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ABSTRACT Detection of known signals embedded in additive noise is a fundamental problem in signal
processing. For normally distributed noise, it is well known that the popular matched filter detector (MFD)
is optimal. However, for impulsive noise whose distribution has a heavier tail, the performance of MFD
will deteriorate severely. To deal with such problem, in this paper, we propose a novel detector, termed
as Gini correlator (GC), and derive the analytic forms of its expectation and variance, under a specified
contaminated Gaussian model (CGM) emulating a frequently encountered scenario in practice. In order to
further understand its properties, we compare the proposedGCwith five state-of-the-art detectors permeating
in the literature, in terms of Pitman asymptotic relative efficiency (ARE), as well as time-delay estimation.
Monte Carlo simulations not only validate our theoretical discoveries, but also demonstrate the advantages
of GC in the aspects of 1) accurate control of false alarm probability without prior knowledge of noise
distribution, 2) comparable performance with MFD for Gaussian noise, 3) better performances over the
classical detectors in the aspects of greater ARE and smaller bias and standard deviation for time-delay
estimation. The theoretical and empirical findings in this work enable GC to be a useful alternative to the
existing detectors whether or not impulsivity exists in noise.

INDEX TERMS Gini correlator (GC), Kendall’s tau (KT), locally optimal detector (LOD), Pitman asymp-
totic relative efficiency (ARE), sign correlator (SC), Spearman’s rho (SR).

I. INTRODUCTION
Detecting whether or not a known signal is embedded in noise
is one of the most basic and important problems in the area of
signal processing [1]–[6]. In radar, for example, the detection
procedure is as follows. Firstly, a prescribed electromagnetic
pulse, of known mathematical form, is transmitted from the
antenna. Then, after obtaining the observed waveform at the
receiver end, two situations might arise: 1) if the target is
present, the observed waveform will contain an attenuated
version of the transmitted pulse along with the noise resulting
from ambient radiation and the receiver electronics; 2) if the
target is not present, then only the noise term remains in the
observed signal [7]. Given the received signal, the detection
problem is further cast into a binary hypothesis test, i.e., target
present vs. target absent, based on some statistic from the
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observed data. Finally, an appropriate threshold is derived
according to some optimal criterion, such as the well known
Neyman-Pearson theorem [7].

In the above mentioned scenario, the noise is usually
assumed to be independently and identically distributed
(i.i.d.) Gaussian (white Gaussian nose) for the reasons of
central limit theorem [8] and mathematical tractability [9].
It is well known that the matched filter detector (MFD) is
optimal, in the sense of maximizing the output signal to noise
ratio (SNR), when the additive noise is white Gaussian [7].
However, the model of white Gaussian noise is too restrictive
for many real world scenarios. Theoretical and empirical
evidences show that impulsive noise appears in a variety of
applications such as wireless communications, radar, sonar
and image processing [10]. For those impulsive noises whose
probability density function (pdf) possesses a heavier tail than
that of Gaussian, the performance of MFD will deteriorate
severely.
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To avoid the sensitivity of the MFD to impulsive noise,
many efforts have been made by practitioners in the area
of signal processing [11]–[17]. The basic idea behinds the
existing methods is to suppress the influence of large-valued
data contained in observed signal. By imposing various non-
linearities on the observed signal, researchers have devised a
lot of robust detectors, including the locally optimal detec-
tor (LOD) [7], threshold-system-based detector (TD) [18],
gaussianization and generalized matching (GGM) [19],
limiter-correlator (LC) [20], sign correlator (SC) [21], Spear-
man’s rho (SR) [22], and Kendall’s tau (KT) [22] among
others.

There are many advantages and disadvantages to the meth-
ods just mentioned. The LOD is nearly optimal when the
SNR is low, but its implementation demands knowing exactly
the noise pdf, which is usually impossible in practice. The
TD and GGM are asymptotically optimal under the assump-
tions of the noise with a symmetric and unimodal pdf [18].
However, the asymptotic optimality of TD and GGM might
be destroyed if the assumptions do not hold true. The LC
detector, while being the locallymost powerful detector under
some mild conditions, requires the full knowledge of noise
pdf, which is seldom realistic in real-world problems [23].
The SC detector, on the other hand, is the most robust detector
when the majority of noise follows the Laplace distribu-
tion [24]. Nevertheless, using only the information of alge-
braic signs of the observed signal, the SC detector might not
perform well when the noise distribution is nearly Gaussian
with only a tiny fraction of impulsive component. The two
rank-based detectors, namely SR and KT, are well known
to be distribution-free in the null case (when the target is
absent) [22], which makes it convenient to control the false
alarm probability. However, dropping the cardinal informa-
tion contained in the known transmitted signal, SR and KT
will unavoidably lose detection power, especially when the
tail of noise distribution is not very heavy. Moreover, unlike
SR and KT, the null distributions of LOD, TD, LC, SC, and
MFD are all dependent on the parameters of noise pdf. This
makes it hard to accurately control the false alarm probability
without knowledge of noise pdf.

To overcome the drawbacks of the above mentioned meth-
ods, in this paper we propose a robust detector based on the
ranks of the observed signal and the variates of the known
transmitted signal. Since its mathematical expression is the
numerator of the Gini correlation [25]–[28], we name our
proposed detector as Gini correlator (GC) throughout this
work. As to be illustrated later on, from both theoretical
and empirical viewpoints based on a contaminated Gaussian
model (CGM) emulating impulsive noise, GC possesses the
following advantages: 1) it is distribution free in the null
case, that is, the mean and variance of GC depend only on
the signal length, 2) it does not require the noise pdf to
be symmetric and unimodal, 3) in the normal case where
MFD is optimal, the Pitman asymptotic relative efficiency
(ARE) [29] of GC to MFD is 3/π when the signal is weak,

and 4) it consistently outperforms SC, SR and KT under the
contaminated Gaussian model (CGM) described in (3), and
performs only slightly worse than LOD, which is theoreti-
cally optimal in low SNR cases.

Our contribution in this work is fourfold. Firstly, we prove
that, in the null case (when the target is absent), the expecta-
tion and variance of GC is independent of the distribution of
noise. This property, along with the central limit theorem [8],
allows us to control the false alarm rate accurately without
knowing the functional form of noise pdf. Secondly, we estab-
lished the closed forms of the expectation and variance of
GC under the CGM (3). These theoretical results, together
with the central limit theorem again, allow us to work on
performance analysis, such as computation of efficacy and
efficiency, by approximating the distribution of GC with
Gaussian distribution when the sample size is relatively large.
Thirdly, we derive the Pitman ARE [29] of GC to MFD when
the noise is assumed to be i.i.d. Gaussian and the signal
is weak. This result, to some degree, justifies the compa-
rable performances of GC and MFD, in terms of detection
probability, when the noise is white Gaussian, a scenario in
favor of MFD. Fourthly, we establish the analytical expres-
sions of the mean and variance of SC, under the specific
CGM (3). These theoretical results on SC are not only of
interest on their own, but also indispensable for performance
evaluation.

