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ABSTRACT Fuzzy multi-state systems (FMSSs) exist widely in practical engineering. It is usually
difficult to evaluate the reliability of FMSSs because the reliability data is usually fuzzy due to the
inaccuracy or imperfection of information, and there is often correlation between the main components
and others which constitute the FMSSs. Although many research works with respect to the independent
failure of components have been carried out, the master-slave relationship between the main components
and others of the FMSSs is often ignored, thus unrealistic results are often obtained with this treatment.
Based on fuzzy universal generating function (FUGF), an effective reliability analysis method of FMSSs
considering the correlation and fuzziness is proposed in this paper. In the novel method, the fuzziness of
reliability data and the master-slave relationship between the main and other components are taken into
consideration, and the performance levels and corresponding probabilities of the non-main components are
considered as conditional probability distributions. A case study with respect to the reliability analysis of
hydraulic system is presented to illustrate the application of the proposed method.

INDEX TERMS Multi-state system (MSS), fuzzy universal generating function (FUGF), composition
operator, three-leg robot.

I. INTRODUCTION
Due to abrasion, fatigue, deformation and so on, the degra-
dation of the performance level is inevitable in a mechanical
system. As systems are getting more and more complex, the
simplest binary-state systems turn into multi-state systems
(MSSs) associated with the performance degradation. The
conventionalMSSmodels regard the observed reliability data
of all components as crisp values, but some unrealistic results
are often obtained with this treatment because of the inac-
curacy or fluctuation of information, thus fuzzy multi-state
systems (FMSSs) are proposed to overcome the deficiencies
of conventional MSS models [1], [2].

The idea of MSS which reflects the polymorphism of
systems or components was first touched in Hirsch et al. [3].
Subsequently, the MSS theory is applied in coherent sys-
tems [4], [5]. In the past few decades, many techniques
and methods are introduced and extended, which have made
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significant progress on the theoretical side. However, it is
usually assumed that the observed reliability data of all
components in MSS are precise real numbers for reliability
evaluation, risk assessment, and maintenance policy making
[6]–[12]. For better capture the actual components or system
behaviors, FMSS models which take the performance level
and the corresponding probabilities as fuzzy values are devel-
oped. The reliability analysis for FMSS is usually difficult
and how to accurately evaluate the reliability of a FMSS under
uncertainties is an issue needs to be solved and has drawn a lot
of attention. Huang et al. [13] proposed a Bayesian reliability
analysis method to determine the membership function of
parameter estimation and reliability function for fuzzy life-
time data. Ding and Lisnianski [1] and Ding et al. [2] pro-
posed fuzzy universal generating function (FUGF) to analyze
and evaluate the reliability of FMSS, with the consideration
of incomplete and imprecise data and reducing computa-
tional complexity. The definition and concepts of FMSS and
reliability of series-parallel systems were further elaborated
by Lisnianski et al. [9]. Liu and Huang [14] proposed a
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modified reliability evaluation method for the uncertainty
in state transition probability. Liu et al. [15] discussed the
reliability evaluation by fuzzy Bayesian method and preven-
tive maintenance policy making under fuzzy environments.
Ren and Kong [16] designed a fuzzy expert system and
applied it to fault tree model for reliability analysis of
MSS. Based on qualitative data processing, Purba [17] and
Purba et al. [18] developed a fuzzy reliability algorithm to
obtain the failure probabilities of basic event of fault trees.
Li et al. [19] investigated a random fuzzy extension based on
the UGF method to consider aleatory and epistemic uncer-
tainties, and applied the fuzzy extension to assess the reliabil-
ity ofMSS.Mousavi et al. [20] evaluated theMSS availability
by FUGF to find the optimal redundancy.

According to our literature review, although a lot of
research works with respect to the independent failure of
multiple components are carried out, the master-slave rela-
tionship between the main components and others are often
ignored in reliability analysis. Therefore, a novel reliability
assessment method for FMSSs which can take the fuzziness
of reliability data caused by the inaccuracy and insufficiency
of information, and the master-slave relationship between the
main and other components into account is proposed in this
paper.

The rest of this paper is organized as follows. In Section II
and Section III the preliminaries of multi-state system
and universal generating function are reviewed. A novel
fuzzy reliability analysis method is proposed in Section IV.
Section V uses a case study with respect to the reliability
analysis of hydraulic system to demonstrate all developments.
Finally, Section VI summarizes and concludes.

II. MULTI-STATE SYSTEM
In aerospace, communications, power, nuclear industry, and
many other fields, a system and its components can show
multiple performance levels (states), which is called multi-
state system (MSS). MSS is usually used to set up models
for complex behaviors, such as performance degradation,
imperfect coverage (IPC), and maintenance activities. The
traditional binary system comprises of two distinct states: a
perfect functioning state and a complete failure state, which
can be regarded as the simplest case of a multi-state system.
In practice, there are many different situations in which a
system should be considered a MSS: [9]

1) A system consisting of different binary-state units that
have a cumulative effect on the entire system performance,
and the most typical example of such a situation is k-out-of-n
systems.

2) Due to component performance degradation (fatigue,
partial failure) or external environment change, which leads
to the lead to the degradation of the entire MSS performance
(or state).

Suppose a multi-state system consists of n components
and component j, 1 ≤ j ≤ n has kj different states with
corresponding performance levels which can be represented

by a set

gj =
{
gj1, gj2, · · · , gjkj

}
(1)

where gji is the performance level of component j in the state
i, i ∈

{
1, 2, · · · , kj

}
.

For any time instant t ≥ 0, the performance level Gj (t) of
component j is a random variable and takes its value from gj :
Gj (t) ∈ gj. Suppose the MSS operation duration is T , and
for the time interval [0,T ], the performance level Gj (t) is a
stochastic process. The probability of component j associated
with different states at any time instant t can be expressed as

pj (t) =
{
pj1 (t) , pj2 (t) , · · · , pjkj (t)

}
(2)

where pji (t) = Pr
{
Gj (t) = gji

}
, i ∈

{
1, 2, · · · , kj

}
and the

mapping gji → pji is usually called the probability mass
function (p.m.f.).

