
Received October 1, 2019, accepted October 12, 2019, date of publication October 21, 2019, date of current version November 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948704

A Task Scheduling Algorithm With Improved
Makespan Based on Prediction of Tasks
Computation Time algorithm for
Cloud Computing
BELAL ALI AL-MAYTAMI 1,2, PINGZHI FAN1, ABIR HUSSAIN 3, THAR BAKER 3,
AND PANOS LIATSIS 4
1Institute of Mobile communication, Southwest Jiaotong University, Chengdu 611756, China
2Faculty of Science, Ibb University, Ibb 740005, Yemen
3Department of Computer Science, Liverpool John Moores University, Liverpool L3 3AF, U.K.
4Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Corresponding author: Abir Hussain (a.hussain@ljmu.ac.uk)

This work was supported by the 111 project under Grant 111-2-14.

ABSTRACT Cloud computing is extensively used in a variety of applications and domains, however
task and resource scheduling remains an area that requires improvement. Put simply, in a heterogeneous
computing system, task scheduling algorithms, which allow the transfer of incoming tasks to machines,
are needed to satisfy high performance data mapping requirements. The appropriate mapping between
resources and tasks reduces makespan and maximises resource utilisation. In this contribution, we present
a novel scheduling algorithm using Directed Acyclic Graph (DAG) based on the Prediction of Tasks
Computation Time algorithm (PTCT) to estimate the preeminent scheduling algorithm for prominent cloud
data. In addition, the proposed algorithm provides a significant improvement with respect to the makespan
and reduces the computation and complexity via employing Principle Components Analysis (PCA) and
reducing the Expected Time to Compute (ETC) matrix. Simulation results confirm the superior performance
of the algorithm for heterogeneous systems in terms of efficiency, speedup and schedule length ratio, when
compared to the state-of-the-art Min-Min, Max-Min, QoS-Guide and MiM-MaM scheduling algorithms.

INDEX TERMS Scheduling algorithm, task scheduling, resource utilization, cloud computing.

I. INTRODUCTION
A. MOTIVATION AND AIM
Cloud computing has grown to be a major technological
enabler in companies and organizations [1]–[3]. It has been
shown to increase reliability, deliver cost-cutting solutions,
and provide 24/7/365 access to hard/soft resources from
anywhere based on pay/use pricing policy [4], [5]. The cloud
offers services in the structure of Software as a Service
(SaaS), Infrastructure as a Service (IaaS), and Platform as
a Service (PaaS) [3]. Task scheduling is a major challenge in
widely distributed heterogeneous systems (e.g., cloud com-
puting), which chooses the preeminent resources for a pro-
vided task. Also, in heterogeneous systems, task scheduling
is more convoluted in comparison to homogeneous

The associate editor coordinating the review of this manuscript and
approving it for publication was Yaser Jararweh.

computing (HC) systems because of the various communi-
cation and execution rates amid various processors.

The main aim of cloud computing is to provide a highly
efficient platform for appropriate exploitation of computa-
tional properties embedded in organizations, and to sup-
port the enterprise to capitalize on end-user demands [9].
However, the decentralized and heterogeneous nature of
cloud networks makes them intricate to deal with. Last but
not least, deciding on suitable assets for tasks has become an
acute issue due to the swift rise of users and resources.

For heterogeneous clustering systems, task scheduling is
a computationally demanding problem, even under abridged
conventions, as it is NP-hard [9], [12].

The overarching aim of this research is to improve the
performance of task scheduling, while reducing computa-
tional costs. A key objective is to predict the ideal algorithm
for incoming/available data as and when needed. In order

160916 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-1997-197X
https://orcid.org/0000-0001-8413-0045
https://orcid.org/0000-0002-5166-4873
https://orcid.org/0000-0002-5490-6030

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

to achieve this, we perform a systematic analysis of heuris-
tic techniques for resource utilization by means of Princi-
pal Components Analysis (PCA) in the cloud environment.
Moreover, we analyze the requirements and consequences of
utilizing Quality of Service (QoS) with the proposed Predic-
tion of Tasks Computation Time algorithm (PTCT).

B. CONTRIBUTIONS
As described in Section 3, there are many works in the
literature in regards to task scheduling in the cloud comput-
ing environment. This research proposes the following novel
contributions:

1. Typically, task scheduling algorithms focus on improv-
ing either computation or communication costs in
the cloud data center. The proposed PTCT method
decreases both of these costs noticeably, as discussed
and explained in Sections 3 and 5.

2. PTCT uses PCA to reduce the size of the required
matrices (refer to sections 4 and 5). To the best of the
authors’ knowledge, this is the first attempt of using
PCA in task scheduling in the context of cloud com-
puting.

3. PTCT examines the incoming data (in tasks) to allocate
the appropriate/capable processor from the data center.
In this way, PTCT guarantees to achieve near-optimal
re-/allocation of resources, hence providing superior
scheduling performance, compared to benchmark algo-
rithms, as illustrated in Section 5.

C. STRUCTURE
The rest of this research paper is structured as follows.
Section 2 discusses heuristic scheduling algorithms and
summarizes their essential features. Section 3 provides an
overview of related work in task scheduling. Section 4 intro-
duces the definition of the scheduling problem. Section 5
describes the proposed PTCT method and presents strategies
for practical algorithms based on PTCT. Section 6 presents
simulation results and provides comparisons to the state-of-
the-art methods. Section 7 provides the conclusions of this
research and identifies opportunities for further work.

