
Received September 18, 2019, accepted October 15, 2019, date of publication October 21, 2019, date of current version October 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948405

STELA: A Real-Time Scene Text Detector
With Learned Anchor
LINJIE DENG 1, YANXIANG GONG1, XINCHEN LU1, YI LIN 2, ZHENG MA1, AND MEI XIE1
1School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610000, China

Corresponding author: Mei Xie (mxie@uestc.edu.cn)

ABSTRACT To achieve high coverage of target boxes, a normal strategy of conventional one-stage anchor-
based detectors is to utilize multiple priors at each spatial position, especially in scene text detection tasks.
In this work, we present a simple and intuitive method for multi-oriented text detection where each location
of feature maps only associates with one reference box. The idea is inspired from the two-stage R-CNN
framework that can estimate the location of objects with any shape by using learned proposals. The aim of
our method is to integrate this mechanism into a one-stage detector and employ the learned anchor which
is obtained through a regression operation to replace the original one into the final predictions. Based on
RetinaNet, our method achieves competitive performances on several public benchmarks with a totally real-
time efficiency (26.5fps at 800p), which surpasses all of anchor-based scene text detectors. In addition, with
less attention on anchor design, we believe our method is easy to be applied on other analogous detection
tasks. The code is publicly available at https://github.com/xhzdeng/stela.

INDEX TERMS Scene text detection, real-time detector, learned anchor.

I. INTRODUCTION
Text in scene usually conveys valuable semantic information.
Thus, detecting text in natural images has recently attracted
increasing attention in computer vision community cause
perceiving information is a critical part of artificial general
intelligence. It has been widely used in various applications
such as multilingual translation, automotive assistance and
image retrieval. Previous works [1], [2], [13], [17], [21], [22]
have been dominated by sliding windows or connected com-
ponent with hand-crafted feature, which divided the task into
a sequence of distinct steps and utilized bottom-up strategy
to search characters and words. Although these methods have
shown their promising performances, they may be restricted
to complex situations due to the diversity of text instances and
undesirable image quality.

With the astonishing progress for object detection by
exploring the powerful deep learning technology [34], recent
methods take text as a specific object and extend the general
object detection frameworks [11], [14], [20] to hypothesize
word or text locations. Those approaches can be divided
into two major groups: two-stage proposal-driven and one-
stage proposal-free method. Although two-stage framework
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[12], [24], [40] consistently achieves top accuracy on the
public benchmarks [6]–[8], recent works [9], [23], [29], [35]
based on one-stage frameworks also demonstrate yielding
faster text detectors with comparable accuracy.

Unlike two-stage detector who can classify boxes at any
position and shape by using learned proposals [14] and region
pooling operation [26], one-stage detectors heavily rely on
how densely the anchors cover the space of possible target
locations [32]. A popular approach for achieving high cov-
erage is to use multiple anchors to cover boxes of various
scales and aspect ratios, especially in the tasks of scene
text detection. TextBoxes++ [9] was based on SSD [11]
and defined 7 specific aspect ratios (including 1, 2, 3, 5,
1/2, 1/3 and 1/5) for default boxes on each location of fea-
ture maps. In order to achieve multi-oriented text detection,
DMPNet [29] added several rotated anchors, for a total of 12
(6 regular and 6 inclined) to find the best match to arbitrary-
oriented text instance. Instead of choosing priors by hand,
DeepTextSpotter [35] followed YOLOv2 [31] runs k-means
clustering (k = 14) on the training set bounding boxes to
automatically find suitable priors.

Given the anchor design of the above detectors, a nat-
ural question to ask is: could we decrease the number of
anchors and maintain similar accuracy? This changing will
bring twofold benefit: reducing manual attention on anchors
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FIGURE 1. The recall rates of different anchor designs on ICDAR 2013(a) and 2015(b). ‘‘#sc’’ means number of scales, ‘‘#ar’’ means number of
aspect ratios. The black line represents the IoU threshold (0.5) which is usually used in training stage to discriminate foreground and
background. The other dashed lines with colors represent different anchor designs with various number of scales and aspect ratios. The solid
line represent the recall rates of learned anchor which proposed in this work. The performances of each design will be shown in Section.III-B.

and improving efficiency at inference stage. First, the shapes
and scales of anchors have to be predefined for different
tasks, and this must be careful because a wrong design
may harm the performance of detection [30]. Second, most
anchors correspond to false candidates which are irrelevant
to the targets, and meanwhile a large number of anchors
can lead to significant computational cost when the network
involves heavy heads. Besides, although not mentioned in
many papers, the anchor generation usually needs to cost a
certain amount of time.