The component states compose the complete group of
mutually exclusive events and yields

kj∑
i=1

pji (t) = 1, 0 ≤ t ≤ T (3)

Suppose a multi-state system, composed of n independent
components, and the performance levels of the system are
completely determined by the performance levels of its com-
ponents. Given a certain time instant, the state of the system
component determines the state of the system. Suppose that
the whole system has K different states and gi is the perfor-
mance level of the whole system at state i, i ∈ {1, 2, · · · ,K }.
The maximum of the possible states for the MSS is

K =
n∏
j=1

kj (4)

The performance level of the multi-state system can be
expressed as a random variable and takes values from the
set V = {g1, g2, · · · , gK }. Let Rn

=
{
g11, g12, · · · , g1k1

}
×{

g21, g22, · · · , g2k2
}
×· · ·×

{
gn1, gn2, · · · , gnkn

}
be the space

of all possible combinations of performance levels for all
n components. The function f (G1 (t) ,G2 (t) , · · · ,Gn (t)) :
Rn
→ V, which maps the space of performance levels of

components into the space of system’s performance levels,
is defined as the system structure function. The probability
distribution (PD) of performance levels for each component
at any time instant t ≥ 0 can be expressed as

gj =
{
gj1, gj2, · · · , gjkj

}
,

pj (t) =
{
pj1 (t) , pj2 (t) , · · · , pjkj (t)

}
,

(j = 1, 2, · · · , n)

and the system structure function

Gs (t) = f (G1 (t) ,G2 (t) , · · · ,Gn (t))

Without regard to different combinations corresponding to
the same performance levels, the probability of the system
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performance staying in state i at time instant t yields

pi (t) =
n∏
j=1

pjij (t), i = 1, 2, · · · ,K ; 1 ≤ ij ≤ kj (5)

where pi (t) represents the probability of the whole system
performance staying in state i at time instant t , pjij (t) is the
corresponding probability of component j.

III. FUZZY UNIVERSAL GENERATING FUNCTION
Considering independent random variables X1,X2, · · · ,Xn
and an arbitrary function f (X1,X2, · · · ,Xn) with respect to
X1,X2, · · · ,Xn. Suppose that the PD of each variable Xi can
be expressed as

xi =
{
xi1, xi2, · · · , xiki

}
,

pi =
{
pi1, pi2, · · · , piki

}
, i = 1, 2, · · · , n (6)

where ki is the number of possible values for variable Xi.
The z-transformation of Xi can be defined as

ui (z) =
ki∑
ji=1

pijiz
xiji , i = 1, 2, · · · , n (7)

To obtain the z-transformation of function f (X1,X2,
· · · ,Xn), a composition operator ⊗f is defined as

Us (z) = ⊗f (u1 (z) , u2 (z) , · · · , un (z))

= ⊗f

 k1∑
j1=1

p1j1z
x1j1 ,

k2∑
j2=1

p2j2z
x2j2 , · · · ,

kn∑
jn=1

pnjnz
xnjn


=

k1∑
j1=1

k2∑
j2=1

· · ·

kn∑
jn=1

[
n∏
i=1

pijiz
f
(
x1j1 ,x2j2 ,··· ,xnjn

)]
(8)

where Us (z) represents the z-transformation of function
f (X1,X2, · · · ,Xn).
The algorithm based on z-transformation and composition

operator is called the universal generating function (UGF)
method. In the UGF method, the z-transformation is also
known as u-function. It should be noted that the u-function
has the form of ordinary polynomials, but the operational
rule defined by the composition operator is different from
multiplication rule of polynomials.

For convenience, we take a system whose performance
level G = f (X1,X2) = X1X2 is determined by two ran-
dom variables X1,X2 for an example. Suppose the PDs of
X1 and X2 are

x1 = {x11, x12} = {4, 9} ,

p1 = {p11, p12} = {0.2, 0.8} (9)

and

x2 = {x21, x22, x23} = {0, 1, 2} ;

p2 = {p21, p22, p23} = {0.2, 0.2, 0.6} (10)

According to Eq. (7), the z-transformation of X1 and X2 can
be gained

u1 (z) = p11zx11 + p12zx12 = 0.2z4 + 0.8z9 (11)

u2 (z) = p21zx21 + p22zx22 + p23zx23

= 0.2z0 + 0.2z1 + 0.6z2 (12)

Applying the composition operator to Eqs. (11)-(12), the
z-transformation of the system yields

Us (z) = ⊗f (u1 (z) , u2 (z))

= ⊗f

(
0.2z4 + 0.8z9, 0.2z0 + 0.2z1 + 0.6z2

)
= 0.04z0+0.04z4+0.12z8+0.16z0+0.16z9+0.48z18

= 0.2z0 + 0.04z4 + 0.12z8 + 0.16z9 + 0.48z18 (13)

According to Eq. (4), the maximum of the possible states
is K = 2×3 = 6. In Eq. (13), the number of states is reduced
from 6 to 5 because there exists different combinations cor-
responding to the same state.

Through expanding the method of UGF, FUGF method is
proposed to consider the fuzziness of data. The difference
is that FUGF considers the performance levels and/or the
corresponding probabilities as fuzzy values, but both of them
are deemed to crisp values in UGF.

The z-transformation of a system in FUGF can be
expressed as

Ũs (z)=�̃2 (ũ1 (z) , ũ2 (z) , · · · , ũn (z)) =
M∑
i=1

p̃izg̃i (14)

where Ũs (z) is the z-transformation of the performance
level for MSS, �̃2 is the fuzzy composition operator, M
is the number of system states, and g̃i and p̃i denote the
fuzzy performance levels and the corresponding probabilities,
respectively.

