorem.

I. INTRODUCTION
Some surveys show that understanding the electrical prop-
erties of biological tissue is very important for the early
diagnosis of cancer [1]. Many electrical impedance imag-
ing methods have been proposed for detecting the elec-
trical properties of biological tissues non-invasively, such
as Electrical Impedance Tomography (EIT), Magnetoa-
cousto Tomography (MAT), Magnetoacoustic Tomography
with Magnetic Induction (MAT-MI) and Magneto-Acousto-
Electrical Tomography (MAET) [2]–[8]. EIT is limited by
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approving it for publication was Avishek Guha.

the number of detection sensors and its low spatial resolu-
tion. To improve the resolution of biological tissue conduc-
tivity images, researchers have studied methods that use a
combination of electromagnetic fields and ultrasonic waves
such as MAT-MI and MAET [10]–[12]. Even the frequency-
modulated ultrasound pulse in MAET is dedicated for sim-
plifying the image signal processing [9]. Guo et al. [13]
reported that electromagnetic signals can be detected via
customized coils in MAET, which is known as Magneto-
Acousto-Elect0rical Tomography with Magnetic Induction
(MAET-MI). Subsequently, Some scholars used diskmultiple
layer coils to measure the magnetic field intensity gener-
ated [14]. When MAET-MI is compared with MAT-MI [11],
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ultrasound excitation and electromagnetic signal detection
steps are employed for the sake of safety; compared to
the traditional MAET method that detects signals by elec-
trodes [7], [8], the simple operations of MAT-MI benefits
from the separated coils for non-contact detection. Fur-
thermore, compared with EIT and MAT, the resolution of
MAET-MI can reach the orders of magnitude of acoustic
waves, which is significantly higher than EIT and MAT. The
reason for this increase is the introduction of magnetoacous-
tic. Thus, both EIT and MAT methods need to solve the
ill-posedness of the inverse problem, which is an electrical
imaging method and not a sound wave based method.

MAET-MI is a conductivity imaging method based on the
coupling effect between the electromagnetic field and ultra-
sound. Transient narrow pulses are emitted sequentially into
the target via equispaced ultrasonic transducers around the
target. The vibrations of the ultrasound in the target generate
distributed currents under the static magnetic field [10]. The
distribution of the current varies with ultrasonic propagation,
which can be detected via a customized coil. The reconstruc-
tion of the relative conductivity distribution can be performed
by the current signal, which is detected by the coil.

The reconstruction of electrical conductivity in coil detec-
tion mode is the key point in MAET-MI. A set of equations
based on the curl of the reciprocal current density is detailed
in the forward and inverse problem in MAET-MI. It is nec-
essary to clarify the relationship between the signals detected
by the coil and the distribution of the conductivity. Owing
to the close relationship between the curl of the reciprocal
current density and the conductivity, we put an emphasis
on the reconstruction of the curl in inverse problems, rather
than reconstructing the conductivity. In the previous work of
the MAET-MI, the compressed sensing method was used to
reconstruct the curl of current density [9]. Amatrix represent-
ing the integral was generated to solve the forward problem.
The advantage of the compressed sensing method is that it
reconstructs images with less data than traditional methods.
We reconstruct the curl of the current density by transforming
the previous matrix via a compressed sensing method based
inverse problem. Forward and inverse problems are all based
on the samematrix, whichwould raise some questions of self-
verification. In order to avoid these problems, we solve the
forward and the inverse problem via a variety of methods,
i.e., the filtered back projection method instead of directly
calculating the compressed sensing problem. Both the for-
ward and inverse problems are verified by applying curl of
the reciprocal current density, which will be described in
future research. In recent studies, Zengin and Lorentz [15]
proposed the use of a novel xy coil pair to measure the
magnetic field intensity generated due to induced currents.
In this paper, circular coil is used to detect the magnetic field
intensity generated. This is more conducive to the rapid imag-
ing of axisymmetric model. Moreover, they focus on accurate
reconstruction of electrical conductivity through the singular
value decomposition. In this paper, the inverse problem of
electric field is transformed into the inverse problem of sound

FIGURE 1. Actual physical process of MAET-MI.

field through the derivation of reciprocity theorem. So that
the filtered back-projection method can be used to image the
model quickly.