The remainder of this paper is organized as follows.
Section II describes the problem formulation including the
additive model and the CGM modeling the impulsive noise.
Section III presents some basic definitions and properties
concerning GC, MFD, LOD, SR and KT, laying the foun-
dation for further analyses. In section IV, we establish our
major theoretical results, i.e., the analytic expressions of the
mean and variance of GC under the CGM model. Moreover,
some corollaries helpful for further understanding of GC are
also established. Section V establishes the theoretical results
of the mean and variance of SC under the CGM model. The
Pitman ARE of SC with respect to MFD in the normal case
is also derived in the same section. In section VI, we verify
our theoretical findings and compare GC with LO, MFD, SC,
SR and KT via a series of extensive Monte Carlo simulations.
Finally, in section VII, we summarize our main findings and
our conclusion on the proposed Gini Correlator.

For convenience in the following discussion, throughout
we employ the symbols E(·), V(·) and C(·, ·) to denote the
mean, variance and covariance of (between) random vari-
ables, respectively. Moreover, 8(t) and φ(t) represent the
cumulative distribution function (cdf) and pdf of the uni-
variate standard normal distribution, respectively; whereas
9(u, v, ρ) represents the cdf of the bivariate standard normal
distribution with correlation ρ. The symbol Pr(·) denotes the
probability that the event inside the brackets occurs. The sign
‘‘,’’ stands for ‘‘is defined as’’, whereas ‘‘∼’’ reads ‘‘obey
to’’. All other notation is to be defined in the context where it
first enters.
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II. PROBLEM FORMULATION
A. DETECTION MODEL
The detection problem is often formulated as [7]

X [i] = λy[i]+ Z [i] (1)

where y[i] is deterministic corresponding the transmitted
electromagnetic pulse, λ is the strength coefficient repre-
senting the presence (λ 6= 0) or absence (λ = 0) of the
target, Z [i] is the noise term emulating the interference due
to ambient radiation and/or the receiver electronics, and X [i]
represents the received waveform. Note that, for mathemati-
cal tractability, the noise Z [i] is often assumed to be an inde-
pendent and identically distributed (i.i.d.) sample drawn from
some continuous distribution (such as normal distribution) in
the literature [7]. The signal termsX [i], y[i] and Z [i] in (1) are
abbreviated as Xi, yi, and Zi, respectively, for compactness.
Given the additive model of (1), the detection problem can
then be cast into the following binary hypothesis test:{

H1 : λ 6= 0 (target present)
H0 : λ = 0 (target absent)

(2)

If the functional pdf of Z in (1) is known, an optimal detector,
called log-likehood ratio (LLR) detector, can be established,
as [30]

T (x) = log
[
f (x|H1)
f (x|H0)

]
where f (x|Hr ) is the pdf of the observed signal X under
Hypothesis Hr , r = 0, 1. An appropriate threshold η, say,
is derived base on some optimal criterion, such as the famous
Neyman-Pearson criterion [7]. The corresponding detector
decides on H0 if T (x) ≤ η and H1 otherwise. Since the LLR
above requires full knowledge of noise pdf in advance, it is
seldom practical in scenarios where noise pdf is unknown.

B. CONTAMINATED GAUSSIAN MODEL
To simulate the impulsive noise encountered in real world
problems, various models have been proposed in the litera-
ture. Among them, the symmetric α-stable (SαS) distribution
noise model and the Middleton Class A noise model have
been widely used due to excellent agreements with mea-
surement data [31]–[33]. However, lacking the closed-form
pdfs, these two kinds of impulsive noise models are mathe-
matically rather intractable. For ease of mathematical treat-
ment, many mixture models that emulate impulsive noise
are proposed [34]–[37], among which, the contaminated
Gaussian model (CGM) is perhaps the most popular. There-
fore, in this work, we employ the following contaminated
Gaussian model [38]

fZ (z)=
1−ε
√
2πσ1

exp

[
−
(z−µ1)2

2σ 2
1

]

+
ε

√
2πσ2

exp

[
−
(z−µ2)2

2σ 2
2

]
(3)

where fZ (z) stands for the pdf of noise Zi, 0 < ε � 1,
σ2 → ∞. Note that the pdf above contains two Gaussian
components: the first one represents the distribution of the
majority of the data, with limited variance; whereas the sec-
ond one, with a tiny fraction of ε, represents the distribution
of a minority of outliers with very large variance.

III. PRELIMINARIES
This section presents 1) the definitions of ranks and the
proposed GC, 2) definitions of other five detectors to be
compared in this work, namely, LOD, MFD, SC, SR and
KT, and 3) some auxiliary lemmas for ease of following
expositions.

A. DEFINITIONS OF GC AND OTHER DETECTORS
1) GINI CORRELATOR
Let {Xi}ni=1 denote the observed signal of length n in (1).
Rearranging {Xi}ni=1 in ascending order yields a new sequence
of X(1) < . . . < X(n), which is termed the order statistic of
X [39]–[43]. Suppose thatXj is at the kth position in the sorted
sequence {X(i)}ni=1. The position index k ∈ [1 n] is termed the
rank of Xj and is denoted by Pj. Similarly we can also obtain
the rank of yi denoted by qi for i = 1, . . . , n. The proposed
Gini correlator is defined as

TGC ,
n∑
i=1

(2Pi − 1− n)yi, (4)

which is the numerator of the Gini correlation [25]–[28].

2) MATCHED FILTER BASED DETECTOR
The matched filter based detector is simply the following
inner product form [11]

TMF ,
n∑
i=1

Xiyi. (5)

3) LOCALLY OPTIMAL DETECTOR
The locally optimal detector (LOD) is defined as [11]

TLO ,
n∑
i=1

L(Xi)yi (6)

where

L = −
f ′(Xi)
f (Xi)

(7)

with f (·) being the pdf of Zi. Note that when Xi is strictly
normal, or, equivalently, Zi is strictly normal, i.e., when
ε = 0 in (3), TLO reduces to TMF except for a possible
constant multiplicative factor.

4) SIGN CORRELATOR
The sign correlator is defined as [24]

TSC ,
n∑
i=1

sign(Xi)yi (8)

where sign(·) represents the algebra sign of the argument.
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5) SPEARMAN’S RHO
The first rank-based detector, known as Spearman’s rho,
is defined as [44]

TSR , 1−
6

n(n2 − 1)

n∑
i=1

(P2i − q
2
i ). (9)

6) KENDALL’S TAU
The other rank-based detector, known as Kendall’s tau,
is defined as [44]

TKT ,
1

n(n− 1)

n∑ n∑
i 6=j=1

sign(Xi − Xj)(yi − yj). (10)

B. AUXILIARY RESULTS CONCERNING GC
Lemma 1: The Gini correlator defined in (4) can be

expressed in the following form

TGC =
n∑ n∑
i 6=j=1

H (Xi − Xj)(yi − yj) (11)

where H (t) = 1 for t > 0 and H (t) = 0 for t ≤ 0.
Proof: See Appendix A. �

Remark 1: As shown in Appendix A, (4) and (11) are
mathematically equivalent. However, they are of different
usefulness according to different purposes. Formula (4), with
a linearithmic time complexity of order n log(n), is more con-
venient in the aspect of computation; whereas (11), although
with a quadratic time complexity, is more convenient in the
aspect of analysis.
Lemma 2: Assume that {Zi}ni=1 are i.i.d. random variables

obeying some continuous distribution. Let

Hij , H (Xi − Xj) (12)

1ij , yi − yj (13)

Then,

E(TGC) =
n∑ n∑
i6=j=1

E(Hij)1ij (14)

V(TGC) = 2
n∑ n∑
i 6=j=1

V(Hij)12
ij

+ 4
n∑ n∑ n∑
i6=j 6=k=1

C(Hij,Hik )1ij1ik . (15)