IV. THE PROPOSED FUZZY RELIABILITY ANALYSIS
METHOD FOR FMSS
A. RELIABILITY MODELING AND ANALYSIS OF FMSS
CONSIDERING CORRELATION
The conventional MSS models regard the PDs of all compo-
nents as crisp values and the components which constitute
the system are independent from each other, and this cannot
always be satisfied. In order to bemore reasonable, the perfor-
mance levels and the corresponding probabilities of a compo-
nent can be measured as fuzzy values in practical engineering
such as the stress is about 500MPa or the probability that
the mean stress equals to 500MPa is about 0.8. That is, this
kind of MSS should be regard as a FMSS. In addition to this,
the components may be correlated, and for FMSS, there is
often an component whose performance level can affect the
performance levels of the others, that is, the performance level
of any other components in FMSS is affected by the main
component, such as the electric current of trunk current has
impact on that of branch current in electrical system. Due to
the master-slave relationship between the main components
and others are often ignored in reliability analysis method for
FMSSs, a novel fuzzy reliability analysis method consider the
correlation is proposed in this paper.
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TABLE 1. The relationship between component 1 and the others.

Suppose a FMSS consists of n components, the compo-
nent 1 has effect on the performance levels of the other
n − 1 independent components. In this case, we define the
component numbered 1 as the main component. The PD
of the main component is represented by fuzzy sets g̃1 ={
g̃11, g̃

2
1, · · · , g̃

k1
1

}
and p̃1 =

{
p̃11, p̃

2
1, · · · , p̃

k1
1

}
. The condi-

tional probability distributions (CPDs) of the other n − 1
components are represented by g̃j|i =

{
g̃1j|i , g̃

2
j|i , · · · , g̃

mji
j|i

}
and p̃j|i =

{
p̃1j|i , p̃

2
j|i , · · · , p̃

mji
j|i

}
, where i = 1, 2, · · · , k1,

j = 2, 3, · · · , n, and mji is the number of possible fuzzy
states for component j at conditional state i. The relationship
between the main component and the others can be listed as
Table 1. According to Table 1, the possible fuzzy performance
levels of component j can be redefined as

g̃j =
k1⋃
i=1

g̃j|i =
{
g̃1j , g̃

2
j , · · · , g̃

nj
j

}
, j = 2, 3, · · · , n (15)

where nj is the number of all the possible fuzzy values for

component j, and nj ≤
k1∑
h=1

mjh. Meanwhile, the correspond-

ing conditional probability can be redefined as follows.

p̃j|i =
{
p̃1j|i , p̃

2
j|i , · · · , p̃

nj
j|i

}
,

i = 1, 2, · · · , k1 j = 2, 3, · · · , n (16)

where

p̃hj|i =

{
0, g̃hj /∈ g̃j|i
p̃hj|i , g̃

h
j ∈ g̃j|i ,(

i = 1, 2, · · · , k1; j = 2, 3, · · · , n; h = 1, 2, · · · , nj
)

(17)

The CPD of component j can be listed as

g̃j =
{
g̃1j , g̃

2
j , · · · , g̃

nj
j

}
p̃hj|1 =

{
p̃1j|1 , p̃

2
j|1 , · · · , p̃

nj
j|1

}
p̃hj|2 =

{
p̃1j|2 , p̃

2
j|2 , · · · , p̃

nj
j|2

}
· · ·

p̃hj|k1 =
{
p̃1j|k1 , p̃

2
j|k1 , · · · , p̃

nj
j|k1

}
(18)

The states of component j are ordered by the following
way:

h < k ⇔ gh,max
j > gk,max

j

where gh,max
j = max

{
ghj

∣∣∣ghj ∈ Ghj } and gk,max
j =

max
{
gkj

∣∣∣gkj ∈ Gkj }, Ghj and Gkj are collections of objects

denoted generically by ghj and g
k
j .

According to Eq. (14), the z-transformation of the perfor-
mance levels for component j yields

ũj (z) =
nj∑
h=1

p̃hj z
g̃hj , j = 2, 3, · · · , n (19)

where p̃hj is a vector and satisfies

p̃hj =
(
p̃hj|1 , p̃

h
j|2 , · · · , p̃

h
j|k1

)
, h = 1, 2, · · · , nj (20)

The PD of performance levels for the entire FMSS can be
calculated as

Ũs (z) = �̃2 (ũ1 (z) , ũ2 (z) , · · · , ũn (z))

= �̃2

( k1∑
h=1

p̃h1z
g̃h1 ,

n2∑
h=1

p̃h2z
g̃h2 , · · · ,

nn∑
h=1

p̃hnz
g̃hn

)

=

M∑
i=1

p̃izg̃i (21)

where 2 represents the structure function of the FMSS,
�̃2 is the composition operator, Ũs (z) is the z-transformation
of performance level for the entire FMSS,M is the number of
the possible fuzzy performance levels, g̃i and p̃i are the per-
formance level and corresponding probability, respectively.

In the conventional MSS model, if the system perfor-
mance level gi is no less than the demand d , it is con-
sidered performance adequacy for the state i definitely;
whereas, performance deficiency if the system performance
level gi is smaller than the system demand d . In these situ-
ations, the boundary between success and failure is distinct.
However, in FMSS model, the boundary is ambiguous. For
example, it is assumed that the performance level g̃i for state i
can be denoted as triangular fuzzy number

(
aL , aM , aU

)
and

the system demand is a constant d . From Figure 1, the system
is in a definitely successful state if aL ≥ d and a definitely
failure state if aU < d . However, for aL < d ≤ aU , the state i
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FIGURE 1. The relationship between the fuzzy performance level and the
crisp demand.

can be seen as a fuzzy state, and the system may function
normally or abnormally.

Sometimes, it is more reasonable to treat the system
demand as a fuzzy value d̃ . Then, the difference between
the system performance and demand is defined as the system
state adequacy index, which can be represented by a fuzzy
set.

φ̃i =
{
φi, µφ̃i (

φi) |φi = gi − d, gi ∈ Gi, d ∈ D
}

(22)

where µφ̃i (φi) = supφi=gi−d min
{
µg̃i , µd̃

}
, Gi and D are

collections of objects denoted generically by gi and d , respec-
tively. The system performance level is adequate if φi ≥ 0 and
deficient if φi < 0 for the state i.

