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ABSTRACT Null pointer exceptions are common software faults, but they are dangerous and can cause
a program to crash if they occur. In addition, it is hard to find them by simply running test cases. When
a null pointer exception occurs, the stack trace stored by the Java runtime environment can help us to
locate the cause of the exception. In this paper, firstly, we propose an automatically null pointer exception
localization approach guided by stack trace, from the null pointer dereference to the null value assignment
point. Secondly, an empirical study is designed to evaluate the effectiveness of the tool on eight open source
projects. The experimental results show that the tool is effective in locating the null pointer exception.

INDEX TERMS Null pointer exception, fault localization, stack trace.

I. INTRODUCTION
Exception handling is the main mechanism to improve the
software reliability in most programming language. When a
semantic constraint of the programming language is violated
(e.g., divided by zero), an exception is raised to reveal this
error. In this case, the normal control flow of this program
is interrupted, and there is an attempt to recover from the
error by a specific handler. If the recovery is successful,
the program continues the normal control flow, otherwise the
program will terminate.

The exceptions in Java can be divided into two categories:
application exceptions raised by exceptional conditions in an
application, and runtime exceptions raised by Java runtime
environment. At present, there are a lot of researches on
application exceptions [1], [2], such as the analysis of applica-
tion exception to provide valuable information for developers.
However, there are a few researches on runtime exceptions,
although they are often raised in the execution of Java pro-
grams [4]. If one program has raised a runtime exception,
it indicates that this program contains errors, such as trying
to access an array element outside the scope of the index and
dereferencing an object that is null. Because Java does not
require that methods specify or catch such exceptions, when
they are raised during execution, the developers usually do
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not provide exception handler to handle them. As a result,
the program may terminate.

A program execution failed implies that the program under
test contains at least a fault. Then, the program debugging
should be performed for locating and fixing the fault. In order
to precisely and quickly locate the fault, developers should
alleviate the output information as much as they can. How-
ever, the difference the expression of failure (e.g. assertion
not satisfied, null pointer exception) it is, the difference the
information they can alleviate. When a null pointer exception
occurs, the stack trace stored by the Java runtime environment
can help us to locate the cause of this exception. A null
pointer exception indicates that a null value variable is deref-
erenced in an execution. To locate the fault that results in
the exception, a conventional step is to find the statement of
Null Pointer Assignment (NPA). The NPA helps developer
to analyze whether a null value assignment is appropriate,
which indicates the post-processing is not correct, or not,
which indicates the statements correspond to NPA should be
reexamined. Therefore, finding NPA is an essential step in
locating the faults that result in null pointer exception.

Null pointer exceptions are common software faults, but
they are dangerous and can cause a program to crash if it
occurs. And it’s also hard to find by running test cases.

When a null pointer exception occurs, the stack trace
stored by the Java runtime environment can help us to locate
the cause of this exception. The information of stack trace
includes the code line that throws the exception and the
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method that contains this line of code. The information of
stack trace also contains all methods currently on the run-
time stack, along with the statements in those methods at
which the method calls were made. Furthermore, the methods
that have been called during the execution and have already
normal returned will not appear in the stack trace. However,
stack trace does not contain the information about control
flow through the method. Thus, during the inspection of the
methods to locate the origin of the exception, the developer
may miss those methods that were involved in the execution,
but not in the stack trace, or may not understand correctly
the complex control flow in the program. Thus, to locate
the origin of the exception, the developer must inspect the
execution manually and attempt to understand the control
flow through the calling methods.

Program slicing [3] is widely applied in program analyz-
ing, testing and debugging. It can be classified as static slicing
and dynamic slicing. Static slicing computes with respect
to the point of failure and works backward, identifying all
statements that could affect the behavior at the point of failure
until the bug is found. Dynamic slicing [24] computes with
respect to the execution trace of this executing, identifies the
statements that could affect the behavior at the point of failure
for the given inputs.