Being attracted to simple network architecture and high
computational efficiency, in this work, we investigate the
issue of anchor design within one-stage detector which we
mentioned above for multi-oriented text detection. In one-
stage methods, the optimization target in training and the
prediction reference in testing are both based on the coverage
between original anchors and target boxes. Then, the quality
of those prior boxes has a critical impact on the performances
of a detector. Normally, as the number of anchors increases,
the coverage of targets increases, but it will still be saturated
in some situations, as shown in Figure 1. Therefore, we need
to find a better way to choose priors that make it easier
for the network to learn to predict better detection. Inspired
from the learned proposal mechanism [14] in the two-stage
R-CNN framework, we intend to utilize the learned anchor
which is obtained through a regression operation to replace
the original one into the final predictions. It is worth not-
ing that unlike region proposal network (RPN) in two-stage
detector which can reduce the number of possible locations
down to one or two thousands, we still maintain the original
quantity of anchors and keep the rest parts of one-stage
detector’s architecture. To validate its effectiveness, we adopt
the state-of-the-art RetinaNet [32] as our baseline model and
present a simple and intuitive text detector named STELA
(Scene TExt Detector with Learned Anchor), in which each

location of feature maps only associates with one anchor.
Following the standard evaluation protocols in each bench-
mark, our method achieves comparable performances with
an F-measure 0.887 on ICDAR 2013 [6], 0.833 on ICDAR
2015 [7] and 0.715 on ICDAR 2017 MLT [8]. Besides, our
method is a totally real-time scene text detector with 26.5fps
at 800p, which surpasses all of anchor-basedmethods. At last,
with less attention on anchor design, we believe our method is
easy to be applied on other analogous detection tasks. Also,
all of our training and testing code is publicly available at
https://github.com/xhzdeng/stela now.

II. METHODOLOGY
A. ONE-STAGE OBJECT DETECTION
In this section, we first review the one-stage detection
pipeline. OverFeat [36] is one of the first modern one-stage
object detector based on deep neural networks. More recent
SSD [11] and YOLOv2 [31] have renewed interest in one-
stage methods. The key idea of them is to associate a set
of pre-defined anchors which are centered at each location
of feature maps and make final predictions based on those
reference boxes [27]. As shown in Figure 2.a, it basically
contains a backbone network for feature extraction over the
entire image and two parallel sub-networks following, one
for predicting the probability distribution over multiple cat-
egories of each anchor and another for regression the offset
from each positive candidate to a nearby ground-truth box,
if one exists.

Comparing with two-stage R-CNN (Figure 2.b) meth-
ods, one-stage detectors skip the region proposal generation
step and give final predictions (classification and regression)
based on original anchors directly. However, its detection
accuracy is usually behind that of two-stage approaches, one
of the main reasons is they must process a much larger set of
candidate object locations regularly sampled across an image.
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FIGURE 2. The architectures of different frameworks. ‘‘I’’ input image, ‘‘Conv’’ backbone convolutions, ‘‘H’’ network head, ‘‘C’’ classification. ‘‘A0’’
are the original anchors in all architectures, ‘‘A1’’ in (b) and (c) represent the selected proposals and learned anchors respectively. ‘‘A’’ and ‘‘C’’ in red
color represent the final outputs of each detector.