Szmidt and Kacprzyk [21] defined the scalar cardinality of
a fuzzy set φ̃i : 8i→ [0, 1] as the sum of the membership of
the fuzzy set. ∣∣∣φ̃i∣∣∣ = ∑

φi∈8i

µφ̃i (
φi) (23)

where
∣∣∣φ̃i∣∣∣ is the cardinality or so-called the sigma-count of

φ̃i, 8i is the collection of objects denoted generically by φi.
Denoting 8+i as a subset of 8i, which satisfies

8+i = {φi ≥ 0 |φi ∈ 8i } (24)

and

φ̃+i =
{
φ+i , µφ̃+i

(
φ+i

) ∣∣∣µφ̃+i (φ+i ) = µφ̃i (φ+i ) , φ+i ∈ 8+i }
(25)

According to Eq. (23), the cardinality of the fuzzy set φ̃+i can
be calculated as ∣∣∣φ̃+i ∣∣∣ = ∑

φ+i ∈8
+

i

µφ̃+i

(
φ+i

)
(26)

The relative cardinality of the fuzzy set φ̃+i is defined as

∣∣∣φ̃+i ∣∣∣r =
∣∣∣φ̃+i ∣∣∣∣∣∣φ̃i∣∣∣ (27)

where
∣∣∣φ̃+i ∣∣∣r is the relative cardinality and it satisfies: a)∣∣∣φ̃+i ∣∣∣r = 0, if the performance level is deficient for the state i

definitely; b)
∣∣∣φ̃+i ∣∣∣r = 1, if the performance level is adequate

for the state i definitely.
Define a composition operator �̃sys, then the fuzzy relia-

bility of FMSS under state i can be evaluated as

R̃ = �̃sys

(
Ũs (z) , d̃

)
= �̃sys

(
M∑
i=1

p̃izg̃i , d̃

)
= �̃sys

{
· · · ,

{
pi ·

∣∣∣φ̃+i ∣∣∣r , µp̃i (pi) |pi ∈ Pi } , · · ·}
=

{
R, µR̃ (R)

∣∣∣∣∣R =
M∑
i=1

pi ·
∣∣∣φ̃+i ∣∣∣r , pi ∈ Pi

}
(28)

where µR̃ (R) = sup
R=

M∑
i=1

pi·
∣∣∣φ̃+i ∣∣∣r min

{
µp̃1 , µp̃2 , · · · , µp̃M

}
,

and R̃ is the fuzzy reliability of the FMSS.
From the above, the performance level and the correspond-

ing probability are regarded as fuzzy value to consider the
fuzziness of reliability data in the proposed method. Mean-
while, the main component can be recognized by combining
theoretical analysis with pragmatic verification, and based on
the relationship between the main and other components in
MSSs, the CPDs of the latter can be obtained and the corre-
lation is introduced into reliability analysis. Then, the prob-
ability distribution of performance level of the whole FMSS
can be obtained based on FUGF, and with the consideration
of fuzzy performance demand under state i, the cardinality
of fuzzy set fuzzy sets φ̃i and φ̃

+

i and the relative cardinality,

that is,
∣∣∣φ̃i∣∣∣, ∣∣∣φ̃+i ∣∣∣ and ∣∣∣φ̃+i ∣∣∣r can be calculated by adopting

Eqs. (23), (26) and (27). Finally, all of the states can be
considered by defining fuzzy composition operator and the
reliability of FMSS can be obtained through Eq. (28). This is
the novel reliability analysis method which can consider the
master-slave relationship between the main component and
others. The generalized flowchart of the proposedmethod can
be drawn as Figure 2.

FIGURE 2. The flowchart of the proposed method.
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According to the flowchart shown in Figure 2, the relia-
bility analysis considering the correlation between the main
and the other components in FMSSs can be implemented by
defining fuzzy composition operator. And then, the key point
is turned into the definition and calculation of fuzzy com-
position operators. Currently, a lot of complex mechanical
systems with different structures are developed to meet the
requirement of engineering practice. Different types of sys-
tems corresponding to different fuzzy composition operators.
The definition and calculation under different situations will
be illustrated hereinafter.

B. FUZZY COMPOSITION OPERATOR FOR DIFFERENT
SUBSYSTEMS.
1) FUZZY COMPOSITION OPERATOR FOR SERIES
SUBSYSTEMS
For a series subsystem, the performance level of the entire
system is the minimum of the subsystems performances.
According to the resolution theorem of the fuzzy mathemat-
ics, the system performance g̃i can be evaluated with α-cut as

g̃i = �̃s
(
g̃1i1 , g̃2i2 , · · · , g̃jij , · · · , g̃nin

)
=

⋃
α

α·g̃αi

=

⋃
α

α·
[
aαi , c

α
i
]

(29)

where �̃s is the series composition operator, g̃αi is the α-cut
of the fuzzy set g̃i and g̃αi =

{
gi
∣∣µg̃i (gi) ≥ α }.

Suppose a system consists of two components and the
performance levels can be represented by

(
a1i1 , b1i1 , c1i1

)
and(

a2i2 , b2i2 , c2i2
)
, respectively. The α-cut of the fuzzy set g̃i is

expressed as an interval
(
aαi , c

α
i

)
and g̃i can be represented by

solid lines as shown in Figure 3.

FIGURE 3. α-cut of the fuzzy set g̃i .

Eq. (29) is rewritten as

g̃i = �̃s
(
g̃1i1 , g̃2i2

)
=

⋃
α

α·
[
aαi , c

α
i
]

=

⋃
α

α·
[
min

(
aα1i1 , a

α
2i2

)
,min

(
cα1i1 , c

α
2i2

)]
(30)

There are eight possible results for Eq. (30) corresponding
to different numerical value relationships.

FIGURE 4. The membership function of �̃s
(

g̃1i1
, g̃2i2

)
in Case 2.

Case 1: a1i1 ≤ a2i2 , b1i1 ≤ b2i2 and c1i1 ≤ c2i2 . In this case,
g̃1i1 is less than or equal to g̃2i2 definitely, �̃s

(
g̃1i1 , g̃2i2

)
can

be represented by a triplet
(
a1i1 , b1i1 , c1i1

)
.