The program slicing can effectively separate the fault-
related statements by identifying the set of statements in
the program that affect the specific position variables,
thus becoming an effective tool for assisting software fault
location [22].

Fault localization can use both static backward slicing
and dynamic backward slicing, but dynamic backward slic-
ing comes with a price: The program must be instrumented
to gather an execution trace, and dynamic slicing itself
can be very slow, which may be unacceptable for large
programs [20].

To evaluate the effectiveness of our tool on null pointer
exception localization, we conduct experiments on 15 open
source projects. The empirical results show that our tool is
effective in locating the null pointer exception.

The contributions of the paper include:
(1) It presents an automatic localization tool for null

pointer exceptions guided by stack trace.
(2) An empirical study is designed to evaluate the effective-

ness of our tool for localization null pointer exceptions.

II. BACKGROUND
This section summarizes some relevant background informa-
tion on program analysis and fault localization.

A. DEFINITIONS
Definition 1 (Control Flow Graph (CFG)): A CFG G

is a graphical representation of the logic execution of the
program, and can be presented in a tetrad (N, E, Entry, Exit).
N is the set of nodes presenting statements, E ⊆ N × N is
the set of the edges presenting the control relations between

statements, Entry is entry node in the program, and Exit is the
exit node in the program.

For each intra-procedure CFG, we add a call edge and a
return edge according to the function call sequence, and then
construct the system CFG which is ICFG.
Definition 2: Let n1, n2 be the nodes in a CFG, whether n2

executing is determined by the executing status of n1, then n2
control dependent on n1, denoted by CD (n2, n1).
Definition 3: Let n1, n2 be the nodes in a CFG andvbe a

variable. If v defined in n1 may be directly used in n2 during
their execution; there is an executable path between n1 and n2,
and there is no re-definition of v from n1 to n2, then n2 is
directly data dependent on n1 about v, denoted byDD (n2, n1).
Definition 4 (Program Dependency Graph (PDG)): A

PDG of program P is a directed graph, which can be rep-
resented by a binary group (N′, E′), where N′ is a node
set, N′ = N (N is the set of nodes presenting statements
in the CFG of P)); edge set E′ represents the dependencies
between nodes. That is, 〈nl, n2〉 ∈ E′ represents CD (nl , n2) or
DD (n1, n2).
To construct System Dependence Graph (SDG), for each

PDG, we need add the edges of control dependence, which
are calling edge and return edge according to the function call
sequence, and the edges of data dependence, which is due to
subroutine calls, parameter passing, and global variables.
Definition 5 (Program Slicing): in general, program slic-

ing which can meet two requirements below is M. Weiser’s
program slicing [3]:

1) A program slicing has a specific slicing criteria pre-
sented as 〈n,V 〉. V presents the set of variables used
or defined in the point n, and n presents a node in the
program (usually a statement in the program).

2) The program slicing S of the programP can be achieved
by deleting zero or several statements in P. However,
we must be sure that the behaviors of program P and
the slice S regarding to slicing criteria 〈n,V 〉 are the
same.

B. ASSIGNMENTS AND DEREFERENCES
In Java, a null pointer exception is thrown at a statement that
dereferences a variable or a field that has a null value, such
as statement x.m, where x = null. A null pointer assign-
ment (NPA) is a statement where a null value is generated,
such as ‘‘x = null’’, ‘‘return null’’ and ‘‘foo(null)’’ (a null
value for an actual parameter at a method call).

Figure 1 illustrates the information that our approach
provides. An null pointer exception was raised at reference
statement Sr(ε), there is exactly one statement Sa(ε) at which
the null value that caused the exception is assigned.

For example, for a null pointer exception at statement x. m
was raised, Sa(ε) is the statement that assigned a null value
to x. The goal is to locate this source statement Sa(ε).
Our approach performs static backward data flow analysis

guided by stack trace, starting at Sr(ε). If the analysis obtains
a unique NPA, this one is the definite NPA. If it obtains more
than one NPA, there may be multiple possible NPAs that
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FIGURE 1. NPAs identified by our approach.