II. HEURISTIC SCHEDULING ALGORITHMS
Scheduling is a decision-making process carried out in real
time, where processors are allocated to an extensive set of
tasks. Due to resource constraints, task scheduling is a chal-
lenging problem. Various studies investigated task scheduling
algorithms and proposed schemes to improve resource uti-
lization in widely distributed environments, i.e., cloud com-
puting. Solving the associated NP-hard problem leads to the
optimal solution.

Various heuristics-based schemes have been shown to
provide semi-optimal solutions. Heuristic scheduling algo-
rithms are rule-based, and extensively used in the IaaS
cloud computing environment. They are intended to sort out
challenging problems faster than meta-heuristic algorithms,
where implantation is time consuming. Furthermore,

heuristic algorithms are used in finding an optimal solution,
when meta-heuristic method fail to do so. The associated
solutions are achieved with improved speed, accuracy, opti-
mum transaction and completeness [13]. This section focuses
on popular heuristic algorithms for semi-optimal scheduling.

A. MIN-MIN HEURISTIC ALGORITHM
In the Min-Min scheduling algorithm, tasks with shorter
execution time are determined and prioritized, and then,
resources that generate the minimum accomplished time are
assigned to them. This process is executed repeatedly for all
scheduled tasks. Hence, the Min–Min scheduling algorithm
picks the smaller tasks to be completed first [19], [20].

B. MAX-MIN HEURISTIC ALGORITHM
In contrast to Min-Min, the Max-Min algorithm operates on
the concept of completing the largest task first. The time
duration of each task is provided in advance and all tasks
are mapped to the appropriate processor. This process is
repeated until all unmapped tasks are processed. It should be
noted that for small-scale distributed systems, Min-Min and
Max-Min are suitably utilized [17], [21]. For all short scale
tasks transported in the network, Max-Min simultaneously
schedules the longer tasks, followed by the shorter ones,
while Min-Min performs the opposite, i.e., schedule the
shorter ones first, followed by the longer tasks, which implies
a larger makespan.

C. QUALITY OF SERVICE (QoS) GUIDED MIN-MIN TASK
SCHEDULING HEURISTIC ALGORITHM
The standard Min-Min heuristic scheme ignores Quality of
Service (QoS) in its implantation. As a result, the effec-
tiveness of the algorithm in the cloud is questionable. QoS
Guided Min-Min allows the QoS constraint to be utilized
with standard Min-Min heuristic scheduling [19]. Specifi-
cally, some scheduled tasks, particularly those with sensitive
data, may necessitate the use of high bandwidth, while others
can be accomplished with low bandwidth. This scheduling
algorithm allocates tasks with excessive QoS requests first
using theMin-Min heuristic. When all tasks entail either high
QoS or low QoS, the scheme requires O(n2m) computational
complexity.

D. MIM-MAM ALGORITHM
• This scheduling algorithm builds upon the advantages
and limitations of the Max-Min and Min-Min heuristic
algorithms. In this case, information about the upcoming
deadline for each task, arrival rate, cost of execution
of using each available resource, and communication
costs is considered [23]. Two types of policies are used
to classify task scheduling problems, specifically static
and dynamic scheduling. In the former, information
about tasks, including communication costs for each
task, execution and the relationship with other tasks,
is determined in advance. In the latter, decisions are
determined in runtime, since the details of the tasks

VOLUME 7, 2019 160917

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

are not obtainable. In addition, dynamic scheduling
signifies runtime scheduling, while static scheduling
is a representation of compile-time scheduling. There
are two major groups of static scheduling algorithms:
(i) Heuristic-based algorithms, and (ii) Guided Random
Search based algorithms. The former provides good
approximate solutions with polynomial time complex-
ity [14]. Dynamic scheduling is faster in execution than
static scheduling, since it’s basically not aware of any
thread dependencies [7].

1) RELATED WORK
As discussed in Section 2, there exists a variety of heuris-
tic scheduling algorithms, which can operate in both batch
and online modes. Some of these schemes are appropriate
in heterogeneous scheduling scenarios, however they cannot
always attain good makespan, speedup, reduced costs and
increased efficiency [1], [6]–[8], [13]. Hence, QoS-based
techniques are essential in obtaining the maximum objec-
tives so as to retain QoS characteristics for both tasks and
resources.

Wang and Yu [29] propose an enhanced Min-Min algo-
rithm to consider the proficiency of task scheduling in cloud
computing. As previously indicated, the Min-Min algorithm
first determines the tasks with shorter execution times and
then the resources which result in the shortest times. This can
lead to delays when examining the use of the algorithm in
the cloud environment. Zhang et al. [30] propose QoS con-
straints in the cloud environment as a criteria for scheduling
a task in the Min-Min algorithm, named Mul-QoS-Min-Min.
The proposed algorithm finds resources with similar tasks to
deliver task scheduling, then requests users to carry out their
needs. The simulation results indicate that the performance
of the Mul-QoS-Min-Min scheme is improved in terms of
execution times, when benchmarked against the traditional
Min-Min algorithm.

Both Mao et al. [31] endorse the Max-Min algorithm
in order to stabilize the load for the cloud. The algorithm
conserves a table that holds details about task position and
evaluates the real-time workload for virtual machines (VMs)
with the estimated task execution times. The Max-Min algo-
rithm boosts the utilization of resources and decreases task
scheduling response time by using VMs instead of traditional
resources. Li et al. [32] schedules tasks using improved max-
min task scheduling then largest task is too large compared
to other tasks in Meta-task in this case overall makespan
is increased because too large task is executed by slowest
resource.