II. RECIPROCITY THEOREM
The experimental model of MAET-MI is shown in Figure 1.
The actual physical process of and the correspondence
between the field variables are marked with arrows. The
dotted lines show the placement of the ultrasonic transducers.
Its scanning trajectory, which emits ultrasonic waves into the
imaging area� from the boundary ∂�. The vibration velocity
γ excites the dynamic source current density J ex1 in the static
magnetic field, which corresponding to equation (1) below.

Jex1 = σγ × Bs, (1)

where σ is a parameter that is infinitely close to zero but not
zero. The Bs is static magnetic field.
An induced electric field E1 and a varying magnetic field

H1 are generated under the excitation of J ex1 . Since E1 and
H1 vary with the propagation of sound waves, voltage u(t) is
induced in the coil, where t represents time.

In the coil detection method, the relationship between the
magnetic field and the electric field can be described by Fara-
day’s law of electromagnetic induction Eq. (2a) andAmpere’s
law Eq. (2a).

∇ × E1 = −µ
∂H1

∂t
, (2a)

∇ ×H1 = Jex1 + σE1, (2b)

where subscript 1 indicates the field in the actual physical
process. H1 is the total magnetic field intensity in the target
area. J ex1 is the dynamic source current density caused by
the ultrasound vibration, and u is the dielectric permeability,
where∇ is a gradient operator, expressed in Cartesian coordi-
nates as∇ = ∂

∂x ex+
∂
∂yey+

∂
∂zez. Since the electric fieldE1 has

a vortex component, the induced voltage can be detected by a
coil according to the electromagnetic induction. The induced
voltage in the coil can be expressed as the following line
integral.

u(t) =
∫

r∈lcir

E1 · d lcir, (3)

where dlcir represents a tiny line element along the detection
coil.
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By dividing the conductivity of the right side of Eq. (2b) to
the left side and calculate the curl at both ends. Then combine
Eq. (1) and Eq. (2a) to obtain

∇ × (
1
σ
∇ ×H1)+ µ

∂H1

∂t
= ∇ × (γ × Bs). (4)

Eq. (4) is a vector field equation that can be solved by
the given boundary. The numerical solution of Eq. (4) can be
determined by using the finite element method with an infi-
nite boundary condition. By calculating the Eq. (4), we found
the magnetic field intensity H1, and put it into Eq. (2), then
we can calculate the electric field intensity. This is also a
direct coupling calculationmethod for computing the forward
problem of MAET-MI.

Figure 2 shows the reciprocal process of MAET-MI and
the corresponding field variables. In the same problem area,
as shown in Fig.1, a time-varying current density, J ex2 ,
is switched into the coil. The eddy current density, J2, and
the electric field, E2, are induced in the target.

FIGURE 2. Corresponding reciprocal process.

The reciprocity theorem of MAET-MI is to provide the
coil with a pulsed current and to induce an eddy current
distribution in the target. We assume that the detection coil
is a line loop with a section area of 0. The applied current
density can be expressed as follows:

Jex2 = δ
3(r− rcir )f (t)lcir(r). (5)

Of which r represents the field point in �, rcir represents
the point on the coil, δ(·) represents the Dirac function in
three-dimensional space, f (t) is the time term of the applied
current J ex2 , lcir represents the unit vector of J ex2 along the cir-
cumferential direction of the coil. According to the selectivity
of the Dirac function, δ3(r − rcir ) denotes that the applied
current density J ex2 is applied only to the coil and has no value
elsewhere.

Similarly, according to the Ampere Law and Faraday Law
of electromagnetic induction, the electric and magnetic fields
excited by an applied current in the reciprocity theorem can
be expressed as

∇ × E2 = −µ
∂H2

∂t
(6a)

∇ ×H2 = Jex2 + σE2 (6b)

Here subscript 2 denotes the field in the reciprocity theorem.
E2 and H2 are eddy electric field and magnetic field respec-
tively. The displacement current is neglected because of the
low excitation frequency.

Make Inner product between Eq.(2b) and E2, we obtain.∫∫∫
r∈�

∇ ×H1 · E2d�

=

∫∫∫
r∈�

Jex2 · E2d�+
∫∫∫
r∈�

σE1 · E2d� (7)

� is the whole computational region, which includes the
target region and the coil.