FIGURE 2. The framework of our approach.

could have caused the exception. Since stack trace does not
provide control flow information within the method, the anal-
ysis cannot determine which NPA caused the exception. But
it can conclude that at least one of them caused the exception.

In fig.1, the shaded area represents the execution on which
the null pointer exception was thrown at Sr(ε). The fig-
ure shows that the analysis was able to identify the exact
statement Sa(ε) that caused the null pointer exception at Sr(ε).
Thus, Sa(ε) is a definite NPA. Moreover, we may also obtain
more than one NPAs, such as Sa(ε), Sa1, Sa2, . . . ,San. These
NPAs are possible NPAs.

III. OUR APPROACH
In this section, we first introduce the localization approach for
null pointer exceptions guided by stack trace. Then we give
a case study to show how to locate the null pointer exception
using our approach.

A. OVERVIEW
Fig.2 presents an overview of our approach. Fig.2 presents
an overview of our approach. Phase 1 is a pre-processing, we
first use Soot [5] framework and Spark pointer analysis to
get the information of source program, such as control flow
information, data flow information and alias information.
Phase 2 performs a backward data flow analysis, guided
by stack trace, to identify the definite NPA and possible
NPAs.

Soot [5] is a static analysis framework developed byMcgill
University, Canada. Here, this paper uses it to perform lexical
analysis and syntax analysis, and get the information that
needs in phase 2. Spark (Soot Pointer Analysis Research Kit)
is a part of Soot, which is used to perform alias analysis.

1) PHASE 1: PRE-PROCESSING
When more than one variable name can be used to access
a data location in memory, the names are called aliases.

Aliasing is harmful to readability because modifying the data
through one name implicitly modifies the values associated
with all aliased names, which may not be expected by the
developer. Because there may be many aliases in a program,
this makes it very difficult to understand and analyze pro-
grams in practice.

First, we use Soot to perform lexical analysis and syn-
tax analysis on the program with a null pointer exception,
and construct the ICFG. Then we can get the variable that
raised the null pointer exception according to the stack trace
information. And then we use Spark tool to perform aliases
analysis on the variable that throws the null pointer exception.

2) PHASE 2: IDENTIFYING DEFINITE AND POSSIBLE NPAS
When runtime exceptions occur, the information in the stack
trace can help us to locate the causes of exceptions. However,
the granularity of the information in the stack tracemay be too
coarse to locate the causes. The stack trace contains only the
methods involved in the execution and the statement where
a method call was made, but does not contain information
about the control flow through themethod. It can reduce some
branches and methods that do not traverse in the execution
according to the stack trace information, and then perform
analysis guided by stack trace. Meanwhile, this paper per-
forms aliases analysis to improve the accuracy of localization.
This section discusses the state constraint transformation and
null pointer localization algorithm.

B. STATE CONSTRAINT TRANSFORMATION
The focus of the null pointer exception localization algorithm
is to put the variable that raised a null pointer exception in
state constraints. During the analysis of program, the state
constraint continuously converts until it converts to null. This
means that we find the null pointer assignment statement.
In this approach, the state constraint transition can be divided
into five types, as shown in Table 1. For each type, the table
shows type number and description (columns 1-2). Then it
shows example and transition way (columns 3-4).
For Type 1: if the state constraint variable is a simple

assignment variable, for example, a = b, then transforms a
to b.
For Type 2: if the state constraint variable is a parameter

of a function, then transforms actual parameter to formal
parameter when entering the function, and transforms formal
parameter to actual parameter when return from the function.
For Type 3: if the state constraint is a return value of a

function, for example, a = method( ), then transforms a to
the return value of method( ).
For Type 4: if the state constraint is an array variable, for

example, b = c, a = b[2], then transforms a to b and then to
c[2], and add b to States set, where States is a set of variables
that raised an exception.
For Type 5: if the state constraint is a dereference of a

member variable, for example, b = c, a = b.name, then
transforms a to b.name and then to c.name, and add b to
States set.
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TABLE 1. State constraint transition.