Henning et al. [34] study task scheduling in the parallel
method challenge with a fixed number of processors and the
best schedule for high performance outcomes. They indicate
that this can be achieved by mapping tasks to machines
according to precedence constraints. In [35], the authors pro-
pose a task scheduling mechanism for allocating computing
processors to a so-called ‘‘task graph templates’’. Since the
authors do not consider the network connection as a crite-

rion, this is deemed one of the limitations of their study. To
overcome this limitation, Sinnen and Sousa [36] use network
contention in their task scheduling method, without consid-
ering the fee charged to customers for using these resources.

Two factors must be considered in the cloud computing
environment, i.e., high performance of data transfer and sat-
isfaction of budget constraints. The authors in [37] and [38]
introduce a cost-efficient algorithm to select the most appro-
priate system in a cloud environment to implement the work-
flow based on using the deadline and cost saving constraints.
Li et al. [39] illustrate a scheduling algorithm, which can
be applied in large graph processing, where both cost and
schedule length constraints are considered. However, their
scheme does not consider failed devices.

Issues of task scheduling have been widely considered
in the literature. As expected, a multitude of approaches
have been proposed due to its crucial effects on performance
[9], [15]. The heuristic algorithm based on list scheduling
strategies [9] is one of the conventional scheduling algorithms
for cloud environments. This provides low time complexity,
however the limitations of minimal universality and poor
convergence have.

In [42], the authors study load balancing in the cloud
environment to avoid problems, which may occur due to
increase in power consumption, node failure, and machine
failure. However, the research dealt with a limited number
of parameters, e.g., there is no analysis on the effects of
dynamic scheduling, increase in the number of tasks and
machines, as well the growth of users. In [43], additional
parameters are considered. Optimization of task scheduling
is addressed by introducing the iterative selection operator.
However, this study overlooks the issue of load balancing.
Shimada et al., [44] proposed a novel algorithm, which can
transfer the task with the shorter path while eliminating
redundant tasks. However, the issue of the increase in the
number of machines as the number of tasks increases remains
an open challenge. In [45], the authors propose a model to
increase the overall system utilization, however, load bal-
ancing and other performance parameters need to be further
improved. Other works, such as [52], [53] explore the coop-
eration and collaboration among cloud servers using multi-
agent approaches to best assign resources to incoming tasks.

III. PROBLEM FORMULATION
In this research, we tackle the problem of static scheduling of
a single application in a widely distributed and heterogeneous
environment. Let us consider the sets of tasks and processors,
T and P, respectively. Let P processors be available for the
set of tasks T, which are not shared during task execution.
Let ETC is the Expected Time to compute, the matrix which
contains in each row the estimated execution time of a given
task on each resource, and the estimated execution time of a
resource in each column. The aim is to reduce the makespan
time of task execution in the data center. To minimize the
makespan and increase the utilization of resources, the tasks

160918 VOLUME 7, 2019

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

of parallel applications have to be efficiently scheduled on the
available resources using the ETC matrix model [28].

A. TASK GRAPH MODE
Using Directed Acyclic Graph (DAG), it is not possible to
start at one point in the graph and traverse the entire graph,
while evaluating computation costs in the correct order. Let us
consider a DAG, where G= (V, E). In this case, V represents
the set of v nodes. Each node vi ∈ V refers to an application
task, which is comprised of instructions executed on the same
processor. The parameter E represents a set of e connection
boundaries between the tasks. Boundary e(i, j) ∈ E charac-
terizes the task-dependency constraint, where task vi needs
to be completed before task vj is able to start. The DAG
is supplemented by the matrix ETC using v × p tabulated
cost. The parameters v and p are the number of tasks and
the number of processors in the system, respectively. Element
wi,j of W provides the estimated time of completing task vi
on processor pj. The mean execution time of task vi is given
by:

wi =
∑
j∈P

wi,j/p (1)

Figure 1 represents a simple model commonly used
in the scheduling problem [14]–[17], which allows us to
provide a competitive likeness with state-of-the-art solu-
tions, since these simplifications correspond to real systems.
Table 1 shows the computation costs of the 11 tasks shown
in Figure 1, with randomly generated values to provide a
sophisticated example on extracting the values of ETC.

FIGURE 1. A simple task graph with 11 tasks.

IV. PROPOSED METHOD
This section introduces the general framework of the pro-
posed PTCT algorithm, including algorithmic details.

A. OVERVIEW
In heterogeneous computing, effective task scheduling is
of the utmost importance to increase the advantages of

TABLE 1. Computation costs of tasks in Fig 1.

accomplishing an application. Consequently, the task
scheduling problem has been widely studied and many
algorithms have been proposed including list scheduling,
clustering, and task duplication scheduling based on Genetic
Algorithm. In summary, list-scheduling algorithms are ideal
in delivering low cost solutions, in comparison to other
approaches. Clustering algorithms perform better in the
case of homogeneous processors. Finally, task duplication
scheduling algorithms are utilized for communication inten-
sive programs. A point to note is that a review of the open
literature on task scheduling revealed a number of enhance-
ments for homogeneous processors [8], [10], [16]–[18],
however there appears to be less progress in the
case of heterogeneous processors [1]–[22]. This pro-
vides further motivation for the development of our
proposed framework in the context of a heterogeneous
environment.