According to the vector identical equation

∇ · (A× B) = B · ∇ × A− A · ∇ × B, (8)

where A and B are variables in the vector identical equation.
The left-hand side of Eq. (7) can be rewritten to∫∫∫
r∈�

∇ ×H1 · E2d�

=

∫∫∫
r∈�

∇ × E2 ·H1d�−
∫∫∫
r∈�

∇ · (E2 ×H1)d� (9)

Applying the Gauss theorem to the Eq. (9), it can be
simplified to∫∫∫
r∈�

∇ ×H1 · E2d�

=

∫∫∫
r∈�

∇ × E2 ·H1d�−
∫∫∫
r∈∂�

(E2 ×H1) · nd∂�

= −

∫∫∫
r∈�

µ
∂H2

∂t
·H1d�, (10)

where µ is the permeability of the medium. n represents the
unit vector in the exterior normal direction of the boundary.
When the solution region is large enough, E2 is zero at the
boundary under infinite boundary conditions, and thus the
boundary integral of (E2 × H1)×n is also zero [16]. By taking
into account Eq. (10), Eq. (9) can be rewritten as

−

∫∫∫
r∈�

µ
∂H2

∂t
·H1d�

=

∫∫∫
r∈�

Jex1 · E2d�+
∫∫∫
r∈�

σE1 · E2d�. (11)

Similarly, both sides of Eq. (9b) can produce scalar product
of E1.

−

∫∫∫
r∈�

µ
∂H1

∂t
·H2d�

=

∫∫∫
r∈�

J ex2 · E1d�+
∫∫∫
r∈�

σE2 · E1d�. (12)

The frequency domain expressions are found by taking the
Fourier transform of both sides of Eq. (11) and Eq. (12).

−

∫∫∫
r∈�

jω
◦

H2 ·
◦

H1 d�

=

∫∫∫
r∈�

◦

J ex1 ·
◦

E2 d�+
∫∫∫
r∈�

σ
◦

E1 ·
◦

E2 d� (13a)

154078 VOLUME 7, 2019



L. Gong et al.: Study on Reciprocal Models for MAET With Coil Detection

−

∫∫∫
r∈�

jω
◦

H1 ·
◦

H2 d�

=

∫∫∫
r∈�

◦

J x2 ·
◦

E1 d�+
∫∫∫
r∈�

σ
◦

E2 ·
◦

E1 d�, (13b)

where j is an imaginary number unit. The o above the variable
represents the corresponding field in the frequency domain.
This can be easily established as∫∫∫

r∈�

◦

J ex1 ·
◦

E2 d� =
∫∫∫
r∈�

◦

J ex2 ·
◦

E1 d� (14)

The variables in Eq. (14) are functions of space location r
and the angular frequency ω, they can be expressed in detail
via the characterization below∫∫∫
r∈�

◦

J ex1 (r, ω) ·
◦

E2 (r, ω) d�

=

∫∫∫
r∈�

◦

J ex2 (r, ω) ·
◦

E1 (r, ω) d� (15)

Next, we replace the Eq. (1) with the left part of Eq. (15).

Then, according to
◦

J2 = σ
◦

E2, we can obtain∫∫∫
r∈�

◦

J ex1 (r, ω) ·
◦

E2 (r, ω) d�

=

∫∫∫
r∈�

◦

J ex2 (r, ω) ·
[
◦
γ (r, ω)× Bs

]
d�. (16)

By combining Eq. (3) and Eq. (8), then Eq. (15) can be
transformed to∫∫∫

r∈�

◦

J ex2 (r, ω) ·
◦

E1 (r, ω) d�

=

∫∫∫
r∈�

◦

E1 (r, ω) ·
∧
n (r) δ3 (r − rcir )

◦

f (ω) d�

=

∫
r∈lcir

◦

S (ω)
◦

E1 (r, ω) · dlcir

=
◦
u (ω)

◦

f (ω) , (17)

where
◦

S (ω) and
◦
u (ω) are Fourier transforms of s(t) and

u(t), respectively, and s(t) is the time term of the applied

current J ex2 .
◦

f (ω) and
◦
u (ω) are Fourier transforms of f (t) and

u (t) respectively. As shown in Eq. (17), the Dirac function
converts the volume fraction of the three-dimensional space
into a line integral along the coil. According to Eq. (15) -
Eq. (17), the frequency domain expression of the induced
voltage detected by the coil is

◦
u (ω)

◦

f (ω) =
∫∫∫
r∈�

◦

J2 (r, ω) ·
[
◦
γ (r, ω)× Bs

]
d� (18)