Proof: See Appendix B. �
Lemma 3: Assume that {Zi}ni=1 are i.i.d. random variables

obeying some continuous distribution. Then, for λ = 0 in (1),

E(TGC) = 0 (16)

V(TGC) =
1
2

n∑ n∑
i 6=j=1

12
ij +

1
3

n∑ n∑ n∑
i6=j 6=k=1

1ij1ik (17)

=
n+ 1
6

n∑ n∑
i6=j=1

(
yi − yj

)2 (18)

=
n+ 1
3

n n∑
i=1

y2i −

(
n∑
i=1

yi

)2
 . (19)

Proof: See Appendix C. �
Remark 2: The results with respect to the null case are

independent of the specific distribution form of {Zi}ni=1. This
desirable property of GC allows us to accurately control the
false alarm probability by assuming that, as n large,

TGC ∼ N

0,
n+ 1
6

n∑ n∑
i 6=j=1

12
ij

 (20)

due to the well known central limit theorem [8].
Lemma 4: Let ξ` ∼ N (ν`, ς2` ), ` = 1, 2, 3 be three mutu-

ally independent normal random variables. Write 1ν12 ,
ν1 − ν2, 1ν13 , ν1 − ν3, ς212 , ς21 + ς

2
2 , ς

2
13 , ς21 + ς

2
3 ,

1ξ12 , ξ1 − ξ2, and 1ξ13 , ξ1 − ξ3. Then

E[H (1ξ12)] = 8
(
1ν12

ς12

)
(21)

E[H (1ξ12)H (1ξ13)] = 9

(
1ν12

ς12
,
1ν13

ς13
,

ς21

ς12ς13

)
. (22)

Proof: See Appendix D. �

C. MEAN AND VARIANCE OF MFD IN GENERAL CASE
Lemma 5: Assume that {Zi}ni=1 are i.i.d. random variables

with E(Zi) = µZ andV(Zi) = σ 2
Z . Then, under the model (1),

the mean and variance of TMF defined in (5) are

E(TMF) = λ
n∑
i=1

y2i + µZ
n∑
i=1

yi (23)

V(TMF) = σ 2
Z

n∑
i=1

y2i . (24)

Proof: See Appendix E. �
Remark 3: The mean and variance of TMF both depend on

the parameters of Z , even when λ = 0. This means that we
have to estimate µZ and σZ in practice before determining
the threshold of the detector based on TMF. In other words,
the false alarm probability is controlled based on the assump-
tion that, as n large,

TMF ∼ N
(
µ̂Z , σ̂

2
Z

n∑
i=1

y2i

)
(25)

where µ̂Z and σ̂ 2
Z are estimates based on the observed data.

D. MEAN AND VARIANCE OF SR AND KT IN NULL CASE
Lemma 6: Assume that {Zi}ni=1 are i.i.d. random variables

obeying some continuous distribution. Then, for λ = 0
in (1),

E(TSR) = 0 (26)

V(TSR) =
1

n− 1
(27)

E(TKT) = 0 (28)
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V(TKT) =
2
9

2n+ 5
n(n− 1)

. (29)

Proof: See [22]. �

IV. PROPERTIES OF GINI CORRELATOR UNDER
CONTAMINATED GAUSSIAN MODEL
In this section we establish our major results about the statis-
tical properties of the Gini correlator under the contaminated
Gaussian model. Below we focus on the expressions of the
mean and variance of GC under the CGM, since, according
to the central limit theorem, GC asymptotically can be well
approximated by a normal distribution that requires only the
first two moments. As shown in Theorem 1 below, both the
expectation and variance of GC exhibit robustness against the
impulsive noise modeled by (3) in Section I.

A. EXPECTATION AND VARIANCE OF GC UNDER CGM
Theorem 1: Let {(Xi, yi,Zi)}ni=1 satisfy the data model pre-

sented in (1), where {Zi}ni=1 are i.i.d. random variables fol-
lowing the distribution of (3). Let Hij and 1ij be the same as
in (12) and (13), respectively. Write

8ij , 8

(
λ1ij
√
2σ1

)
(30)

9ijk , 9

(
λ1ij
√
2σ1

,
λ1ik
√
2σ1

,
1
2

)
. (31)

Denote by φ`(·) the pdf ofN (λy`+µ1, σ
2
1 ) and ψ`(·) the pdf

of N (λy` + µ2, σ
2
2 ), where ` ∈ {i, j, k}. Let 1µ , µ1 −

µ2. Then, as σ2 → ∞, the expectation and variance of TGC
defined in (4) are, respectively,

E(TGC) = (1− ε)2
n∑ n∑
i 6=j=1

8ij1ij (32)

V(TGC) = 2(1− ε)4
n∑ n∑
i 6=j=1

8ij(1−8ij)12
ij

+
1
2
[1− (1− ε)4]

n∑ n∑
i 6=j=1

12
ij

+ 4(1− ε)3
n∑ n∑ n∑
i6=j 6=k=1

(
9ijk −8ij8ik

)
1ij1ik

+ 4ε(1− ε)3
n∑ n∑ n∑
i6=j 6=k=1

(
8ij −

1
2

)

×

(
8ik −

1
2

)
1ij1ik

+
1
3
[1− (1− ε)3]

n∑ n∑ n∑
i6=j 6=k=1

1ij1ik . (33)

Proof: See Appendix F. �
Corollary 1: The expectation E(TGC) in (32) is odd sym-

metric with respect to λ; whereas the varianceV(TGC) in (33)
is even symmetric with respect to λ.

Proof: See Appendix G. �

B. EXPECTATION AND VARIANCE OF GC
IN PARTICULAR CASES
Given the results established in Theorem 1, some corollaries
follow readily as shown below.
Corollary 2: In the null case, i.e., when λ = 0, the expres-

sions of E(TGC) and V(TGC) in (32) and (33) degenerate to
those of (16) and (17), respectively.

Proof: Substituting λ = 0 in (32) and (33) along with
the results

8(0) =
1
2

(34)

9

(
0, 0,

1
2

)
=

1
3

(35)
gives

E(TGC)|λ=0 = (1− ε)2
n∑ n∑
i 6=j=1

1
2
1ij = 0 (36)

V(TGC)|λ=0 =
1
2

n∑ n∑
i 6=j=1

12
ij +

1
2

n∑ n∑ n∑
i 6=j 6=k=1

1ij1ik (37)

which are the results corresponding (16) and (17) in Lemma 3
for the null case. �
Corollary 3: For {Zi}ni=1 being i.i.d. normal random vari-

ables, that is, ε → 0 in Theorem 1, E(TGC) and V(TGC)
reduce respectively to

E(TGC) =
n∑ n∑
i 6=j=1

8ij1ij (38)

and

V(TGC) = 2
n∑ n∑
i 6=j=1

8ij(1−8ij)12
ij

+ 4
n∑ n∑ n∑
i 6=j 6=k=1

(9ijk −8ij8ik )1ij1ik . (39)

Proof: The results follows directly by letting ε = 0
in (32) and (33), respectively. �
Remark 4: It is not difficult to verify that, upon substitution

of λ = 0, (38) and (39) reduce also to (16) and (17) in
Lemma 3, respectively.
Corollary 4: Assume that {Zi}ni=1 are i.i.d. normal ran-

dom variables, that is, ε → 0 in Theorem 1. Then,
as λ/σ1→±∞, E(TGC) and V(TGC) tend respectively to

lim
λ
σ1
→±∞

E(TGC) = ±
1
2

n∑ n∑
i 6=j=1

|1ij| (40)

and

lim
λ
σ1
→±∞

V(TGC) = 0. (41)