Consider the following two attributes, Earliest Start Time
(EST) and Earliest Finish Time (EFT), used to outline the
objectives of the task scheduling issue. EST(vi, pj) repre-
sents the EST for task vi on processor pj, and similarly,
EFT(vi, pj) represents EFT for task vi on processor pj. EST(vi)
and EFT(vi) represent the values of these attributes over the
set of processors, respectively. For any initial entry task,
ventry, EST(ventry) = 0, the values of EST and EFT are
calculated from the entry to the exit tasks, traveling the task
graph from top to bottom. All immediate predecessor tasks of
vi should be scheduled to allow the calculation of EST. The

VOLUME 7, 2019 160919

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

task scheduling problem is defined as follows:

EST
(
vi, pj

)
= max

{
pavail[vi,pj],max

(
EFT

(
vp, vi

)
+C

(
vp, vi

))}
(2)

where vpεpred (vi) ,EFT
(
vp, pk

)
= EFT

(
vp
)

C
(
vp, vi

)
= 0 when k = j (3)

EFT
(
vi, pj

)
= T

(
vi, pj

)
+ EST

(
vi, pj

)
(4)

Pavail[vi,pj] is defined as the earliest time for processor pj
to execute task vi, pred(vi) while EST(vi, pj) represents the
maximum time when processor pj will be available. k is a
counter, meantime this represents the timewhere lastmessage
arrives from any of task vi predecessors.

makespan = EFT (vExit , pj), (5)

where vExit is the exit task and ETC(i,j) and PCA are defined
as:

ETC(i, j)

=

ETC1,1 ETC1,2 ETC1,3 . . . ETC1,j
ETC2,1 ETC2,2 ETC2,3 . . . ETC2,j
...

...
...

...
...

...
...

...
...

...

ETCi,1 ETCi,2 ETCi,3 . . . ETCi,j

PCA(ETC)

=

λ(ETC1)
... λ(ETC2)

...
...

...
...

... λ(ETC3)
...

...
...

...
...

. . .
...

. λ(ETCi)

Let us consider the notation of Table 2.

TABLE 2. Notation.

B. SYSTEM MODEL OF THE PROPOSED PTCT
The aim of the proposed PTCT scheme is to minimize the
scheduling rate (makespan), as well as estimate the optimal
algorithm for scheduling as shown in Figure 2.

FIGURE 2. The architecture of the proposed PTCT scheme.

The proposed PTCT algorithm is shown in Algorithm 1,
while Algorithm 2 illustrates how to calculate the execution
time of task vi on host pj and Algorithm 3 provides details
about calculating the expected execution time of task vi on
host pj.

V. SIMULATION RESULTS
Simulation experiments were run in MATLAB R2013a on
a PC with Intel Core i5 processor, using 2.40 GHz CPU
and 8 GB RAM. Windows 7 was utilised as the OS for
the platform. The proposed PTCT algorithm was bench-
marked with Min-Min [20], Max-Min [21], QoS guided [33]
and MiM-MaM [23], developed for heterogeneous system.
Simulation experiments were repeated 20 times, using the
parameters in Table 3.

TABLE 3. Simulation parameters.

The following assumptions were made:
1. Expected Time to Compute (ETC) of size v × p is

used, where v and p represent the number of tasks and
resources, respectively.

2. Tasks have no priorities associated with them.
3. Independent tasks are assigned to available resources.
4. The availability of resources and the number of tasks to

be executed are known in advance [24].
5. We consider three types of QoS data: high, medium,

and low.

A. PERFORMANCE ANALYSIS
Performance analysis was carried out based on three quality
measures, i.e., makespan, speedup and efficiency. These were
defined as follows:

160920 VOLUME 7, 2019

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

TABLE 4. Makespan of PTCT vs four state-of-the-art algorithms as a function of the number of tasks.

FIGURE 3. Makespan of state-of-the-art algorithms vs the proposed PTCT scheme as a function of the number of tasks.

a) Makespan: this represents the main quality measure as
it provides the completion time for all tasks in a graph.
Makespan is utilized to find the maximum completion

time by estimating the finishing time of the last
task [27] and is calculated according to:

Makespan = EFT (vi, pj) (6)

VOLUME 7, 2019 160921

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

FIGURE 4. Speedup of different algorithm in comparison to our proposed PTCT scheme.

b) Speedup: this is defined as the ratio of the sequential
schedule length calculated by allocating all tasks to the
fastest processor over the execution time of the task
schedule (makespan). as shown in Equation (7). The
sequential execution time is the cumulative computa-
tion cost when assigning all the tasks vi sequentially to
a single computing host p, is the host, H the set of hosts,
V is the set of tasks

Speedup =
minp∈H (

∑
vi∈V wi,j)

makespan
(7)

c) Efficiency: this is the ratio of speedup to the total num-
ber of processors, p, utilized to schedule the entire DAG
application:

Efficincy =
Speedup

p
(8)

d) Complexity: Using the PCA algorithm for all tasks and
machines is feasible for low-complexity scheduling
algorithms. The information requested from all tasks is
utilized to calculate the critical path and the scheduling
algorithm is executed in such a way that it stops after a

schedule is attained for the task ready to run at its next
scheduled time, thus decreasing the time complexity
of each schedule. The computational complexity of
MiN-MiN, MaX-MiN, QoS-Guide and MiM-MaM is
O (n2m), where n refers to the number of nodes, and m
is the number of edges. The computational complexity
of PTCT is O(m).because of the matrix of ETC will
contains only one dimension instead of two.