The right part of Eq. (18) is similar to the expression of the
electrode detection mode deduced by [5]–[7]. Except that the

static magnetic field Bs is frequency independent, such that
all field quantities are functions of angular frequency ω and
space point r .
Now, by considering Gauss’ theorem, Eq. (8) and the

velocity potential function

γ =
1
ρ0
∇φ, (19)

where φ is the velocity potential function. ρ0 is the static
density of the medium. Eq. (18) can be rewritten as

◦
u (ω)

◦

f (ω)

=

∫∫∫
r∈�

B0

ρ0
· ∇ ×

◦

J2 (r, ω)
◦

φ (r, ω) d�

−

∫ ∫
r∈∂�

◦

J2 (r, ω)×
Bs
ρ0

◦

φ (r, ω) d∂�, (20)

where
◦
ϕ (r, ω) is Fourier transform of φ (r, t). Eq. (20) is

split into two components: an individual integral and a surface
integral. For simplicity, if the target is enclosed in a non-
conductive insulating fluid medium, such as insulating oil or
distilled water, the current density at the boundary is zero
in the reciprocity theorem. Therefore, the second boundary
integral on the right side of Eq. (20) is 0. Considering the
acoustic homogeneous medium, Eq. (20) can be simplified to

◦
u (ω)

◦

f (ω) =
1
ρ0

∫∫∫
r∈�

Bs · ∇ ×
◦

J2 (r, ω)
◦

φ (r, ω) d� (21)

Because of the target’s low conductivity, the induced eddy
current is approximately the same at each point, regarded
as the temporal term. This means that time and space terms
of induced eddy currents can be separated according the
conductivity of objects. Spatial and frequency terms can also
be separated. Therefore,

◦

J2 (r, ω) =
◦

J2 (r)
◦

F (ω) . (22)

◦

J2 (r) and
◦

F (ω) respectively denote the space and time terms
of the induced eddy current in the reciprocity theorem. The
temporal term of an induced electric field, or current, should
be the first derivative of the temporal term of the induced
magnetic field H2. Therefore, in the frequency domain,
◦

F (ω) should be

◦

F (ω) = jω
◦

f (ω) (23)

By considering Eq. (22) and Eq. (23), Eq. (21) can be
rewritten as

◦
u (ω)

◦

f (ω) =
◦

f (ω)
1
ρ0

∫∫∫
r∈�

Bs · ∇ ×
◦

J2 (r) jω
◦

φ (r, ω) d�.

(24)
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If we assume that
◦

f (ω) is a constant, then f (t) is equal to
δ3(t) and

◦
u (ω) can be simplified to

◦
u (ω) =

1
ρ0

∫∫∫
r∈�

Bs · ∇ ×
◦

J2 (r) jω
◦

φ (r, ω) d�. (25)

Generally speaking, as long as
◦

f (ω) is non-zero in the
non-zero frequency spectrum of

◦
u (ω), the expression can be

reduced to Eq. (25). In MAET-MI,
◦

f (ω) is decided by actual
physical process. Montalibet et al. [10] assumed that s(t) is

a step function, which is equivalent to assuming
o
f (ω) =

πδ (ω) + 1
jω . However, as long as

◦

f (ω) has no zero value in

the non-zero spectrum range of
◦
u (ω),

◦

f (ω) can be selected
as the excitation in the reciprocity theorem and be removed.
For simplicity, we choose f (t) = δ (t), which is equivalent

to
◦

f (ω) = 1. Eq. (25) also illustrates that the MAE signal is
related to the spatial component of curl of current density in
the reciprocal process.

If the inverse Fourier transform is used in Eq. (25), the time
domain integral expression can be obtained as follows:

u(t) =
1
ρ0

∫∫∫
r∈�

Bs · ∇ × Jo2 (r)ϕ
′(r, t)d� (26)

Among them, ϕ′(r, t) represents the first temporal derivative
of the velocity potential function ϕ(r, t). Substitute Eq. (22)

and Eq. (23) into Eq. (18), reduce
◦

f (ω) on both sides and
solve inverse Fourier transform, and then the time domain
integral expression can be obtained

u(t) =
∫∫∫
r∈�

◦

J2(r) · γ ′(r,t)× Bsd� (27)