C. NULL POINTER EXCEPTION LOCALIZATION
ALGORITHM
Algorithm INPA-ST in Fig. 3 presents an overview of our null
pointer localization algorithm.

Starting at a node in ICFG that raised an exception, this
approach performs a backward and path-sensitive analysis
to determine whether v is assigned as null (lines 1-4). First,
the algorithm abstracts information from stack traces that we
stored in a file when an exception occurs and gets Element
(Unit, States), where Unit is a node in ICFG (UnitGraph),
States is a set of variable v that raises an exception and its
state constraint that is 〈v = null〉. The algorithm starts with a
state constraint that is 〈v = null〉, and updates states during
the path traversal. If the updated state becomes inconsistent,
the path is infeasible and the analysis stops traversing the
path. When the algorithm encounters a null assignment to
v,the state constraint becomes 〈null = null〉, which is rep-
resented an 〈true〉. This means that we find the origin of null
value.

If the algorithm obtains a NPA, then the NPA is the definite
NPA that raised the exception; if it obtains more than one
NPAs, then the NPA that raised the exception must be one
of the NPAs; if it does not obtain any NPA, then the variable
that raised the exception is not initialized.

Starting at a statement that dereferences variable v, Analy-
sis (Element) performs a backward and path-sensitive anal-
ysis to determine whether state constraint transition in a
function (lines 5-39). The algorithm initializes the worklist
with Element, and then performs backward analysis on each
predElement that is a predecessor of Element (lines 7-34).
If the Unit of predElement is an assignment statement,

then the algorithm transforms state constraint according to
type 1, type 4 and type 5 in Table 1(lines 11-12). If theUnit of
predElement is a call statement that invokes M, which M has
been analyzed, then the algorithm transforms State constraint
according to OutgoingStates. If M has not been analyzed,
the algorithm pushes M to function call stack and recursive
calls the algorithm (lines 14-23). If the Unit of predElement
is a return statement, then the algorithm transforms state
constraint according to type 3 in Table 1 when it is a return
statement (lines 24-26). If theUnit of predElement is the entry
of a method and not analyzed, then the algorithm assigns

the States of predElement to returnStates, otherwise adds the
States of predElement to returnStates(lines 27-31).

If the function call stack is empty and the stack trace is
not empty, the algorithm pops a statement from stack trace
and assigns the statement to the Unit of element. Meanwhile,
assigns the returnStates of the call function to the States of
element. And then recursive call the algorithm (lines 35-37).
If returnStates is 〈true〉, then add preElement.Unit to NPA,
which means that we find the origins of null values (line 38).

D. A CASE STUDY
In this section, we performs a case study to show our approach
how to locate the null pointer exception when there is a
null assignment statement, more than one null assignment
statements, and no any null assignment statement. It also
shows how to locate the fault when there is an alias in the
variables that raised null pointer exceptions. Fig.4 shows an
example program, and Fig.5 shows its ICFG.

1) ONE NULL ASSIGNMENT STATEMENT
Based on the above example and its ICFG in Fig.5, if a null
pointer exception occurs without any input when executing
the program, its stack trace is listed as follows:

Exception in thread ‘‘main’’ java.lang.NullPointerException
at example.ExampleException.

method3(ExampleException. java:35)
at example. ExampleException.

method2(ExampleException.java:32)
at example. ExampleException.

method0(ExampleException.java:22)
at example. ExampleException.

main(ExampleException.java:5)

The stack trace shows that the null pointer exception is
raised in method3() at line 35 (i.e. the dereferenced field
bigInt1 was null). The stack trace also shows that method2(),
method0() and main() are still on the stack when the excep-
tion occurs. The function call sequence is that main() called
method0() at line 5, mehod0() called method2() at line 22,
method2() called method3() at line 32.
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FIGURE 3. The algorithm of locating NPA.