Proof: It follows that

lim
λ
σ1
→+∞

8

(
λ1ij
√
2σ1

)
=


1 for 1ij > 0
1
2

for 1ij = 0

0 for 1ij < 0

=
1
2
+

1
2
sign(1ij) (42)
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and hence

lim
λ
σ1
→−∞

8

(
λ1ij
√
2σ1

)
=

1
2
−

1
2
sign(1ij) (43)

which mean that

lim
λ
σ1
→±∞

E(TGC) = ±
1
2

n∑ n∑
i 6=j=1

sign(1ij)1ij +
1
2

n∑ n∑
i 6=j=1

1ij︸ ︷︷ ︸
=0

= ±
1
2

n∑ n∑
i 6=j=1

|1ij|

being consistent with (40).
By the reduction formula in [45],

9ijk −8ij8ik

=
1
2π

1∫
0

dr
√
1− r2

exp

{
−
λ2

2σ 2
1

12
ij − 2r1ij1ik +1

2
ik

2(1− r2)

}

→ 0 as
λ

σ1
→±∞. (44)

Substituting (42)–(44) into (39) leads readily to the result
of (41). �
Remark 5: The results just established in Corollary 4 sug-

gest that it is reasonable to define the signal to noise ratio as

SNR ,
λ

σ1
. (45)

The larger the magnitude of SNR, the larger the magnitude
of E(TGC) and the smaller the value of V(TGC). This means
that with increase of SNR, the detection probability increases
accordingly.
Corollary 5: In the extreme case of ε→ 1, the expressions

of E(TGC) and V(TGC) in (32) and (33) degenerate also to
those of (16) and (17), respectively.

Proof: The results follows directly by letting ε → 1
in (32) and (33), respectively. �

C. ASYMPTOTIC RELATIVE EFFICIENCIES
IN NORMAL CASE
Here we employ the asymptotic relative efficiency (ARE),
in Pitman’s sense, as the figure of merit for the purpose
of comparison. Under mild regularity conditions, the ARE
of Detector A to Detector B is given by the ratio of their
efficacies [29]

AREA,B ,
EA
EB

(46)

with efficacy terms E being defined as

Eζ =
[

E′(Tζ )√
V (Tζ )

]2
(47)

where the subscript ζ ∈ {LO,GC,MF,SR,KT,SC}, and the
derivatives are with respect to λ.

As remarked in Section I, TMF is optimal when {Zi}ni=1 are
i.i.d. Gaussian. Therefore, it is of interest to investigate the
efficiency loss of TGC in this case which is in favor of TMF.
As shown in Corollary 6 below, TGC is asymptotically about
3/π (' 95%) as efficient as TMF when the known signal y has
no DC component and the noise is white Gaussian.
Corollary 6: Let {(Xi, yi,Zi)}ni=1 satisfy the data model

presented in (1), where {Zi}ni=1 are i.i.d. random variables
following the normal distribution of N (µ1, σ

2
1 ). Then the

Pitman ARE of TGC to TMF for weak signals (λ→ 0) is

AREGC,MF =
3
π

n
n+ 1

∑n
i=1 y

2
i −

1
n

(∑n
i=1 yi

)2∑n
i=1 y

2
i

(48)

Proof: By Lemma 5, Corrolary 3 and Lemma 3, it fol-
lows that

lim
λ→0

E′(TMF) =
n∑
i=1

y2i (49)

lim
λ→0

V(TMF) = σ 2
1

n∑
i=1

y2i (50)

lim
λ→0

E′(TGC) =
1

2
√
πσ1

n∑ n∑
i 6=j=1

12
ij (51)

lim
λ→0

V(TGC) =
n+ 1
3

n n∑
i=1

y2i −

(
n∑
i=1

yi

)2
 . (52)

The result of (48) follows readily by substituting (49)–(52)
into (46). �
Remark 6: It is obvious that the ARE reaches maximum

value when
∑
yi = 0 in (48), being

AREGC,MF =
n

n+ 1
3
π
→

3
π
as n→∞ (53)

which suggests that, to enhance the performance of TGC,
one should remove the arithmetic average from the designed
signal {yi}ni=1. It is noteworthy that ARE = 0 when yi =
constant. In other words, it is unsuitable to apply TGC to
detecting the presence of constant signals in practice.

V. MEAN AND VARIANCE OF SIGN CORRELATOR UNDER
CONTAMINATED GAUSSIAN MODEL
This section establishes the analytical results of the mean
and variance of SC under the CGM in (3). These results,
as remarked before, are not only of interest on their own, but
also helpful for plotting the ARE curves. The Pitman ARE of
SC to MFD in the normal case is also established for weak
signals (λ→ 0).

A. MEAN AND VARIANCE OF SC
Theorem 2: Let {(Xi, yi,Zi)}ni=1 satisfy the data model pre-

sented in (1), where {Zi}ni=1 are i.i.d. random variables fol-
lowing the distribution of (3). Let TSC be defined as in (8).
Then

E(TSC) = (1− ε)
n∑
i=1

[
28

(
λyi + µ1

σ1

)
− 1

]
yi (54)
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FIGURE 1. Verification of E(TGC) in (32) and V(TGC) in (33) established in Theorem 1 for n = 50 and ε ∈ {0,0.04,0.08}, respectively. The superscripts
O and T stand for observed and theoretical values, respectively. Good agreements are observed between simulation results (markers) and theoretical
counterparts (lines with different patterns). For comparison, the contamination-free versions (38) and (39) in Corollary 3 are also included in each
subplot. The properties of odd (even) symmetry concerning E(TGC) [V(TGC)] asserted in Corollary 1 can also be clearly observed.

V(TSC) =
n∑
i=1

{
1− (1− ε)2

[
28

(
λy1 + µ1

σ1

)
− 1

]2}
y2i .

(55)
Proof: See Appendix H. �

B. ASYMPTOTIC RELATIVE EFFICIENCY IN NORMAL CASES
Corollary 7: Let {(Xi, yi,Zi)}ni=1 satisfy the data model

presented in (1), where {Zi}ni=1 are i.i.d. random variables
following the normal distribution of N (µ1, σ

2
1 ). Then the

Pitman ARE of TSC to TMF for weak signals (λ→ 0) is

ARESC,MF =
φ2
(
µ1
σ1

)
8
(
µ1
σ1

)
−82

(
µ1
σ1

) (56)

Proof: From (54) and (55), it follows that

E′(TSC)
∣∣
ε=0
λ→0
=

2
σ1
φ

(
µ1

σ1

)∑
i

y2i (57)

V(TSC)
∣∣
ε=0
λ→0
= 4

[
8

(
µ1

σ1

)
−82

(
µ1

σ1

)]∑
i

y2i (58)

Substituting (57), (58), (49) and (50) into (46) leads directly
to (56). �

Remark 7: It is not difficult to verify that when
µ1 = 0, (56) reaches its maximum, which is

maxARESC,MF =
2
π
. (59)

This result, compared with that of (53), explains the inferior-
ity of SC to GC observed in the next section.