Case 2: a1i1 ≤ a2i2 , b1i1 ≤ b2i2 and c1i1 ≥ c2i2 . As is shown
in Figure 4, the membership function of �̃s

(
g̃1i1 , g̃2i2

)
is

µ�̃s
(
g̃1i1 ,g̃2i2

) (g)

=



0, g < a1i1g− a1i1
b1i1 − a1i1

, a1i1 ≤ g ≤ b1i1
c1i1 − g
c1i1 − b1i1

, b1i1≤g≤
c2i2b1i1 − c1i1b2i2

b1i1 − c1i1 − b2i2+c2i2
c2i2 − g
c2i2 − b2i2

,
c2i2b1i1 − c1i1b2i2

b1i1 − c1i1 − b2i2 + c2i2
≤g≤c2i2

0, g > c2i2
(31)

Case 3: a1i1 ≤ a2i2 , b1i1 ≥ b2i2 and c1i1 ≤ c2i2 . As is shown
in Figure 3, the membership function of �̃s

(
g̃1i1 , g̃2i2

)
is

µ�̃s
(
g̃1i1 ,g̃2i2

) (g)

=



0, g < a1i1
g− a1i1
b1i1 − a1i1

, a1i1 ≤ g ≤
a1i1b2i2 − a2i2b1i1

b2i2 − b1i1 − a2i2 + a1i1
g− a2i2
b2i2 − a2i2

,
a1i1b2i2 − a2i2b1i1

b2i2 − b1i1 − a2i2 + a1i1
≤ g ≤ b2i2

c2i2 − g
c2i2 − b2i2

, b2i2 ≤ g ≤
c2i2b1i1 − c1i1b2i2

b1i1 − c1i1 − b2i2 + c2i2
c1i1 − g
c1i1 − b1i1

,
c2i2b1i1 − c1i1b2i2

b1i1 − c1i1 − b2i2 + c2i2
≤ g ≤ c1i1

0, g > c1i1
(32)

Case 4: a1i1 ≤ a2i2 , b1i1 ≥ b2i2 and c1i1 ≥ c2i2 . As is shown
in Figure 5, the membership function of �̃s

(
g̃1i1 , g̃2i2

)
is

µ�̃s
(
g̃1i1 ,g̃2i2

) (g)

=



0, g < a1i1
g− a1i1
b1i1 − a1i1

, a1i1 ≤ g ≤
a1i1b2i2 − a2i2b1i1

b2i2 − b1i1 − a2i2 + a1i1
g− a2i2
b2i2 − a2i2

,
a1i1b2i2 − a2i2b1i1

b2i2 − b1i1 − a2i2 + a1i1
≤ g ≤ b2i2

c2i2 − g
c2i2 − b2i2

, b2i2 ≤ g ≤ c2i2

0, g > c2i2
(33)
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FIGURE 5. The membership function of �̃s
(

g̃1i1
, g̃2i2

)
in Case 4.

FIGURE 6. The membership function of �̃s
(

g̃1i1
, g̃2i2

)
in Case 6.

Case 5: a1i1 ≥ a2i2 , b1i1 ≥ b2i2 and c1i1 ≥ c2i2 . In this case,
g̃1i1 is more than or equal to g̃2i2 definitely, �̃s

(
g̃1i1 , g̃2i2

)
can

be represented by a triplet
(
a2i2 , b2i2 , c2i2

)
.

Case 6: a1i1 ≥ a2i2 , b1i1 ≥ b2i2 and c1i1 ≤ c2i2 . As is shown
in Figure 6, the membership function of �̃s

(
g̃1i1 , g̃2i2

)
is

µ�̃s
(
g̃1i1 ,g̃2i2

) (g)

=



0, g < a2i2
g− a2i2
b2i2 − a2i2

, a2i2 ≤ g ≤ b2i2
c2i2 − g
c2i2 − b2i2

, b2i2 ≤ g ≤
c1i1b2i2 − c2i2b1i1

b2i2 − c2i2 − b1i1 + c1i1
c2i2 − g
c2i2 − b2i2

,
c1i1b2i2 − c2i2b1i1

b2i2 − c2i2 − b1i1 + c1i1
≤ g ≤ c1i1

0, g > c1i1
(34)

Case 7: a1i1 ≥ a2i2 , b1i1 ≤ b2i2 and c1i1 ≥ c2i2 . As is shown
in Figure 7, the membership function of �̃s

(
g̃1i1 , g̃2i2

)
is

µ�̃s
(
g̃1i1 ,g̃2i2

) (g)

=



0, g < a2i2
g− a2i2
b2i2 − a2i2

, a2i2 ≤ g ≤
a2i2b1i1 − a1i1b2i2

b1i1 − b2i2 − a1i1 + a2i2
g− a1i1
b1i1 − a1i1

,
a2i2b1i1 − a1i1b2i2

b1i1 − b2i2 − a1i1 + a2i2
≤ g ≤ b1i1

c1i1 − g
c1i1 − b1i1

, b1i1 ≤ g ≤
c1i1b2i2 − c2i2b1i1

b2i2 − c2i2 − b1i1 + c1i1
c2i2 − g
c2i2 − b2i2

,
c1i1b2i2 − c2i2b1i1

b2i2 − c2i2 − b1i1 + c1i1
≤ g ≤ c2i2

0, g > c2i2
(35)

FIGURE 7. The membership function of �̃s
(

g̃1i1
, g̃2i2

)
in Case 7.

FIGURE 8. The membership function of �̃s
(

g̃1i1
, g̃2i2

)
in Case 8.