Makespan is the maximum finish time of the exit task in
the scheduled DAG. From Figure 3, it can be noted that the
makespan of PTCT decreases following the application of
PCA. Since the PTCT algorithm minimizes the communica-
tion overheads, the time required for completing application
execution by the PTCT algorithm is lower than the bench-
marked algorithms.

In Equation 7, wi,j represents the weight of task ti on
processor pj. Speedup is a good quality measure for execut-
ing the application program using a parallel system. From
Figure 4, it can be seen that the speedup of PTCT algorithm
is higher than the other algorithms, since ETC is reduced
to one instead of two dimensions. Figure 5 illustrates that
the efficiency of the proposed algorithm when benchmarked

160922 VOLUME 7, 2019

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

FIGURE 5. Efficiency of state-of-the-art algorithms vs the proposed PTCT scheme as a function of the number of tasks.

with the state of the art algorithms. It shows improved
results, in particular, when the number of tasks is increased to
above 40.

B. DISCUSSION
For comparison purposes, the makespan, speedup and effi-
ciency are used to illustrate the performance of makespan.

Figure 3 shows comparative results of four state-of-the-
art algorithms with the PTCT scheme. In the experiments,
the same data was used to compare the performance of the
algorithms. Compare the PCTC algorithm with each algo-
rithm separately. In other words, compare each algorithm
before and after using PTCT. The results show an improve-
ment in the performance of each algorithm with PTCT.
By repeating the experiment 20 times, the best algorithm will
be selected. MiN-MiN shows less effect with using PTCT,
and this usually depends on the quality of the used data. But
as long as the PTCT algorithm decreases the size of the ETC

matrix, that will leads to reduce the time used to complete
tasks. We used 8 processors and a range of [10-90] tasks.
The results in Table 4 and Figure 3 indicate that the algorithm
provided positive results, i.e., reduced times to complete tasks
on resources, due to reducing the size of the ETC matrix by
using PCA.

Figure 4 also illustrates positive results in terms of speedup,
which is one of the essential criteria for measuring the per-
formance of algorithms for the scheduling task. In addition
to the efficiency, which refers to the ratio of speedup with the
number of processors used, Figure 5 depicts better results for
PTCT in comparison with the other algorithms. The simula-
tion results indicate that the efficiency of our proposed tech-
nique is significantly improved, when increasing the number
of tasks apart from theMin-Min algorithm, which shows sim-
ilar performance (when the number of tasks is less or equal
to 90). However, Min-Min does not take into consideration
QoS as is the case with the proposed algorithm. Further-
more, with larger number of tasks (>90), additional simu-

VOLUME 7, 2019 160923

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

Algorithm 1 Prediction of Tasks Computation Time
(PTCT)
Input:
Output:
1: Generate data (v, p)
2: Group the data in S groups, where each group can

include high and low QoS
3: For each group of data, run six algorithms and output

the makespan time for each algorithm
4: Hi ={h1, h2,, hm), m is number of machines,

H (hosts), i=1,. . . , 4 (for all algorithms)
5: Select the best pair (Hk, Fk), i.e., minimum

makespan denoting the best algorithm k.
6: Use PCA

7: ψ = 1
m

m∑
i=1

hi mean value for every dimension of the

matrix ETC.
8: φi = |hi − ψ |
9: Set A = [φ1, φ2,φm]

10: Covariance C = A AT

11: Find the eigenvector W=A AT

12: Save <U, k> in the database
13: Find min||W – Ui||, i.e., the closest eigenvector in

the database and choose its algorithm Fi
14: Predicated algorithm.

Algorithm 2 Calculation of Execution Time of Task
vi on Host pj
Input:
p = processors;
v = tasks;

Output: ETC(vi, pj)
1: While there are more tasks to be scheduled
2: For all vi to schedule
3: For all pj
4: Compute CTi,j =CT(vi, pj)
5: End for loop
6: Compute i = F(CTi,1, CTi,2,)
7: End for loop
8: Determine the best F match m
9: Find minimum CTm,n

10: task m will be scheduled on n
11: End while loop.

lation results indicated that the proposed PTCT generated
significantly improved results in comparison to MiN-MiN
algorithm. This in agreement with existing literature research
[40], [41].

One limitation of the proposed algorithm is that minimiz-
ing the ETC matrix may lead to reduced accuracy values.
Nevertheless, the simulation results demonstrated that this did
not affect the qualitymeasures benchmarked against the state-
of-the-art techniques.

Algorithm 3Main Algorithm to Calculate the Execu-
tion Time of Task vi on Host pj
Input:
p = processors;
v = tasks;
ETC(vi, pj)

Output: PTCTm(ETC(vi, pj)), m= number of
algorithms

1: Group the data (v, p)in S groups randomly, where
each group may include high and low QoS

2: While there is a group of QoS
3: For all Gn (ETC(vi, pj)) (generate the matrix

ETC
4: For all algorithms = m
5: Compute makespan for each algorithm
6: Fm ={f1, f2, .., fm};
7: makespan PCA(Fm ={f1, f2, . . . fm});
8: Select best pair (minimum makespan)

Eq.5
(Fk, Gk), which denotes the best
algorithm k

9: End for
10: End for
11: End while.

VI. CONCLUSION
In this work, a novel algorithm, Prediction of Tasks Com-
putation Time, was presented. This results in a performance
improvement in cloud-based task scheduling by using Prin-
cipal Component Analysis. This permits the reduction of the
size of the Expected Time to Compute (ETC) matrix.