VI. NUMERICAL RESULTS
This section aims at 1) verifying the theoretical results estab-
lished in in Theorem 1 and Theorem 2 by Monte Carlo
simulations, 2) illustrating the advantages of GC in different
scenarios, in terms of false alarm control, Pitman ARE and
time-delay detection, compared with five frequently used
detectors, namely, MFD, LO, SC, SR and KT. In the sequel,
the notation h = h1(1h)h2 trepresents a list of h starting from
h1 to h2 with an increment of 1h.

A. EXPERIMENT SETTINGS
The parameters involved in (1) and (3) are as follows:
• the signal length n ∈ {50, 100, 150, 200};
• λ = −1(0.1)1 in Figs. 1–2;
• ε ∈ {0, 0.04, 0.08};
• µ1 = 0 and µ2 = 0;
• σ1 = 1 and σ2 = 100.
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FIGURE 2. Verification of E(TSC) in (54) and V(TSC) in (55) established in Theorem 2 for n = 50 and ε ∈ {0,0.04,0.08}, respectively. Good agreements are
observed between simulation results (markers) and theoretical counterparts ( lines with different patterns).

Moreover, three prescribed signals {yi}ni=1 are recruited in this
study, as follows.
• Chirp signal with the following form

yi =

cos
[
1
200

(
2π f0 × i+

F × i2

200T

)]
for 0≤ i≤n;

0 otherwise.
(60)

The associated parameters are set to be f0 = 0, T = 1
and F = 150 in this work.

• Sinusoidal signal with the following form

yi =

sin
[
2π × 5i
200

]
for 0 ≤ i ≤ n;

0 otherwise.
(61)

• Pseudo-random signal formed by taking a segment of
white Gaussian noise of length n.

The number of Monte Carlo trials is set to be 104 for purpose
of accuracy. All noise samples are generated by functions in
the Matlab Statistics ToolboxTM.

B. VERIFICATION OF THEOREM 1 AND THEOREM 2
Fig. 1 verifies the correctness of (32) for E(TGC) and (33)
for V(TGC) established in Theorem 1, by plotting the sim-
ulation results (markers of different shapes) as well as the

corresponding theoretical results (lines of different patterns).
Due to space limitation, we only present the results for n = 50
with respect to ε ∈ {0, 0.04, 0.08}. From left to right,
the three columns of subplots correspond to the prescribed
y-signals of chirp, sinusoidal, and pseudo-random type,
respectively; whereas from top to bottom, the two rows of
subplots correspond to theoretical and observed E(TGC) and
V(TGC), respectively. Good agreements are observed between
simulation results and theoretical counterparts. The property
of odd (even) symmetry of E(TGC) [V(TGC)] revealed in
Corollary 1 can be clearly observed. Besides, it is seen that,
with increase of ε, noticeable deviations of V(TGC) from the
contamination fee version (38) are observed, especially for
|λ| being large.

With the same layout as that in Fig 1, we present in Fig. 2
the simulation results (markers of different shapes) as well
as theoretical counterparts concerning E(TSC) and V(TSC)
established in Theorem 2, respectively. Good agreements are
observed once more between the observed and theoretical
results expressed in (54) and (55), respectively, illustrating
the correctness of Theorem 2.

C. CONTROL OF FALSE ALARM PROBABILITIES FOR GC
As discussed in Remark 2, it is reasonable to approximate the
null distribution of TGC by a normal one with the form in (20)
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FIGURE 3. Comparison of ARE curves for λ = −0.5(0.1)0.5 and n = 100. From left to right, the three columns correspond to the prescribed y-signals of
chirp, sinusoidal, and pseudo-random type, respectively; whereas from top to bottom, the two rows correspond to ε = 0 (normal cases) and ε = 0.08,
respectively. From the top row, it is observed that, when the noise is strictly Gaussian, the ARE curves of TSC are consistently lower than others, meaning
the inferiority of SC to other detectors with higher ARE curves. From the bottom row, it is observed that, when ε 6= 0, the MFD, with zero ARE curves,
performs the worst.

TABLE 1. Observed false alarm probabilities based on T̃GC defined in (62).

for n being large. Equivalently, we can employ a normalize
version of TGC as the detection statistic, that is,

T̃GC ,
TGC − E(TGC)|λ=0
√
V(TGC)|λ=0

(62)

=
TGC{

n+1
3

[
n
∑
y2i −

(∑
yi
)2]} 1

2

(63)

to control the false alarm probabilities more conveniently,
since, as n large, T̃GC converges in distribution to N (0, 1)
approximately in the null case. Then, given the false alarm
probability α to be controlled, the corresponding threshold

ηα for unilateral test λ = 0 vs. λ > 0, or η α
2
for bilateral test

λ = 0 vs. λ 6= 0 can be determined via

ηα = 8
−1(1− α) (64)

and

η α
2
= 8−1

(
1−

α

2

)
(65)

respectively, where 8−1(·) stands for the inverse cdf of
N (0, 1).

Table 1 lists the observed false alarm probabilities based
on T̃GC for α = 0.01 and α = 0.05 with respect to three
prescribed y signals with n = 50, 100, 150, 200. Note that in
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TABLE 2. Performance comparison for time-delay estimation.

Table 1,

PFA(α) , Pr(T̃GC > α)

PFA
(α
2

)
, Pr

(
|T̃GC| > α

2

)
.

It is seen that the observed false alarm probabilities agree well
the corresponding nominal values for all n ≥ 50 and all three
types of the prescribed signals. It is thus safe to approximate
the null distribution of T̃GC byN (0, 1) in practice for n ≥ 50.

D. COMPARISON OF PITMAN ARE
Fig. 3 compares the Pitman ARE of TGC and other four
detectors to TLO, based on (46) and (47), corresponding to
three known signals for n = 100, λ = −0.5(0.1)0.5, ε = 0
and ε = 0.08, respectively. Since, from (6) and (7), the mean
and variance of TLO have no closed forms under the CGM
of (3), the efficacy of TLO in (46) and (47) are computed by
numerical integration and numerical differentiation.

It is observed in Fig. 3 that, when ε = 0 (top row), 1) TSC,
whose ARE curves are lower than all of the others, performs
the worst, 2) TMF has the highest ARE curves (equaling to 1),
outperforms the other detectors, 3) the ARE curves of TSR
are higher than TKT, which means that TSR is more efficient
than TKT when signal is weak, 4) when ε = 0.08 (bottom
row), the ARE curves of TGC lie in between those of TMF
and TSR (TKT), manifesting its superiority over TSR and TKT;,
5) TMF, whose ARE curves (around 0) are significantly lower
than those of others, performs the worst, 6) the ARE curves of
TGC are the highest, manifesting again its superiority over TSR
and TKT, and 7) TSC underperforms other detectors except
for TMF. The results in Fig. 3 allow us to order the perfor-
mance, in terms of Pitman ARE, as

TSC < TKT < TSR < TGC < TLO = TMF for ε = 0

TMF < TSC < TKT < TSR < TGC < TLO for ε>0 (66)

when the signal strength is weak.

E. EXAMPLE OF TIME-DELAY ESTIMATION
To further demonstrate the usefulness of the proposed Gini
correlator, we provide an example of time-delay estimation,
which is customary in signal processing. The problem is
formulated by modifying (1) into

X [i] = λy[i− τ0]+ Z [i], −∞ < i <∞ (67)

where τ0 is the time-delay to be estimated, and Z [i] obeys
the CGM model (3) with ε = 0 and ε = 0.04, respectively.