Case 8: a1i1 ≥ a2i2 , b1i1 ≤ b2i2 and c1i1 ≤ c2i2 . As is shown
in Figure 8, the membership function of �̃s

(
g̃1i1 , g̃2i2

)
is

µ�̃s
(
g̃1i1 ,g̃2i2

) (g)

=



0, g < a2i2
g− a2i2
b2i2 − a2i2

, a2i2 ≤ g ≤
a2i2b1i1 − a1i1b2i2

b1i1 − b2i2 − a1i1 + a2i2
g− a1i1
b1i1 − a1i1

,
a2i2b1i1 − a1i1b2i2

b1i1 − b2i2 − a1i1 + a2i2
≤ g ≤ b1i1

c1i1 − g
c1i1 − b1i1

, b1i1 ≤ g ≤ c1i1

0, g > c1i1
(36)

2) FUZZY COMPOSITION OPERATOR FOR PARALLEL
SUBSYSTEMS
For a parallel subsystem, the performance level of the system
is the sum of the performances of all the subsystems. The
fuzzy arithmetic operations of the triangular fuzzy numbers
are applied to obtain the performance level of the system.

g̃i = �̃p
(
g̃1i1 , g̃2i2 , · · · , g̃jij , · · · , g̃nin

)
=

 n∑
j=1

ajij ,
n∑
j=1

bjij ,
n∑
j=1

cjij

 (37)

where �̃p is the parallel composition operator, triplet(
ajij , bjij , cjij

)
represents the performance levels for

component j.
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The corresponding probability p̃i can be expressed as

p̃i =

 n∏
j=1

apjij ,
n∏
j=1

bpjij ,
n∏
j=1

cpjij

 (38)

where the triplet
(
apjij , b

p
jij , c

p
jij

)
represents the probability that

the performance levels equals to
(
ajij , bjij , cjij

)
for compo-

nent j.

3) FUZZY COMPOSITION OPERATOR FOR SERIES-PARALLEL
HYBRID SUBSYSTEMS
If a subsystem is a series-parallel hybrid system, the system
can usually be divided into different subsystems. When the
number of series subsystems or parallel subsystems is more
than two, a three-step procedure can be adopt.

Step 1: The FUGF of two components in the series or
parallel subsystem is calculated

Step 2: Simplifying the original two components with a
new single component through the FUGF obtained in the first
step and substituting them with the new one.

Step 3: After the replacement, if the components in the
series or parallel subsystem is more than two, go to Step 1,
repeat the procedure until there is only one component in the
series or parallel subsystem.

Through the above steps, a series-parallel hybrid subsys-
tem can be transformed to a system with a single component.
But the computational burden is costly when there are a
large number of series components in the system. To sim-
plify the calculation, an approximation can be made to series
subsystems.

g̃i = �̃s
(
g̃1i1 , g̃2i2

)
=

⋃
α

α·
[
aαi , c

α
i
]

=

⋃
α

α·
[
min

(
aα1i1 , a

α
2i2

)
,min

(
cα1i1 , c

α
2i2

)]
=
(
min

(
a1i1 , a2i2

)
,min

(
b1i1 , b2i2

)
,min

(
c1i1 , c2i2

))
(39)

Therefore, the fuzzy composition operator for series,
parallel and series-parallel hybrid subsystem can be defined
and calculated, and combining with the proposed method
aforementioned and Eqs. (23), (26)-(28), the master-slave
relationship between the main and other components of
FMSSs can be considered in reliability analysis.

V. NUMERICAL EXAMPLES
In this section, the reliability analysis for the hydraulic sys-
tem of a three-leg robot is carried out to demonstrate the
availability of the proposed method. As shown in Figure 9,
the hydraulic system of the three-leg robot contains sev-
eral hydraulic subsystems, and each subsystem is composed
of basic circuits and auxiliary circuits. In the course of
movement, the pressures of hydraulic cylinders 1 and 2 are
identified by hydraulic cylinder 3, and the hydraulic cylin-
ders 1 and 2 have three performance levels corresponding

to different states of motion. The hydraulic cylinder 3 is the
main component and has two different performance levels,
the maximal pressure (State 1), and the minimal pressure
(State 2), corresponding to different functional requirements.
The PD and CPDs of pressure levels for the three hydraulic
subsystems are listed in Table 2. The requirement is that
the total output pressure of hydraulic loop is not lower than
45MPa and the reliability is 0.9.

FIGURE 9. The hydraulic system of a three-leg robot and the hydraulic
loop.

The probability distribution for the pressures of hydraulic
cylinder 3 is given by

g̃3 =
{
g̃13, g̃

2
3

}
= {60, 0} ;

p̃3 =
{
p̃13, p̃

2
3

}
= {(0.65, 0.70, 0.90) , (0.20, 0.30, 0.55)} .

(40)

where g̃13, g̃
2
3 are the pressure levels of hydraulic cylinder 3

under two different states, and p̃13, p̃
2
3 are the corresponding

probabilities.
When the hydraulic cylinder 3 is in State 1 or State 2,

the CPDs of the pressure levels of hydraulic cylinder 1 can
be expressed by Eqs. (41)-(42).

g̃1|1 =
{
g̃11|1 , g̃

2
1|1 , g̃

3
1|1

}
= {20, (10, 15, 16) , 0} ;

p̃1|1 =
{
p̃11|1 , p̃

2
1|1 , p̃

3
1|1

}
= {(0.50, 0.60, 0.65) , (0.15, 0.20, 0.25) ,

(0.18, 0.20, 0.24)} . (41)

g̃1|2 =
{
g̃11|2 , g̃

2
1|2 , g̃

3
1|2

}
= {20, (10, 12, 13) , 0} ;

p̃1|2 =
{
p̃11|2 , p̃

2
1|2 , p̃

3
1|2

}
= {(0.60, 0.70, 0.75) , (0.15, 0.20, 0.30) ,

(0.05, 0.10, 0.25)} . (42)

where g̃11|1 ∼ g̃31|1 and g̃11|2 ∼ g̃31|2 denote the pressure levels
of hydraulic cylinder 1 under two different states, and p̃11|1 ∼
p̃31|1 and p̃11|2 ∼ p̃31|2 are the corresponding probabilities.
Accordingly, the CPDs of the pressure levels of hydraulic

cylinder 2 can be expressed by Eqs. (43)-(44).