The proposed algorithm was applied to simulated task
graphs, and its performance was assessed in terms of
speed-up, makespan, schedule length ratio and efficiency.
The simulation results showed improved performance,
when benchmarked with four state-of-the-art scheduling
algorithms, namely Min-Min, Max-Min, QoS-guided and
MiM-MaM. In the cloud computing context, the simulation
results indicated that the proposed PTCT can reduce the
overall makespan and task execution time.

The simulation setupwas based on static scheduling, where
task arrival at the processors and speed are assumed to
be known. Future work will consider dynamic scheduling
for real-world application graphs and benchmarking in real-
world problems. The focus will be on improving the total
energy utilization and consumption of task scheduling using
the PTCT algorithm and comparing the findings with relevant
state-of-the-art algorithms for cloud energy consumption,
such as GreeDi and GreeAODV [47]–[51].

REFERENCES
[1] A. I. Avetisyan, R. Campbell, I. Gupta, M. T. Heath, S. Y. Ko,

G. R. Ganger, M. A. Kozuch, D. O’Hallaron, M. Kunze, T. T. Kwan,
K. Lai, M. Lyons, D. S. Milojicic, H. Y. Lee, Y. C. Soh, N. K. Ming,
J.-Y. Luke, and H. Namgoong, ‘‘Open cirrus: A global cloud computing
testbed,’’ Computer, vol. 43, no. 4, pp. 35–43, Apr. 2010.

160924 VOLUME 7, 2019

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

[2] S. K. Panda and P. K. Jana, ‘‘Efficient task scheduling algorithms for
heterogeneous multi-cloud environment,’’ J. Supercomput., vol. 71, no. 4,
pp. 1505–1533, Apr. 2015.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, ‘‘Cloud
computing and emerging IT platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility,’’ Future Gener. Comput. Syst. vol. 25,
no. 6, pp. 599–616, Jun. 2009.

[4] K. A. Beaty, V. K. Naik, and C.-S. Perng, ‘‘Economics of cloud com-
puting for enterprise IT,’’ IBM J. Res. Develop. vol. 55, no. 6, pp. 1–12,
Nov./Dec. 2011.

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu, ‘‘Cloud computing and grid com-
puting 360-degree compared,’’ in Proc. Grid Comput. Environ. Workshop,
Nov. 2008, pp. 1–10.

[6] A. Masood, ‘‘HETS: Heterogeneous edge and task scheduling algorithm
for heterogeneous computing systems,’’ in Proc. IEEE 17th Int. Conf.
High-Perform. Comput. Commun., Aug. 2015, pp. 1865–1870.

[7] R. Hoffmann, A. Prell, and T. Rauber, ‘‘Dynamic task scheduling
and load balancing on cell processors,’’ in Proc. 18th Euromicro
Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP), Feb. 2010,
pp. 205–212.

[8] E. U. Munir, J. Li, and S. Shi, ‘‘QoS sufferage heuristic for independent
task scheduling in grid,’’ Inf. Technol. J., vol. 6, no. 8, pp. 1166–1170,
Aug. 2007.

[9] R. K. Bawa and G. Sharma, ‘‘Modified min-min heuristic for job schedul-
ing based onQoS in grid environment,’’ inProc. 2nd Int. Conf. Inf.Manage.
Knowl. Economy (IMKE), Dec. 2013, pp. 166–171.

[10] J. Napper and P. Bientinesi, ‘‘Can cloud computing reach the top500?’’
in Proc. Combined Workshops Unconventional High Perform. Com-
put. Workshop Plus Memory Access Workshop, Ischia, Italy, May 2009,
pp. 17–20.

[11] W. E. Dong,W. Nan, and L. Xu, ‘‘QoS-oriented monitoring model of cloud
computing resources availability,’’ in Proc. Int. Conf. Comput. Inf. Sci.,
Jun. 2013, pp. 1537–1540.

[12] C. Zhang, R. Huang, and J. Zhang, ‘‘Distributed adaptive consen-
sus tracking of unknown heterogenous linear systems via output feed-
back,’’ in Proc. 35th Chin. Control Conf., Chengdu, China, Jul. 2016,
pp. 8008–8013.

[13] Z. Beheshti and S. M. Shamsuddin, ‘‘A review of population-based meta-
heuristic algorithms,’’ Int. J. Adv. Soft Comput. Appl., vol. 5, no. 5, pp. 1–5,
2013.

[14] C. Feng, H. Xu, and B. Li, ‘‘An alternating direction method approach to
cloud traffic management,’’ Jul. 2014, arXiv:1407.8309. [Online]. Avail-
able: https://arxiv.org/abs/1407.8309

[15] S. Begum and P. C S R, ‘‘Stochastic based load balancing mecha-
nism for non-iterative optimization of traffic in cloud,’’ in Proc. Int.
Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Mar. 2016,
pp. 1249–1254.

[16] A. V. Smirnov, K. A. Borisenko, A. V. Shorov, and E. S. Novikova,
‘‘Network traffic processing module for infrastructure attacks detection in
cloud computing platforms,’’ in Proc. 16th IEEE Int. Conf. Soft Comput.
Meas. (SCM), May 2016, pp. 199–202.

[17] L. Kang and X. Ting, ‘‘Application of adaptive load balancing algorithm
based on minimum traffic in cloud computing architecture,’’ in Proc. Int.
Conf. Logistics, Inform. Service Sci. (LISS), Jul. 2015, pp. 1–5.