FIGURE 4. Schematic illustration of estimating the time-delay τ0. In the
bottom panel, the time-shift τ̂0 corresponding to the maximum of the
correlation function is considered as an estimate of the true
time-delay τ0.

As illustrated in Fig. 4, the procedure of estimating τ0 is to
firstly generate a correlation function with TLO, TMF, TGC,
TSR, TKT and TSC, by correlating the scanning window of
{y[i − τ ]}ni=1 between the received signal X [i] with respect
to τ . The time-shift τ̂0 corresponding to the maximum of
the correlation function is then restored as an estimate of τ0.
In this example we set the real time-delay τ0 = 800.

Table 2 lists the estimation results of time-delay, in terms
of τ̂0 ± std. It is seen that, for ε = 0 (the noise being pure
Gaussian), all detectors performs comparably well. However,
when the noise is corrupted with a tiny fraction of impulsive
component (ε = 0.04), TMF loses completely the detection
power, irrespective of the magnitudes of SNR. On the other
hand, TLO, TGC, TSR, TKT and TSC performs well in this case,
in the sense of producing accurate estimates of τ0 with no
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bias and small standard deviations. Specifically, the results
in Table 2 show the following order of performance, in terms
of time-delay estimation, as

TSC < TKT ∼ TSR ∼ TGC ∼ TLO = TMF for ε = 0

TMF � TSC < TKT ∼ TSR < TGC < TLO for ε>0 (68)

VII. CONCLUSION
In this paper, we proposed a nonparametric detector, called
Gini correlator (GC), to deal with the problem of detecting the
presence/absence of known signals buried in impulsive noise.
Based on a specified contaminate Gaussian model CGM
simulating reasonably the impulsive noise that frequently
encountered in practice, we established the analytic formulas
concerning the expectation and variance of GC. These novel
theoretical results with extensive Monte Carlo simulations
suggest that
• in the null case, the mean and variance of GC depend
only on the prescribed known signals, which allows us
to accurately control the false alarm probability with the
assistance of the central limit theorem;

• GC performs comparably well with the matched filter
based detector (MFD) [and also the locally optimal
detector (LOD)] when the noise is i.i.d. Gaussian, in the
sense of ARE being as high as 3/π ;

• GC is robust against the impulsive noise, in the sense
that its mean and variance are only slightly affected by
the magnitude of the fraction of impulsive component;

• GC performs better than SR and KT, in terms of ARE
analysis as well as time-delay estimation.

Based on the comparative studies, it appears that in most
cases, GC is not optimal, but it is always the second best.
In other words, GC bridges the gap between LO and SR
(KT). This feature of sub-optimality at least avoids the worst
consequences when no prior knowledge as to whether or
not impulsivity exists in noise. The mathematical tractability,
easy implementation and empirical findings revealed in this
work might shed new light on the topic of known signal
detection, which is widely applied in the area of statistical
processing.

APPENDIX A
PROOF OF LEMMA 1

Proof: Substituting the relationship Pi =
∑n

j 6=i H
(Xi − Xj)+ 1 [46] into (4), it follows that

TGC =
n∑
i=1

(2Pi − 1− n)yi

=

n∑
i=1

{
2
[ n∑
j 6=i=1

H (Xi − Xj)+ 1
]
− 1− n

}
yi

= 2
n∑ n∑
i 6=j=1

H (Xi − Xj)yi + (1− n)
n∑
i=1

yi. (69)

Reversing the roles of the subsripts i and j in (69) yields
Substituting the subscripts i and j

TGC = 2
n∑ n∑
i 6=j=1

H (Xj − Xi)yj + (1− n)
n∑
j=1

yj. (70)

Summing up (69) and (70) and using the result

H (Xi − Xj) = 1− H (Xj − Xi), (71)

we obtain

2TGC = 2
n∑
i 6=j

n∑
j=1

H (Xi − Xj)yi + (1− n)
n∑
i=1

yi

− 2
n∑
i 6=j

n∑
i=1

H (Xi − Xj)yj − (1− n)
n∑
i=1

yj (72)

which means that

TGC =
n∑ n∑
i 6=j=1

H (Xi − Xj)yi −
n∑ n∑
i 6=j=1

H (Xi − Xj)yj

=

n∑ n∑
i 6=j=1

H (Xi − Xj)(yi − yj) (73)

hence the result. �

APPENDIX B
PROOF OF LEMMA 2

Proof: From (11) in Lemma 1 and the abbreviations (12)
and (13), it follows that

TGC =
n∑ n∑
i 6=j=1

Hij1ij (74)

which leads to (14) directly after taking expectation.
Substituting (74) into the right side of the following

formula

V(TGC) = C(TGC,TGC)

we have

V(TGC) = C

 n∑ n∑
i 6=j=1

Hij1ij,

n∑ n∑
k 6=l=1

Hkl1kl


=

n∑ n∑
i 6=j=1

n∑ n∑
k 6=l=1

C(Hij,Hkl)1ij1kl (75)

=

n∑ n∑
i 6=j=1

C(Hij,Hij)︸ ︷︷ ︸
=V(Hij)

12
ij (76)

+

n∑ n∑
i6=j=1

C(Hij,Hji)1ij1ji (77)

+

n∑ n∑ n∑
i 6=j 6=k=1

C(Hij,Hik )1ij1ik (78)
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+

n∑ n∑ n∑
i 6=j 6=k=1

C(Hij,Hki)1ij1ki (79)

+

n∑ n∑ n∑
i 6=j 6=k=1

C(Hij,Hjk )1ij1jk (80)

+

n∑ n∑ n∑
i 6=j 6=k=1

C(Hij,Hkj)1ij1kj (81)

+

n∑ n∑ n∑ n∑
i 6=j 6=k 6=l=1

C(Hij,Hkl)︸ ︷︷ ︸
=0

1ij1kl (82)

= S1 + S2 + S3 + S4 + S5 + S6 + S7 (say.) (83)

Applying the result Hji = 1− Hij, it follows that

C(Hij,Hji) = C(Hij, 1− Hij) = −C(Hij,Hij) (84)

Substituting this result into (77) and noting 1ji = −1ij,
we have that the double summation S2 in (77) is equal to
S1 in (76). In a similar manner, we also have S3 = S4 and
S5 = S6. Now we show that S5 = S3. Employing (84) once
more, it follows that

S5 =
n∑ n∑ n∑
i 6=j 6=k=1

C(Hij,Hjk )1ij1jk (85)

=

n∑ n∑ n∑
i 6=j 6=k=1

C(1− Hji,Hjk )1ij1jk (86)

=

n∑ n∑ n∑
i 6=j 6=k=1

C(Hji,Hjk )1ji1jk = S3. (87)

Therefore,

V(TGC) = 2S1 + 4S3 (88)

which is (15) and hence the lemma holds true. �

APPENDIX C
PROOF OF LEMMA 3

Proof: Denote by FZ (z) the cumulative distribution
function (cdf) of Z . When λ = 0 in (1), we have Hij =
H (Zi−Zj). Applying the i.i.d. assumption of {Zi}ni=1, we have

E(Hij) =
∫
∞

−∞

∫
∞

−∞

H (zi − zj)dFZ (zi)dFZ (zj)

=

∫
∞

−∞

∫ zi

−∞

dFZ (zj)dFZ (zi)