First, we can find that variable bigInt1raises a null pointer
exception, and Element.States(in algorithm INPA-ST) is ini-
tialized with {bigInt1, 〈bigInt1 = null〉}. Along with edge
(35->34), the algorithm reaches the entry of method3().
Pop up the stack, the algorithm traverses line 32. Along
with edge (32->31), the algorithm reaches line 31 and the
value of Element.Statesis changed from {bigInt1, 〈bigInt1 =
null〉} to {bigInt2, 〈bigInt2 = null〉}. Along with edge (31-
>30), the algorithm reaches the entry of method2(). Pop up
the stack, the algorithm traverses line 22. Along with edge
(22->21), the algorithm reaches line 21, where the value of
Element.States is not changed. Along with edge (21->20),

the algorithm reaches the entry of method0(). Pop up the
stack, the algorithm traverses line 5. Along with edges (5-
>4->3), the algorithm reaches line 3 and enters a constructor
where it finds that bigInt2 is assigned null at line 17, the value
of Element.States is changed from {bigInt2, 〈bigInt2 =
null〉} to {bigInt2, 〈true〉}. At the same time, the stack trace
is empty. The algorithm terminates and it has only found one
null assignment statement that is line 17.

2) MORE THAN ONE NULL ASSIGNMENT STATEMENTS
If a null pointer exception occurs with input x when executing
the program, its stack trace is listed as follows:
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FIGURE 4. An example program.

Exception in thread ‘‘main’’ java.lang.NullPointerException
at example. ExampleException.

method3(ExampleException.java:35)
at example. ExampleException.

method2(ExampleException.java:32)
at example. ExampleException.

method1(ExampleException.java:28)
at example. ExampleException.

main(ExampleException.java:7)

The stack trace shows that the null pointer exception is
raised in method3() at line 35(i.e. the dereferenced field big-
Int1was null). First, we can obtain that variable bigInt1raises
a null pointer exception, andElement.States is initialized with
{bigInt1, 〈bigInt1 = null〉}. Along with edge (35->34),
the algorithm reaches the entry of method3(). Pop up the
stack, the algorithm reaches statement 32.

On traversing edge (32->31), the algorithm reaches state-
ment 31 and the value of Element.States is changed from
{bigInt1, 〈bigInt1 = null〉} to {bigInt2, 〈bigInt2 = null〉}.

Along with edge (31->30), the algorithm reaches the entry of
method2().

Pop up the stack, the algorithm reaches statement 28,
which has two predecessors (statements 26 and 27). Because
statement 27 is a null assignment statement, the value of
Element.States is changed from {bigInt2, 〈bigInt2 = null〉}
to {bigInt2, 〈true〉}, the algorithm terminates on the path and
has found a null assignment statement that is line 27.
Following back along edges (26->25->24), the algorithm

reaches the entry of method1(). Pop up the stack, the algo-
rithm traverses statement 7. On traversing edges (7->6->
4->3), the algorithm reaches statement 3 and enters a con-
structor where it finds that bigInt2is assigned a null at
line 17, the value of Element.States is changed from {bigInt2,
〈bigInt2 = null〉} to {bigInt2, 〈true〉}. At the same time,
the stack trace is empty. The algorithm terminates and it
has found another nullassignment statements. So we have
found two possible origins of null values that are state-
ments 17 and 27.