[18] R. Sahu and A. K. Chaturvedi, ‘‘Many-objective comparison of twelve
grid scheduling heuristics,’’ Int. J. Comput. Appl., vol. 13, no. 6, pp. 9–
17, Jan. 2011.

[19] T. Amudha and T. T. Dhivyaprabha, ‘‘QoS priority based scheduling algo-
rithm and proposed framework for task scheduling in a grid environment,’’
inProc. Int. Conf. Recent Trends Inf. Technol. (ICRTIT), Tamil Nadu, India,
Jun. 2011, pp. 650–655.

[20] G. Patel, R. Mehta, and U. Bhoi, ‘‘Enhanced load balanced min-min
algorithm for static meta task scheduling in cloud computing,’’ Procedia
Comput. Sci., vol. 57, pp. 545–553, Jan. 2015.

[21] J. K. Konjaang, J. Y. Maipan-uku, and K. K. Kubuga, ‘‘An efficient
max-min resource allocator and task scheduling algorithm in cloud com-
puting environment,’’ Nov. 2016, arXiv:1611.08864. [Online]. Available:
https://arxiv.org/abs/1611.08864

[22] X. He, X. Sun, and G. Von Laszewski, ‘‘QoS guided min-min heuristic for
grid task scheduling,’’ J. Comput. Sci. Technol., vol. 18, no. 4, pp. 442–451,
Jul. 2003.

[23] S. V. Kfatheen and M. N. Banu, ‘‘MiM-MaM: A new task scheduling
algorithm for grid environment,’’ in Proc. Int. Conf. Adv. Comput. Eng.
Appl., Mar. 2015, pp. 695–699.

[24] S. V. Kfatheen and A. Marimuthu, ‘‘ETS: An efficient task scheduling
algorithm for grid computing,’’ Adv. Comput. Sci. Technol. vol. 10, no. 10,
pp. 2911–2925, 2017.

[25] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid,
‘‘Resource scheduling for infrastructure as a service (IaaS) in cloud com-
puting: Challenges and opportunities,’’ J. Netw. Comput. Appl., vol. 68,
pp. 173–200, Jun. 2016.

[26] S. M. Abdulhamid, M. S. A. Latiff, G. Abdul-Salaam, and S. H. H. Madni,
‘‘Secure scientific applications scheduling technique for cloud computing
environment using global league championship algorithm,’’ PLoS ONE,
vol. 7, Jul. 2016, Art. no. e0158102.

[27] S. H. H. Madni, M. S. A. Latiff, M. Abdullahi, S. M. Abdulhamid, and
M. J. Usman, ‘‘Performance comparison of heuristic algorithms for task
scheduling in IaaS cloud computing environment,’’ PLoS ONE, vol. 12,
no. 5, May 2017.

[28] B. A. Al-Maytami, P. Fan, and A. Hussain, ‘‘I-MMST: A new task schedul-
ing algorithm in cloud computing,’’ in Proc. Int. Conf. Intell. Comput.
Cham, Switzerland: Springer, 2018.

[29] G. Wang and H. C. Yu, ‘‘Task scheduling algorithm based on improved
min-min algorithm in cloud computing environment,’’ Appl. Mech. Mater.,
vol. 303, pp. 2429–2432, Feb. 2013.

[30] Y. Zhang and B. Xu, ‘‘Task scheduling algorithm based-on QoS con-
strains in cloud computing,’’ Int. J. Grid Distrib. Comput., vol. 8, no. 6,
pp. 269–280, 2015.

[31] Y. Mao, X. Chen, and X. Li, ‘‘Max–min task scheduling algorithm for load
balance in cloud computing,’’ in Proc. Int. Conf. Comput. Sci. Inf. Technol.
New Delhi, India: Springer, 2014, pp. 457–465.

[32] X. Li, Y. Mao, X. Xiao, and Y. Zhuang, ‘‘An improved max-min task-
scheduling algorithm for elastic cloud,’’ in Proc. Int. Symp. Comput.,
Consum. Control, Jun. 2014, pp. 340–343.

[33] H. Han, Q. Deyui, W. Zheng, and F. Bin, ‘‘A Qos guided task
scheduling model in cloud computing environment,’’ in Proc.
4th Int. Conf. Emerg. Intell. Data Web Technol., Sep. 2013,
pp. 72–76.

[34] S. Henning, K. Jansen, M. Rau, and L. Schmarje, ‘‘Complexity and inap-
proximability results for parallel task scheduling and strip packing,’’ in
Proc. Int. Comput. Sci. Symp. Russia. Cham, Switzerland: Springer, 2018,
pp. 169–180

[35] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle,
K.-L. Wu, and L. Fleischer, ‘‘SODA: An optimizing scheduler for
large-scale stream-based distributed computer systems,’’ in Proc. 9th
ACM/IFIP/USENIX Int. Conf. Middleware, Leuven, Belgium, Dec. 2008,
pp. 306–325.

[36] O. Sinnen and L. A. Sousa, ‘‘Communication contention in task schedul-
ing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 6, pp. 503–515,
Jun. 2005.

[37] V. Ruben den Bossche, K. Vanmechelen, and J. Broeckhove, ‘‘Cost-
optimal scheduling in hybrid IaaS clouds for deadline constrained work-
loads,’’ in Proc. IEEE 3rd Int. Conf. Cloud Comput., Miami, FL, USA,
Jul. 2010, pp. 228–235.