=

∫
∞

−∞

FZ (zi)dFZ (zi) =
∫ 1

0
t dt =

1
2
, (89)

E(H2
ij ) = E(Hij) =

1
2
,

V(Hij) = E(H2
ij )− E2(Hij) =

1
4
, (90)

E(HijHik ) =
∫
∞

−∞

∫ zi

−∞

∫ zi

−∞

dFZ (zi)dFZ (zj)dFZ (zk )

=

∫
∞

−∞

F2
Z (zi)dFZ (zi) =

∫ 1

0
t2 dt =

1
3
,

and hence

C(Hij,Hik ) = E(HijHik )︸ ︷︷ ︸
1/3

−E(Hij)E(Hik )︸ ︷︷ ︸
1/4

=
1
12
. (91)

Substituting (89) into (14) produces

E(TGC) =
1
2

n∑ n∑
i 6=j=1

(yi − yj) = 0 (92)

which is (16).
Plugging the results (90) and (91) into (15) leads readily to

V(TGC) =
1
2

n∑ n∑
i 6=j=1

(yi − yj)2︸ ︷︷ ︸
,V1

(93)

+
1
3

n∑ n∑ n∑
i 6=j 6=k=1

(yi − yj)(yi − yj)︸ ︷︷ ︸
,V2

(94)

which is compatible with (18). It also follows that

V1 =
n∑ n∑
i6=j=1

(yi − yj)2 =
n∑
i=1

n∑
j=1

(y2i − 2yiyj + y2j )

= 2n
n∑
i=1

y2i − 2

(
n∑
i=1

yi

)2

, (95)

and

V2 =
n∑ n∑ n∑
i 6=j 6=k=1

(yi − yj)(yi − yk )

=

n∑
i=1

n∑
j=1

n∑
k=1

(yi − yj)(yi − yk )︸ ︷︷ ︸
,V3

−

n∑ n∑
i 6=j=1

(yi − yj)2 (96)

where

V3 =
n∑
i=1

n∑
j=1

n∑
k=1

(y2i − yiyk − yiyj + yjyk )

= n2
n∑
i=1

y2i − n

(
n∑
i=1

yi

)2

=
n
2
V1. (97)

A combination of (93)–(97) gives

V(TGC) =
1
2
V1 +

1
3
(V3 − V1) =

n+ 1
6

n∑ n∑
i 6=j=1

(yi − yj)2

(98)

which is the form in (18) and becomes the form in (19) upon
substitution of (95) into (98). �
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APPENDIX D
PROOF OF LEMMA 4

Proof: Let

1ξ ′12 ,
1ξ12 −1ν12

ς12

1ξ ′13 ,
1ξ13 −1ν13

ς13

Then, from the normal assumption, we have

(1ξ ′12,1ξ
′

12) ∼ N
(
0, 0, 1, 1,

ς21

ς12ς13

)
. (99)

Therefore,

E[H (1ξ12)] = E
[
H
(
1ξ12

ς12

)]
= Pr

(
1ξ12

ς12
> 0

)
= Pr

(
1ξ ′12 > −

1ν12

ς12

)
= Pr

(
1ξ ′12 <

1ν12

ς12

)
= 8

(
1ν12

ς12

)
which is (21). Moreover,

E[H (1ξ12)H (1ξ13)]

= E
[
H
(
1ξ12

ς12

)
H
(
1ξ13

ς13

)]
= Pr

(
1ξ12

ς12
> 0,

1ξ13

ς13
> 0

)
= Pr

(
1ξ ′12 > −

1ν12

ς12
,1ξ ′13 > −

1ν13

ς13

)
= Pr

(
1ξ ′12 <

1ν12

ς12
,1ξ ′13 <

1ν13

ς13

)
= 9

(
1ν12

ς12
,
1ν12

ς12
,

ς21

ς12ς13

)
which completes the proof of (22). �

APPENDIX E
PROOF OF LEMMA 5

Proof: Substituting (1) into (5) and taking expectation
on both sides, we have

E(TMF) = E
[∑

(λyi + Zi)yi
]

= λ
∑

y2i +
∑

E(Zi)yi = λ
∑

y2i + µZ
∑

yi

which is the first lemma statement (23).
By definition,

V(TMF) = C(TMF,TMF)

= C

 n∑
i=1

(λyi + Zi)yi,
n∑
j=1

(λyj + Zj)yj


=

n∑
i=1

n∑
j=1

yiyjC
[
(λyi + Zi), (λyj + Zj)

]

=

n∑
i=1

n∑
j=1

yiyjC(Zi,Zj)

=

n∑
i=1

y2i V(Zi)+
n∑ n∑
i 6=j=1

yiyjC(Zi,Zj)︸ ︷︷ ︸
=0

= σ 2
Z

n∑
i=1

y2i

which is the second lemma statement (24). �

APPENDIX F
PROOF OF THEOREM 1

Proof: We first deal with E(TGC). Based on Model (3),
it follows that the joint pdf of (Xi,Xj) is

ϕij(xi, xj)

= [(1− ε)φi(xi)+ εψi(xi)][(1− ε)φj(xj)+ εψj(xj)]

= (1− ε)2φiφj + ε(1− ε)φiψj + ε(1− ε)φjψi + ε2ψiψj.

(100)

Then,

E(Hij) =
∫
∞

−∞

∫
∞

−∞

H (xi−xj)ϕij(xi, xj)dxidxj

= (1− ε)2E1 + ε(1− ε)E2 + ε(1− ε)E3 + ε2E4
(101)

where E1, . . . ,E4 are expectation terms of Hij with respect
to four pdfs in (100). Resorting to the first statement (21) in
Lemma 4, we have

E1 = 8
[
λ(yi − yj)
√
2σ1

]
(= 8ij) (102)

by noticing that, in this case, 1ξij = Xi − Xj, ν1 = λyi + µ1,
ν2 = λyj + µ1, ς21 = σ 2

1 and ς22 = σ 2
1 . Similarly, we also

have

E2 = 8

λ1ij +1µ√
σ 2
1 + σ

2
2

→ 8(0) =
1
2︸ ︷︷ ︸

as σ2→∞

(103)

E3 = 8

λ1ij −1µ√
σ 2
1 + σ

2
2

→ 8(0) =
1
2︸ ︷︷ ︸

as σ2→∞

(104)

E4 = 8
(
λ1ij
√
2σ2

)
→ 8(0) =

1
2︸ ︷︷ ︸

as σ2→∞

. (105)

Substituting (102)–(105) into (101) produces

E(Hij) = (1− ε)28ij + ε
(
1−

ε

2

)
(106)
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which, with the assistance of (14) in Lemma 2, leads to

E(TGC) =

n∑ n∑
i 6=j=1

E(Hij)1ij

= (1− ε)2
n∑ n∑
i 6=j=1

8ij1ij︸ ︷︷ ︸
the result of (32)

+ε
(
1− ε

2

) n∑ n∑
i 6=j=1

1ij︸ ︷︷ ︸
=0

In a similar way, we can also obtain

E(Hik ) = (1− ε)28ik + ε
(
1−

ε

2

)
. (107)

To evaluate V(TGC), it suffices to work out V(Hij) and
C(Hij,Hik ), which are required in Lemma 2. Since H2(·) =
H (·), we have

V(Hij) = E(H2
ij )− E2(Hij) = E(Hij)− E2(Hij). (108)

Substituting (106) into (108) and tidying up, it follows that

V(Hij) = (1− ε)48ij(1−8ij)+
1
4
[1− (1− ε)4]. (109)

By definition,

C(Hij,Hik ) = E(HijHik )− E(Hij)E(Hik ) (110)

where only the first term on the right side needs to be worked
out. Denote by ϕijk (xi, xj, xk ) the joint pdf of (Xi,Xj,Xk ).
We have, from Model (3),

ϕijk

= 5`∈{i,j,k}[(1− ε)φ`(x`)+ εψ`(x`)]

= (1− ε)3φiφjφk + ε3ψiψjψk

+ ε(1−ε)2φiφjψk+ε(1−ε)2φiψjφk+ε(1−ε)2ψiφjφk

+ ε2(1−ε)φiψjψk+ε2(1−ε)ψiφjψk+ε2(1−ε)ψiψjφk .