3) NO ANY NULL ASSIGNMENT STATEMENT
To illustrate, consider the example program in Fig. 4. Exe-
cuting the program with input 12 results in the following null
pointer exception and stack trace:

Exception in thread ‘‘main’’ java.lang.NullPointerException
atexample.ExampleException.

main(Example.java:9)

The stack trace shows that the null pointer exception is
raised in main( ) at line 9. First, we can obtain that variable
bigInt3raises a null pointer exception, and Element.States is
initialized with {bigInt3, 〈bigInt3 = null〉}. Along the edges
(9->8->6->4->3), the algorithm reaches statement 3 and
enters a constructor where it does not find any null assign-
ment statements to bigInt3.Then following back along edge
(3->2), the algorithm reaches the entry of main(), meanwhile
the stack trace is empty. So the reason of raising the null
pointer exception is that variable bigInt3 is not initialized.

4) EXIST ALIASES
To illustrate, consider the example program in Fig. 4.
Executing the program with inputs 1, 2, 3 results in the
following null pointer exception and stack trace:

Exception in thread ‘‘main’’ java.lang.NullPointerException
at example.ExampleException.

main(Example.java:13)

The stack trace shows that the null pointer exception is
raised in main() at line 13. If the algorithm Follows back
along edges (13->12->11->10->8->6->4->3->2), which
reaches the entry of main(), it will not find any null assign-
ment statements.
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FIGURE 5. Control flow graph of the example program.

The variable a.nameraised the exception at line 13, but it
assigned a null to b.name at line 12. When performing back-
ward analysis, the algorithm only searches variable a.name
whether it is assigned a null. Therefore, it cannot find the null
assignment statement.

If the algorithm performs aliases analysis firstly, it will
find the null assignment statement easily. The analysis begins
from statement 13, and Element.States is initialized with
{a.name, 〈a.name = null〉}. From aliases analysis, we obtain
that variables a.name and b.name are aliases after line 12.
Following back along edge (13->12), the algorithm reaches
statement 12, where assigns a null to b.name,and the value
of Element.States is changed from {a.name, 〈a.name =
null〉} to {b.name, 〈true〉}. The statement 12 is the result
that we search. Following back along edges (12->11->10-
>8->6->4->3->2), which reaches the entry of main(),
it will not find any additional null assignment statements.

Meanwhile the stack trace is empty, the algorithm terminates
and it obtains the null assignment statement 12.

IV. EMPIRICAL STUDY
To evaluate the effectiveness of our tool, we implemented
three tools: the first tool is a program slicing tool JSST which
is guided by stack trace; the second tool is a localization tool
SSoot that using Soot [5] to locate the NPA, without using
stack trace information; The third tool is our localization
tool INPA-ST for null pointer exceptions that describes in
section III.

We also conducted an empirical study on open-source
projects SourceForge [6], the BUGZILLA defect reports for
the projects, and the null pointer data set in [7]. This section
describes the experimental subjects, experimental design
and implementation, and then presents the results of the
study.
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TABLE 2. Subjects for the experiment.

A. EXPERIMENTAL SUBJECTS
All experimental subjects come from open-source projects
SourceForge [6] and the null pointer data set in [7].We looked
through the BUGZILLA repository for defect reports that
show appearance of null pointer exceptions. This paper
chooses those that have stack trace, the source line numbers,
and can be analyzed by Soot. Table 2 lists the 18 subjects
from eight projects which are used for the study. The table
shows, project release and Loc (columns 1-2), the class in
which raised a null pointer exception (column 3), and the
line number the null pointer exception raised (column 4). The
sizes of the applications in terms of the number of nodes
in the ICFG vary from approximately 44,937 for Jode 1.0.9
to over 223,869 for JFreeChart 1.0.2. Our experiments are
conducted on Windows Server 2008 R2 with 32GB of RAM,
Open JDK 1.7.

B. EXPERIMENTAL DESIGN AND IMPLEMENTATION
To evaluate the effectiveness of our tool, we design two
research questions (RQ1 and RQ2). To evaluate the correct-
ness of our tool, we design the third questions (RQ3).
• RQ1: Which one is more effective in locating the NPAs,
JSST or INPA-ST ?