[38] V. Ruben den Bossche, K. Vanmechelen, and J. Broeckhove, ‘‘Cost-
efficient scheduling heuristics for deadline constrained workloads on
hybrid clouds,’’ in Proc. 3rd IEEE Int. Conf. Cloud Computing Technol.
Sci., Athens, Greece, Nov./Dec. 2011, pp. 320–327.

[39] J. Li, S. Su, X. Cheng, Q. Huang, and Z. Zhang, ‘‘Cost-conscious
scheduling for large graph processing in the cloud,’’ in Proc. IEEE Int.
Conf. High Perform. Comput. Commun., Banff, AB, Canada, Sep. 2011,
pp. 808–813.

[40] S. Anousha, S. Anousha, and M. Ahmadi, ‘‘A new heuristic algorithm for
improving total completion time in grid computing,’’ in Multimedia and
Ubiquitous Engineering. Berlin, Germany: Springer, 2014, pp. 17–26.

[41] J. Y. Maipan-uku, A. Muhammed, A. Abdullah, and M. Hussin, ‘‘Max-
average: An extended max-min scheduling algorithm for grid computing
environtment,’’ J. Telecommun., Electron. Comput. Eng., vol. 8, no. 6,
pp. 43–47, Sep. 2016.

[42] R. Pratap and T. Zaidi, ‘‘Comparative study of task scheduling algorithms
through Cloudsim,’’ in Proc. 7th Int. Conf. Rel., Infocom Technol. Optim.
(ICRITO), Aug. 2018, pp. 397–400

VOLUME 7, 2019 160925

B. A. Al-Maytami et al.: Task Scheduling Algorithm With Improved Makespan

[43] D. Wu, ‘‘Cloud computing task scheduling policy based on improved
particle swarm optimization,’’ inProc. Int. Conf. Virtual Reality Intell. Syst.
(ICVRIS), Aug. 2018, pp. 99–101.

[44] K. Shimada, I. Taniguchi, and H. Tomiyama, ‘‘Work-in-progress:
Communication-aware scheduling of data-parallel tasks,’’ in Proc. Int.
Conf. Compil., Archit. Synth. Embedded Syst. (CASES), Sep./Oct. 2018,
pp. 1–2.

[45] S. Yang and Q. Deyu, ‘‘Study on static task scheduling based on heteroge-
neous multi-core processor,’’ in Proc. Int. Conf. Comput. Netw., Electron.
Automat. (ICCNEA), Sep. 2017, pp. 180–182.

[46] K. Baital and A. Chakrabarti, ‘‘Dynamic scheduling of real-time tasks in
heterogeneous multicore systems,’’ IEEE Embedded Syst. Lett., vol. 11.1,
pp. 29–32, Mar. 2018.

[47] T. Baker, B. Al-Dawsari, H. Tawfik, D. Reid, and Y. Ngoko, ‘‘GreeDi: An
energy efficient routing algorithm for big data on cloud,’’ Ad Hoc Netw.,
vol. 35, pp. 83–96, Dec. 2015.

[48] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, and R. Buyya, ‘‘An energy-
aware service composition algorithm for multiple cloud-based IoT appli-
cations,’’ J. Netw. Comput. Appl., vol. 89, pp. 96–108, Jul. 2017.

[49] T. Baker, J. M. García-Campos, D. G. Reina, S. Toral, H. Tawfik,
D. Al-Jumeily, and A. Hussain, ‘‘GreeAODV: An energy efficient
routing protocol for vehicular ad hoc networks,’’ in Proc. Int.
Conf. Intell. Comput. Cham, Switzerland: Springer, Aug. 2018,
pp. 670–681.

[50] I. A. Ridhawi, M. Aloqaily, Y. Kotb, Y. Jararweh, and T. Baker,
‘‘A profitable and energy- efficient cooperative fog solution for IoT ser-
vices,’’ IEEE Trans. Ind. Informat., to be published.

[51] S. Oueida, Y. Kotb, M. Aloqaily, Y. Jararweh, and T. Baker, ‘‘An edge
computing based smart healthcare framework for resource management,’’
Sensors, vol. 18, no. 12, p. 4307, Dec. 2018.

[52] M. Al-Khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and
Y. Jararweh, ‘‘Improving fog computing performance via fog-2-fog
collaboration,’’ Future Gener. Comput. Syst., vol. 100, pp. 266–280,
Nov. 2019.

[53] Y. Kotb, I. Al Ridhawi, M. Aloqaily, T. Baker, Y. Jararweh, and H. Tawfik,
‘‘Cloud-based multi-agent cooperation for IoT devices using workflow-
nets,’’ J. Grid Comput., pp. 1–26, 2019.

160926 VOLUME 7, 2019

	INTRODUCTION
	MOTIVATION AND AIM
	CONTRIBUTIONS
	STRUCTURE

	HEURISTIC SCHEDULING ALGORITHMS
	MIN-MIN HEURISTIC ALGORITHM
	MAX-MIN HEURISTIC ALGORITHM
	QUALITY OF SERVICE (QoS) GUIDED MIN-MIN TASK SCHEDULING HEURISTIC ALGORITHM
	MIM-MAM ALGORITHM
	RELATED WORK

	PROBLEM FORMULATION
	TASK GRAPH MODE

	PROPOSED METHOD
	OVERVIEW
	SYSTEM MODEL OF THE PROPOSED PTCT

	SIMULATION RESULTS
	PERFORMANCE ANALYSIS
	DISCUSSION

	CONCLUSION
	REFERENCES