The extreme foreground-background class imbalance prob-
lem will encounter during training phase and hamper the
resulting performance. More recently, RetinaNet [32] pro-
posed focal loss (FL) to address the class imbalance problem
that one-stage detectors are able to match the accuracy of
existing two-stage ones. The focal loss is modified from
standard cross entropy (CE) loss:

CE(p, y) =

{
−log(p) if y = 1
−log(1− p) otherwise

(1)

In the above y = 1 specifies the ground-truth class and
p ∈ [0, 1] is the probability. Normally, we define pt :

pt =

{
p if y = 1
1− p otherwise

(2)

and rewriteCE(p, y) = −log(pt ). Then, the classification loss
is defined as:

Lcls = FL(pt ) = −αt (1− pt )γ log(pt ) (3)

where αt is a balanced weighting factor and γ is a focusing
parameter. It applies a modulating term to the cross entropy
loss in order to focus learning on hard examples and down-
weight the numerous easy negatives. In our implementation,
we follow the original focal loss that set αt = 0.25 and
γ = 2.0.

B. ROTATED BOUNDING BOX REGRESSION
As depicted in [3], using rectangular bounding boxes to local-
ize multi-oriented text may result in redundant background
noise and unnecessary overlap. Thus, we adopt rotated rect-
angular boxes to match arbitrary-oriented text instances.
Each bounding box b is represented by a five tuple b =
(x, y,w, h, θ), where x, y are the center point, w, h are width
and height, θ is the angle to horizontal. The task of the
regression operation is to predict the distance of each item
from a positive anchor to the nearby ground-truth. Normally,
to encourage a regression invariant to scale and location,
the distance vector 1 = (δx , δy, δw, δh, δθ ) is defined by:

δx = (gx − bx)/bw, δy = (gy − by)/bh (4)

δw = log(gw/bw), δh = log(gh/bh) (5)

δθ = tan(gθ )− tan(bθ ) (6)

where b and g represent a bounding box and its target ground-
truth respectively. The regression task loss Lloc is calculated
by regression target 1t and predicted tuple 1p

Lloc = smoothL1 (1t −1p) (7)

where smoothL1 is a robust L1 loss defined in [26]. Usually,
for improving the effectiveness of multi-task learning, 1 is
normalized by its mean and variance. In our experiments,
the mean is set to (0, 0, 0, 0, 0) and the variance is set to
(0.1, 0.1, 0.2, 0.2, 0.1).

C. LEARNED ANCHOR
Normally, the detector needs to search the true positives from
thousands anchors and adjust the shapes and locations to
make them tighter on the targets. It is difficult to determine
if a bounding box b is a positive candidate cause it usually
includes an object and some amount of the background.
In practice, this is solved by the IoU metric between box b
and most nearby ground-truth g. Commonly, the threshold µ
is a constant set to 0.5. If the IoU is above the threshold µ,
bounding box b is considered to be an example of positive.

y =

{
1, IoU (b, g) ≥ µ
0, otherwise

(8)

Also, y = 1 specifies the ground-truth class. It is worth noting
that conventional IoU based on rectangular boxes is unsatis-
factory for our task, thus wemodify it to compute the overlaps
for rotated rectangles. Given all this, the optimization target
in training is determined by the overlaps between original
anchors with ground-truth boxes.

However, the original anchors with fixed scales and aspect
ratios which are pre-defined manually may not be the optimal
designs. Compared with one-stage detector, we argue that
the most important part of proposal scheme in two-stage
is that the selected proposals are chosen by learning. That
makes two-stage method able to reduce the search space of
targets, and meanwhile optimize the quality of candidates.
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FIGURE 3. The view of different boxes. The blue, red and green boxes represent original anchor, learned anchor and final output box respectively. It is
worth noting that the learned anchor (red) shares the same central point with the original one (blue). Viewing digitally with zooming is recommended.

Inspired by this, we intend to integrate this mechanism into
the one-stage detectors. We simply add an extra regression
branch for anchor refining and utilize learned one into the
final classification and regression, as shown in Figure 2.c.
Especially, the regression targets of learned anchor is not

arbitrary. As refer in [30], one of general rules for a reasonable
anchor design is alignment. To use convolutional features
as anchor representations, the center of an anchor needs to
be well aligned with feature map pixels. Towards this end,
we only regress the offsets within 1′ = (δ′w, δ

′
h, δ
′
θ ), and this

will keep anchors still align with feature map, as depicted
in Figure 3. Following regression task, the anchor refining
loss Lref is defined as:

Lref = smoothL1 (1
′
t −1

′
p) (9)

Unlike two-stage R-CNN method filter anchors with an
objectness score, we only adjust the shape of each anchor
and keep the quantity of anchors here. Evaluated on public
benchmarks, we find comparingwith original ones, the cover-
age of targets will be given a huge enhancement after anchor
refining stage, as shown in Figure 1.