g̃2|1 =
{
g̃12|1 , g̃

2
2|1 , g̃

3
2|1

}
= {40, (26, 30, 32) , 0} ;

p̃2|1 =
{
p̃12|1 , p̃

2
2|1 , p̃

3
2|1

}
= {(0.60, 0.70, 0.85) , (0.08, 0.10, 0.15) ,

(0.16, 0.20, 0.35)} . (43)
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TABLE 2. The PD and CPDs of the pressure levels.

g̃2|2 =
{
g̃12|2 , g̃

2
2|2 , g̃

3
2|2

}
= {40, (26, 30, 32) , 0} ;

p̃2|2 =
{
p̃12|2 , p̃

2
2|2 , p̃

3
2|2

}
= {(0.50, 0.70, 0.80) , (0.05, 0.10, 0.12) ,

(0.10, 0.20, 0.25)} . (44)

where g̃12|1 ∼ g̃32|1 and g̃12|2 ∼ g̃32|2 denote the pressure
levels of hydraulic cylinder 2 under two different states,
and p̃12|1 ∼ p̃32|1 and p̃12|2 ∼ p̃32|2 are the corresponding
probabilities.

According to Eqs. (18)-(19) and (41)-(42), the CPD of the
pressure level of hydraulic cylinder 1 is

g̃1=
{
g̃11, g̃

2
1, g̃

3
1, g̃

4
1

}
={20, (10, 15, 16) ,(10, 12, 13) , 0};

p̃′1|1 =
{
p̃11|1 , p̃

2
1|1 , p̃

3
1|1 , p̃

4
1|1

}
= {(0.50, 0.60, 0.65) , (0.15, 0.20, 0.25) , 0,

(0.18, 0.20, 0.24)} ;

p̃′1|2 =
{
p̃11|2 , p̃

2
1|2 , p̃

3
1|2 , p̃

4
1|2

}
= {(0.60, 0.70, 0.75) , 0, (0.15, 0.20, 0.30) ,

(0.05, 0.10, 0.25)} . (45)

where g̃11 ∼ g̃41 are the all possible pressure levels of hydraulic
cylinder 1, p̃11|1 ∼ p̃41|1 and p̃11|2 ∼ p̃41|2 denote the corre-
sponding probabilities under States 1 and 2.

According to Eqs. (18), (20) and (45), Eq. (46) can be
obtained.

p̃11=
{
p̃11|1 , p̃

1
1|2

}
={(0.50, 0.60, 0.65) , (0.60, 0.70, 0.75)};

p̃21 =
{
p̃21|1 , p̃

2
1|2

}
= {(0.15, 0.20, 0.25) , 0} ;

p̃31 =
{
p̃31|1 , p̃

3
1|2

}
= {0, (0.15, 0.20, 0.30)} ;

p̃41 =
{
p̃41|1 , p̃

4
1|2

}
={(0.18, 0.20, 0.24) ,(0.05, 0.10, 0.25)} .

(46)

where p̃h1|1 , p̃
h
1|2 , (h = 1, 2, 3, 4) denote the probability when

the pressure level of hydraulic cylinder 1 is equal to g̃h1 under
States 1 and 2, respectively.

Similarly, the CPD, and the probability when the pres-
sure level of hydraulic cylinder 2 is equal to g̃h2 under

States 1 and 2 can be obtained.

g̃2 =
{
g̃12, g̃

2
2, g̃

3
2

}
= {40, (26, 30, 32) , 0} ;

p̃′2|1 =
{
p̃12|1 , p̃

2
2|1 , p̃

3
2|1

}
= {(0.60, 0.70, 0.85) , (0.08, 0.10, 0.15) ,

(0.16, 0.20, 0.35)} ;

p̃′2|2 =
{
p̃12|2 , p̃

2
2|2 , p̃

3
2|2

}
= {(0.50, 0.70, 0.80) , (0.05, 0.10, 0.12) ,

(0.10, 0.20, 0.25)} . (47)

p̃12 =
{
p̃12|1 , p̃

1
2|2

}
= {(0.60, 0.70, 0.85) ,

(0.50, 0.70, 0.80)} ;

p̃22 =
{
p̃22|1 , p̃

2
2|2

}
= {(0.08, 0.10, 0.15) ,

(0.05, 0.10, 0.12)} ;

p̃32 =
{
p̃32|1 , p̃

3
2|2

}
= {(0.16, 0.20, 0.35) ,

(0.10, 0.20, 0.25)} . (48)

where g̃12 ∼ g̃32 are the all possible pressure levels of hydraulic
cylinder 2, p̃12|1 ∼ p̃32|1 and p̃12|2 ∼ p̃32|2 denote the cor-
responding probabilities, and p̃h2|1 , p̃

h
2|2 , (h = 1, 2, 3) are the

probability when the pressure level of hydraulic cylinder 2 is
equal to g̃h2 under States 1 and 2, respectively.
According to Eq. (19), the z-transformation of the fuzzy

performance levels for the three hydraulic subsystems can be
defined as

ũ3 (z) = p̃13 · z
g̃13 + p̃23 · z

g̃23

= (0.65, 0.70, 0.90) z60 + (0.20, 0.30, 0.55) z0 (49)

ũ1 (z) =
n1∑

h1=1

p̃h11 z
g̃
h1
1

= {(0.50, 0.60, 0.65) , (0.60, 0.70, 0.75)} z20

+ {(0.15, 0.20, 0.25) , 0} z(10,15,16)

+ {0, (0.15, 0.20, 0.30)} z(10,12,13)

+ {(0.18, 0.20, 0.24) , (0.05, 0.10, 0.25)} z0 (50)

ũ2 (z) =
n2∑

h2=1

p̃h22 z
g̃
h2
2

= {(0.60, 0.70, 0.85) , (0.50, 0.70, 0.80)} z40

+ {(0.08, 0.10, 0.15) , (0.05, 0.10, 0.12)} z(26,30,32)

+ {(0.16, 0.20, 0.35) , (0.10, 0.20, 0.25)} z0 (51)
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From Figure 9, the hydraulic system can be regarded
as a series-parallel hybrid system, where hydraulic
cylinders 1 and 2 connect in parallel, and then connect in
series with hydraulic cylinder 3. The z-transformation of
the pressure levels for the parallel subsystem and the entire
hydraulic system can be expressed as
Ũp (z) = �̃p (ũ1 (z) , ũ2 (z))