From the above, the induced voltage signal can also be
obtained by the reciprocity theorem via forward problem.
Eq. (25) is based on reciprocal current density curl in coil
detection mode, while Eq. (27) is based on the reciprocal
current density in the coil detection mode. Since γ ′(r, t) is
the derivative of the vibration velocity (γ (r, t)), the distri-
bution of the vibration velocity is a spherical surface under
impulse excitation. Therefore, Eq. (27) can be converted into
a spherical integral. Then, the integral equation can be solved
by a Radon transform and generated by the ultrasonic signals.
Based on the reciprocity theorem, we can transform the mea-
surement of electrical signals into solving the wave equation.
And then reconstruct the curl of current density via filtered
back projection, which has robustness. This is different from
our previous work, where we finished reconstructing the curl
of current density of the inverse problem of MAET-MI with
the filtered back projection method instead of the compressed
sensing method. Reconstruction of the current density and
reconstruction of conductivity are closely related. Details
about the subsequent reconstruction steps can be found in the
references of other scholars [11].

III. INVERSE PROBLEM
According to the formulas in section II, theMAET-MI inverse
problem could be divided into two steps. First, solve the
integral in Eq. (27). Second, reconstruct conductivity with
respect to the space of the reciprocal current density or its
curl.

Then, the integral in Eq. (26) can be regarded as the solu-
tion of the following MAET based wave equation.

∇
2u−

1
v2s

∂2u
∂t2
= −H (r′)δ′(t), (28)

where vs is the velocity of ultrasonic vibration. The field of
wave equation u(r, t) is excited by any wave field source
H (r ′) with excitation δ′(t). Under infinite boundary condi-
tions, the solution of the wave equation can be expressed as
an integral of the derivative of the Green’s function

u(r, t) =
∫∫∫
r′∈�

H (r′)G′( r, t| r′, 0)d�, (29)

where r ′ represents the source point, r represents the field
point, and H (r ′) represents the field source distribution func-
tion. G( r, t| r ′, 0) represents the Green function of point
source excitation field u(r, t), which still satisfies

∇
2G−

1
v2s

∂2G
∂t2
= −δ(t)δ3(r− r′). (30)

Setting the wave field source to

H (r′) = ∇ ×
◦

J2(r′) · BS/ρ0, (31)

the inverse problem of MAET-MI based coil detection can
still be transformed into the inverse source reconstruction
problem of wave Eq. (28), in which the distribution source
satisfies the Eq. (31) [17].

The filtered back projection method can be used to recon-
struct the curl of the current density. The Hilbert transfor-
mation formula is used in the reconstruction of the current
density by using filtered back projection [16]

ϕ(r) ≈
C

βI0v2s

∮
ds
n · (r − rθ )

|(r − rθ )|2
H (p1(rθ , |(rθ − r)| /vs)

× |(r − rθ )| + p2(rθ , |(rθ − r)| /vs)), (32)

where H is a Hilbert transform; p2(r, t) = vs
∫ t
0 p2(r, t)dt ,

n is the inward normal to the detection curve at rθ , ds is
the arc length differential, and the integration is along a
complete detection curve (the curve that runs around the
object-of-interest).

IV. NUMERICAL RESULTS
To fully exemplify the advantages and feasibility of the for-
ward model in the reciprocity theorem, we vary the diameter
and position of the model to reconstruct the conductivity
distribution.

First, the forward simulation of the MAET-MI is per-
formed. The schematic diagram of the final physical model
is shown in Fig.3.
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FIGURE 3. Schematic diagram of coil Magneto-Acousto-Electro imaging
model.

The multilayer cylindrical object in the center is the object
to be imaged. A multi-turn detection coil is placed on each
side of the area to be imaged. The imaging body and coil are
placed in the static magnetic field with magnetic induction
of Bs, and the diameter for the inner circle of the coil is 1 cm.
The ultrasonic transducer transmits the ultrasonic wave to the
target body and rotates along the dotted line for scanning.
Similarly, we adopt the two-dimensional model of ultrasound
tomography and find that when the image area is small
enough along the z-direction, only a two-dimensional plane
(at z = 2.4 cm) is approximately considered for simplicity.

The two-dimensional conductivity distribution of the
model is shown in Fig. 4(a), which is a square area with
6 cm length. It includes two concentric circular conductivity
anomalies body in the diameters of 5 cm and 10 cm respec-
tively. The background conductivity is 0 S/m, and the two
anomalies are 1 S/m inside and 0.1 S/m outside. As shown in
Fig. 4(b), by changing the conductivity, the conductivity dis-
tribution of the two-dimensional cross-section is constructed
using a 0.2 S/m inside and a 0.3 S/m outside. We only
increase the radius of the middle circle without changing the
conductivity. Then, we obtain the conductivity distribution of
the two-dimensional cross-section, as shown in Fig. 4(c). The
model shown in Fig. 4(a) establishes a three-layer concentric
circular conductivity anomaly volume model with internal
and external conductivities of 0.2 S/m, 1 S/m and 0.1 S/m
from inside to outside. The two-dimensional cross-sectional
conductivity distribution is shown in Fig. 4(d).