D. NETWORK ARCHITECTURE
For the trade-off between efficiency and accuracy, all of
our experiments are implemented on RetinaNet [32] with
ResNet-50 [5] as backbone, though other networks are still
applicable. We also adopt the Feature Pyramid Network
(FPN) from [25] to construct a rich, multi-scale feature pyra-
mid from a single resolution input image. The FPN con-
sists of levels P3 to P7 feature maps, and the corresponding
base anchor sizes from 162 to 2562 for detecting small text
instances (322 to 5122 in source implementation). In original
RetinaNet, the two sub-networks (heads) are deeper with
5 convolutional layers. For improving the running speed,
we decrease the number of layers from 5 to 2 for streamlining
the heads. This may result in a slight accuracy loss, but
will give us a real-time text detector in return. Based on
the above definitions, the model is trained to simultaneously
minimize the losses on anchor refining, final regression and
classification. Overall, the loss function is a weighted sum of
three losses

L = λref Lref + λlocLloc + λclsLcls (10)

TABLE 1. The impact of the different anchor designs. ‘‘#sc’’ number of
scales, ‘‘#ar’’ number of aspect ratios. ‘‘la’’ means learned anchor. All
input images are resize to 800 pixels.

TABLE 2. The impact of the number of stages. ‘‘#stage’’ means the
number of anchor refining stages.

where λref , λloc, λcls are user constants indicating the relative
strength of each component defined above. In order to keep
the balance of different loss types, we set them to 0.5, 0.5,
1.0 respectively.

III. EXPERIMENTS
A. IMPLEMENTATION DETAILS
The backbone of network is initialized by the model trained
on ImageNet [15] for classification task and other layers are
initialized by following [32]. The network is trained with
Adam [39] optimizer. Restricted by the hardware, the batch
size is set to 4 and the initial learning rate is set to 10−4.
We randomly pick up 100,000 images from SynthText [4]
to pretrain the network for 5 epochs, and collect real data
from ICDAR 2013 [6], 2015 [7] and 2017 [8] to finetune
a final model for 25 epochs. The learning rate is decayed
to 10−5 after 15 epochs of finetuning. We use the multi-
scale training scheme that randomly resize the input size
between 480 and 800. Random flipping is also used for data
augmentation.

Specially, in order to capture more regression target can-
didates, we set the IoU threshold to 0.3 in anchor refining
training. In the inference stage, a confidence threshold with
0.3 and a non-maximum suppression threshold with 0.3 are
applied to yield the final outputs. The proposed method is
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TABLE 3. Results on ICDAR 2013 Focused Scene Text. ‘‘*’’ means multi-scale test. ‘‘–’’ means no report in their papers.

implemented by using PyTorch1 and all experiments are car-
ried out on a standard PC with Intel i7-6800k and a single
NVIDIA TITAN Xp.

B. ABLATION STUDY
To investigate the effectiveness of our method, we conduct
several ablation studies. Each model is evaluated on ICDAR
2013 [6] and 2015 [7] benchmarks.

1) ANCHOR DESIGN
Wefirst investigate the impacts of different anchor designs on
performances, including accuracy and efficiency. The base-
line models are directly extended from RetinaNet by simply
changing the regression strategy introduced in Section.II-B.
The aspect ratios of anchors on single location of feature
maps are simply selected from {0.25, 0.5, 1, 2, 4}. Also,
the scales are chosen from (2k/3, k < 3). As shown in Table.1,
with the anchor increasing, the F-measure improved from
0.447 to 0.863 on ICDAR 2013, but no significant improve-
ment (0.621 to 0.753) on ICDAR 2015. Analyzing from
Figure 1, we argue that the coverage of targets gets saturated
on ICDAR 2015, but not on ICDAR 2013. That proves once
again the most important design factor in a one-stage detector
is how densely it covers the space of target boxes.