= {(0.30, 0.42, 0.5525) , (0.30, 0.49, 0.60)} z60

+ {(0.04, 0.06, 0.0975) ,
(0.03, 0.07, 0.09)} z(46,50,52)

+ {(0.08, 0.12, 0.2275) , (0.06, 0.14, 0.1875)} z20

+ {(0.09, 0.14, 0.2125) , 0} z(50,55,56)

+ {(0.012, 0.02, 0.0375) , 0} z(36,45,48)

+ {(0.024, 0.04, 0.0875) , 0} z(10,15,16)

+ {0, (0.075, 0.14, 0.24)} z(50,52,53)

+ {0, (0.0075, 0.02, 0.036)} z(36,42,45)

+ {0, (0.015, 0.04, 0.075)} z(10,12,13)

+ {(0.108, 0.14, 0.204) , (0.025, 0.07, 0.2)} z40

+ {(0.0144, 0.02, 0.036) ,
(0.0025, 0.01, 0.03)} z(26,30,32)

+ {(0.0288, 0.04, 0.084) ,(0.005, 0.02, 0.0625)}z0

(52)

Ũs (z) = �̃s

(
�̃p (ũ1 (z) , ũ2 (z)) , ũ3 (z)

)
= (0.195, 0.294, 0.49725) zmin{60,60}

+ (0.026, 0.042, 0.08775) zmin{60,(46,50,52)}

+ (0.052, 0.084, 0.20475) zmin{60,20}

+ (0.0585, 0.098, 0.19125) zmin{60,(50,55,56)}

+ (0.0078, 0.014, 0.03375) zmin{60,(36,45,48)}

+ (0.0156, 0.028, 0.07875) zmin{60,(10,15,16)}

+ (0.0702, 0.098, 0.1836) zmin{60,40}

+ (0.00936, 0.014, 0.0324) zmin{60,(26,30,32)}

+ (0.01872, 0.028, 0.0756) zmin{60,0}

+ (0.06, 0.147, 0.33) zmin{0,0}

+ (0.006, 0.021, 0.0495) zmin{0,0}

+ (0.012, 0.042, 0.103125) zmin{0,0}

+ (0.015, 0.042, 0.132) zmin{0,0}

+ (0.0015, 0.006, 0.0198) zmin{0,0}

+ (0.003, 0.012, 0.04125) zmin{0,0}

+ (0.005, 0.021, 0.11) zmin{0,0}

+ (0.0005, 0.003, 0.0165) zmin{0,0}

+ (0.001, 0.006, 0.034375) zmin{0,0}

= (0.195, 0.294, 0.49725) z60

+ (0.0585, 0.098, 0.19125) z(50,55,56)

+ (0.026, 0.042, 0.08775) z(46,50,52)

+ (0.0078, 0.014, 0.03375) z(36,45,48)

+ (0.0702, 0.098, 0.1836) z40

+ (0.00936, 0.014, 0.0324) z(26,30,32)

+ (0.052, 0.084, 0.20475) z20

+ (0.0156, 0.028, 0.07875) z(10,15,16)

+ (0.12272, 0.328, 0.91215) z0 (53)

From Eq. (53), the hydraulic system has nine different
states. Suppose the system demand is a fuzzy value and can
be represented by a triangle fuzzy number d̃ = (43, 45, 46).
The relative cardinality of fuzzy set φ̃+i , i = 1, 2, · · · , 9 can
be evaluated as follows.

a) For states i = 1, 2, 3, the performance level g̃i > d̃
definitely,

∣∣∣φ̃+i ∣∣∣r = 1;

b) For state i = 5, 6, 7, 8, 9, the performance level g̃i < d̃
definitely,

∣∣∣φ̃+i ∣∣∣r = 0;

c) For state i = 4, φ̃i = (36, 45, 48)+ (−46,−45,−43)=
(−10, 0, 5),

∣∣∣φ̃i∣∣∣ = 1/2× (5+ 10)× 1 = 7.5,
∣∣∣φ̃+i ∣∣∣ = 1/2×

(5− 0)× 1 = 2.5,
∣∣∣φ̃+i ∣∣∣r = ∣∣∣φ̃+i ∣∣∣ / ∣∣∣φ̃i∣∣∣ = 0.3333.

According to Eq. (28), the fuzzy reliability of the FMSS is
evaluated as

R̃ = �sys

(
Ũs (z) , d̃

)
=

9∑
i=1

p̃izg̃i

= (0.195, 0.294, 0.49725)+ (0.0585, 0.098, 0.19125)
+ (0.026, 0.042, 0.08775)
+ (0.0078, 0.014, 0.03375)× 0.3333+0+0+0+0+0

= (0.2821, 0.4387, 0.7875) (54)

Due to the requirement that the total output pressure via
hydraulic loop is not lower than 45MPa and the reliability
is 0.9, it is clear that the FMSS cannot meet the required
performance after evaluation.

VI. CONCLUSION
In this paper, the definitions of multi-state systems and
universal generating functions are reviewed firstly, and then a
novel reliability analysis method considering the correlation
between components is proposed based on fuzzy universal
generating functions. The proposed method takes the master-
slave relationship between the main and other components
into consideration, which is an extension of the existing fuzzy
universal generating functions-based methods. A generalized
flow chart for the calculation of the fuzzy reliability is
provided in this paper. In addition, different composition
operators are also introduced to calculate the fuzzy output
performance distribution and evaluate its fuzzy reliability.
The reliability analysis for the hydraulic system of a three-
leg robot is used to illustrate the proposedmethod and demon-
strate the feasibility. In this paper, the correlation between the
main component and the others is supposed to be unidirec-
tional. Moreover, the performance levels and corresponding
probabilities of the system is regarded as random variables.
Therefore, the stochastic process performance levels and
probabilities and the more complicated correlation between
different components or subsystems will be studied in our
future research works.
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