FIGURE 4. Conductivity distribution corresponding to four different
models.

Under the given ultrasound excitation, the Magneto-
Acousto-Electric (MAE) signals are calculated by a
direct multiphysics coupling method and the reciprocity

theorem, respectively. The results are illustrated as follows
in this section.

The normalized MAE signals calculated by the two meth-
ods are shown in Fig. 5 (a), (b), (c) and (d). The blue line
represents the signals calculated directly by the finite element
method (FEM), and the red dotted line represents the signals
calculated by the integral equation based reciprocity theorem.
The FEM method determines the grid size and other model
parameters. It is easy to achieve convergence when the grid
size is 1/6 the wavelength.

FIGURE 5. Contrast images of MAE signals of four different models.

By comparing the results, we can see that the results calcu-
lated using the integral equation of the reciprocity theorem are
consistent with counterparts calculated directly by the FEM,
and a similar result is found for the waveform. This proves
the validity of reciprocity theorem for MAET-MI and vali-
dates the results calculated by integral Eq. (26) or Eq. (27).
Although the current density curl does not fully character-
ize the conductivity, Figure 4 and Figure 5 shows that the
curves are substantially similar. Therefore, the distribution of
conductivity can be inferred by observing the current density
rotation.

The conductivity distribution of the two-dimensional
cross-section of the four different models discussed in this
section is shown in Figs. 4(a), (b), (c) and (d). The curl
of the current density, a reciprocal process, is shown in
Fig. 6 (a), (b), (c), and (d). The curl of current density
is reconstructed via the filtered back projection method
based on the surrounding MAE signals, which is shown in
Fig.7 (a), (b), (c) and (d).

FIGURE 6. Curl contrast images from forward modeling of reciprocal
processes of four different models.

In Figs. 4, 6, 7, the curl of the current density varies greatly
with the interface of conductivity. A numerical variable T is
introduced to the following formula (Eq. (33)) to measure the
correlation between the original model and the reconstructed
image.

T =

∑
(Aij × Bij)√∑

(Aij × Aij)×
√∑

(Bij × Bij)
(33)
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FIGURE 7. Curl contrast images of ultrasound signal reconstruction of
four different models.

The A represents the pixel matrix of the original image and
B represents the pixel matrix of the reconstruction image. The
T terms the correlation coefficients between the original and
reconstructed images. The four sets of correlation coefficients
are 91.50%, 95.75%, 93.98% and 91.05%. By comparison,
we find that the curl of the current density obtained by the
finite element method (FEM) based on the reciprocal process
is almost the same as that of the current density reconstructed
from the MAE signals. The similarity of the four models
was greater than 90%. We obtain similar images that are
reconstructed by using different numerical models. The error
is obtained by using multiple reconstruction methods and
by comparing multiple models. We find that the reciprocal
model exhibits good uniformity and stability when describing
the actual physical process. Thus, we verify that the recon-
struction method based on the electrode detection can be
applied to MAET-MI. Thus, the inverse MAET-MI problem
can be transformed into an inverse source reconstruction of
the wave equation based on the coil detection.

V. CONCLUSION
In summary, starting from the actual physical process of
MAET-MI, we first study the reciprocity theorem under
coil detection mode. A variety of approaches are adopted
to calculate the forward and the inverse problems. This is
done to verify the reciprocal model. In the forward problem,
the moment method is employed to calculate the Radon
transform to generate the ultrasonic signals. For the inverse
problem, the filtered back projection method is chosen to
reconstruct the ultrasound sources, which are related to the
curl of the current density in the reciprocal process. By apply-
ing the curl of the current density to the reciprocal process
and by comparing the reconstructed and directly calculated
methods, we find that the reconstruction of the current density
curl is consistent with the results obtained by the FEM.All the
simulation results support the reasonability of the reciprocal
algorithm and verify its effectiveness. This not only proves
the correctness of the reciprocal models, but also provides
a different effective idea for solving the inverse problem
by reciprocity theorem and provides a method for imaging
conductivity quickly.
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