Attaching anchor refining operation on the first baseline,
the resulting model obtains a huge improvement (shown
in Figure 1) in recall rates on both benchmarks, with great
progresses on accuracy from 0.447 to 0.887 on ICDAR
2013 and 0.621 to 0.833 on ICDAR 2015. This strongly
demonstrates the effectiveness of our approach. In addition,
we also assess other baselines with anchor refining, there is
only slower running speed, but no obvious improvement.

2) NUMBER OF STAGES
Like Cascade R-CNN [37], we add more stages of anchor
refining to compare the influences. We also increase the
IoU threshold of each refining stage by following Cascade
R-CNN. The results are summarized in Table.2. Increasing

1https://pytorch.org/

TABLE 4. Results on ICDAR 2015 Incidental Scene Text. All results of
works are reported with single testing scale. ‘‘–’’ means no report in their
papers.

more refining stages will not lead to significant improve-
ment, or even accuracy decrease. Besides, adding the number
of stages will affect the running speed. Therefore, one refin-
ing stage is the best choice for our method.

C. COMPARISON TO STATE OF THE ART
We evaluate our method on several public benchmarks and
compare to recent state-of-the-art methods. Figure 4 shows
some detection results from each dataset.

ICDAR 2013 [6] dataset consists of 229 training and
233 testing images which were captured by user explicitly
detecting the focus of the camera on the text content of
interest. It is a standard benchmark for evaluating horizon-
tal or nearly horizontal text detection. In this benchmark,
we set the scale of input images to 800 for single-scale testing.
We also evaluate on multi-scale testing which the scales
are set to 320, 480, 640 and 800. As depicted in Table. 3,
the proposed method outperforms all anchor based methods
including DeepText [24], FCRN [4] and CTPN [18], which
are mainly designed for nearly horizontal text detection. For
single-scale testing, our method achieves a totally real-time
running speed at 26.5 fps. Even the multi-scale, our method
also runs at a speed of 10.5 fps. Compared with recent
methods [3], [10], [33], [38], our method is comparable with
accuracy and efficiency.
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FIGURE 4. Selected results from the public benchmarks. Viewing digitally with zooming is recommended.

TABLE 5. Results on ICDAR 2017 Multi-lingual Scene Text Detection. All
results of works are reported with single testing scale. ‘‘†’’ means the
result is obtained from the ICDAR 2017 MLT leaderboard.

ICDAR 2015 [7] benchmark was released during the
ICDAR 2015 Robust Reading Competition. It provides
1000 training and 500 testing images which were collected
without taking any specific prior attention. It was designed
for multi-oriented text detection, so all images are anno-
tated with word-level quadrangles. To evaluate the adapt-
ability of our learned anchor, we still set the input size to
800 pixels. As shown in Table.4, our method achieves an
F-measure of 0.833, which also surpasses all of the anchor-
based methods [9], [12], [16], [23], [29], including one-stage
and two-stage frameworks. Compared with other approaches
[19], [38] which utilize a deep regression network that
directly predict text region, our method still keep an absolute
lead in running speed.

ICDAR 2017 MLT [8] is a large scale multi-lingual text
dataset, which includes 7200 training, 1800 validation and
9000 testing images with 9 languages. It was proposed for
verifying the generalization ability of each method. There-
fore, it is more difficult than previous ICDAR challenges.
Due to a larger number of small text instances in this dataset,
we enlarge the scale of testing image by 2 times to 1600 pixels
and our method achieves 0.655, 0.787, 0.715 in recall, pre-
cision and F-measure by using the online evaluation system
provided officially, as shown in Table.5. The presented results
demonstrate that our method is capable of applying practi-
cally in multi-lingual text detection.

IV. CONCLUSION AND FUTURE WORK
In this work, we propose a simple and intuitive method based
on RetinaNet for multi-oriented text detection where each
location of feature maps associate with only one anchor.
The aim of our method is to integrate the learning mecha-
nism from two-stage R-CNN framework into the one-stage
detector and utilize the learned anchor to replace the original
one into the final predictions. Experimental results on public
benchmarks confirm that the proposed method is capable
of achieving comparable performance with state-of-the-art
methods. Besides, it is a total real-time scene text detector.
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In the future, we are interested in integrating the detector with
a text recognizer to consist an end-to-end text reading system.
In addition, we also plan to evaluate it on other detection tasks
to prove the universality of our approach.
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