(111)

Hence,

E(HijHik ) =
+∞∫∫∫
−∞

H (xi−xj)H (xi−xk )ϕijkdxidxjdxk

= (1− ε)3M1 + ε
3M2

= ε(1− ε)2(M3 +M4 +M5)

+ ε2(1− ε)(M6 +M7 +M8) (112)

where, along with the result (22) in Lemma 4,

M1 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )φiφjφkdxidxjdxk

= 9

(
λ1ij
√
2σ1

,
λ1ik
√
2σ1

,
1
2

)
(= 9ijk ) (113)

M2 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )ψiψjψkdxidxjdxk

= 9

(
λ1ij
√
2σ2

,
λ1ik
√
2σ2

,
1
2

)
→ 9

(
0, 0,

1
2

)
︸ ︷︷ ︸

as ς2→∞

=
1
3

(114)

M3 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )φiφjψkdxidxjdxk

= 9

 λ1ij
√
2σ1

,
λ1ik +1µ√
σ 2
1 + σ

2
2

,
σ1

√
2
√
σ 2
1 + σ

2
2


→ 9

(
λ1ij
√
2σ1

, 0, 0
)

︸ ︷︷ ︸
as ς2→∞

= 8

(
λ1ij
√
2σ1

)
8(0) =

1
2
8ij

(115)

M4 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )φiψjφkdxidxjdxk

= 9

λ1ij +1µ√
σ 2
1 + σ

2
2

,
λ1ik
√
2σ1

,
σ1

√
2
√
σ 2
1 + σ

2
2


→ 9

(
0,
λ1ik
√
2σ1

, 0
)

︸ ︷︷ ︸
as ς2→∞

= 8

(
λ1ik
√
2σ1

)
8(0) =

1
2
8ik

(116)

M5 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )ψiφjφkdxidxjdxk

= 9

λ1ij −1µ√
σ 2
1 + σ

2
2

,
λ1ik −1µ√
σ 2
1 + σ

2
2

,
σ 2
2

σ 2
1 + σ

2
2


→ 9 (0, 0, 1)︸ ︷︷ ︸

as ς2→∞

= 8(0) =
1
2

(117)

M6 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )φiψjψkdxidxjdxk

= 9

λ1ij +1µ√
σ 2
1 + σ

2
2

,
λ1ik +1µ√
σ 2
1 + σ

2
2

,
σ 2
1

σ 2
1 + σ

2
2


→ 9 (0, 0, 0)︸ ︷︷ ︸

as ς2→∞

= 82(0) =
1
4

(118)

M7 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )ψiφjψkdxidxjdxk

= 9

λ1ij −1µ√
σ 2
1 + σ

2
2

,
λ1ik
√
2σ2

,
σ2

√
2
√
σ 2
1 + σ

2
2


→ 9

(
0, 0,

1
√
2

)
︸ ︷︷ ︸

as ς2→∞

=
3
8

(119)
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M8 =

∞∫∫∫
−∞

H (xi−xj)H (xi−xk )ψiψjφkdxidxjdxk

= 9

 λ1ij
√
2σ2

,
λ1ik −1µ√
σ 2
1 + σ

2
2

,
σ2

√
2
√
σ 2
1 + σ

2
2


→ 9

(
0, 0,

1
√
2

)
︸ ︷︷ ︸

as ς2→∞

=
3
8
. (120)

Note that in the above derivations, we have employed the
Sheppard’s Theorem [46]

9(0, 0, ρ) =
1
4
+

1
2π

arcsin ρ.

Now all quantities needed to calculateC(Hij,Hik ) in (110) are
ready. Substituting (113)–(120) into (112) and subtracting the
product ofE(Hij) in (106) andE(Hik ) in (107) from the result,
it follows that

C(Hij,Hik ) = (1− ε)3
(
9ijk −8ij8ik

)
+ ε(1− ε)3

(
8ij −

1
2

)(
8ik −

1
2

)
+

1
12

[1− (1− ε)3]. (121)

Substituting (109) and (121) into (15) and tidying up, we
finally arrive at (33), thus completing the proof. �

APPENDIX G
PROOF OF COROLLARY 1

Proof: From (30),

8ij(−λ) = 8
(
−λ1ij
√
2σ1

)
= 1−8ij. (122)

Substituting this relationship into (32) yields

E(TGC;−λ)

= (1− ε)2
n∑ n∑
i 6=j=1

(1−8ij)1ij (123)

= −(1− ε)2
n∑ n∑
i6=j=1

8ij1ij︸ ︷︷ ︸
=−E(TGC)

+(1− ε)2
n∑ n∑
i 6=j=1

1ij︸ ︷︷ ︸
=0

(124)

which verifies the odd symmetry of E(TGC).
From (31),

9ijk (−λ) = 9
(
−λ1ij
√
2σ1

,
−λ1ik
√
2σ1

,
1
2

)
which, by result in [45], is

9ijk (−λ) = 9ijk −8ij −8ik + 1. (125)

Replacing λ with −λ in (33) and using (122) and (125), it is
not difficult to verify that V(TGC;−λ) = V(TGC; λ), and the
even symmetry thus follows. �

APPENDIX H
PROOF OF THEOREM 2

Proof: Noticing the relationship of sign(·) = 2H (·)−1,
it follows, by taking the expectation on both sides of (8), that

E(TSC) =
n∑
i=1

{2E[H (Xi)]− 1} yi (126)

where

E[H (Xi)] = (1− ε)

∞∫
0

φi(x)dx + ε

∞∫
0

ψi(x)dx

= (1− ε)
[
1−8

(
−λyi − µ1

σ1

)]
+ ε

[
1−8

(
−λyi − µ2

σ2

)
︸ ︷︷ ︸
→

1
2 as σ2→∞

]

= (1− ε)8
(
λyi + µ1

σ1

)
+
ε

2
. (127)

Substituting (127) into (126) leads directly to (54).
As to V(SC), it follows that

V(TSC) = C

∑
i

[2H (Xi)−1]yi,
∑
j

[2H (Xj)−1]yj


= 4

∑
i

∑
j

C[H (Xi),H (Xj)]yiyj

= 4
n∑ n∑
i 6=j=1

C[H (Xi),H (Xj)]︸ ︷︷ ︸
=0 due to i.i.d. assumption

yiyj

+ 4
∑
i

V[H (Xi)]y2i

= 4
∑
i

{
E[H (Xi)]− E2[H (Xi)]

}
y2i (128)

where the last step (128) results in (55) upon substitution
of (127). This completes the proof. �
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