• RQ2: Can the stack trace affect the efficiency in locating
the NPAs?

• RQ3: Are the results of our approach correct in locating
the NPAs?

1) JSST
Weiser [3] suggests that when developers debug a program,
they often use backward slicing: They start from the state-
ment of failure and work backward, following data and con-
trol dependences, examining all codes that might affect the
behavior of the failure statement until they find the bug.
Susan horwitz [20] studied many kinds slicing and showed
that callstack-sensitive slicing can dramatically decrease
slice sizes: On average, a callstack-sensitive slice is about

0.31 time the size of the corresponding full slice, down to
just 0.06 time in the best case.

When a null pointer exception occurs, the stack trace stored
by the Java runtime environment includes the code line that
throws the exception and the method that contains this line of
code. The information of stack trace also contains all methods
currently on the runtime stack, along with the statements in
those methods at which the method calls were made. Further-
more, the methods that have been called during the execution
and have already normal returned will not appear in the stack
trace.

Therefore we can perform callstack-sensitive slicing using
stack trace information. First, we infer program execution
path according to stack trace, and classify the methods and
statements as may-execute, partial-execute and not-execute.
• May-execute: All of the statements in these methods
maybe executed, but we cannot determine the execution
path within these methods and whether a specific state-
ment is executed or not. There are two reasons for this
case: only relying on the stack trace information, the
execution paths within the method cannot be inferred;
due to the polymorphic feature of object-oriented lan-
guages, even when we are sure that one invoke statement
is executed, we still could not know the callee method
belongs to which class if it is executed and normally
return. Although the points-to analysis can be used to
determine the pointer type, the result is approximate but
not accurate.

• Partial-execute: In this condition, the methods are def-
initely executed, but some statements in the method
maybe executed while the other part of statements are
definitely not executed. These methods should be called
only once in the execution, and terminated by the raised
exception, so they must appear at the stack trace. As a
result, by observing the termination nodes, we can deter-
mine which statements in the method are executed and
which are not.

• Not-execute: These methods are certainly not executed
during the program execution. They are just the methods
that are never called in the may-execute methods and
the statements which may be executed in partial-execute
methods. Since they are not executed at all and have
nothing to do with the cause of exception, they will be
ignored in the slicing phase afterwards.

We implemented program slicing tool JSST. Firstly,
we used Soot [5] to handle Java bytecode of the program
and construct the CFGs and call graph. Then we mapped the
methods in the stack trace and their corresponding lines into
the source code, and then identified the execution state of
all methods in the system (i.e. may-execute, partial-execute
and not-execute). Finally, we performed control dependence
and data dependence analysis to construct the simplified SDG
which only contained may-execute, partial-execute methods,
and then used our improved slicing algorithm to perform
backward program slicing. By doing this, not only the size
of slice will be reduced without affecting the content we
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really cared about, but also the SDGwould be simplified. The
detail algorithm had been presented in our previous research
work [23].

For JSST tool, program slicing criteria is C = (x, v)
where x is a statement in program P that raised a null pointer
exception and v is the variable in x that raised a null pointer
exception, where v = null.

2) SSOOT
We implemented a localization tool SSoot. Firstly, we per-
formed program slicing using traditional methods [3] from
the point that raised a null pointer exception. Secondly,
we performed the null pointer analysis and alias analysis on
the sliced programs using Soot.

3) INPA-ST
We also implemented our localization tool INPA-ST. Firstly,
we adopted Soot to construct the CFG, and then constructed
the ICFG according to the method calling graph. Secondly,
we used Spark tool to perform aliases analysis on the vari-
ables that raised the null pointer exception. Finally, we imple-
mented the algorithm INPA-ST to perform null dereference
analysis and locate the NPA.

To answer RQ1, we compare the results of JSST with that
of INPA-ST.

To answer RQ2, we compare the results of SSoot with that
of INPA-ST.

To answer RQ3, we manually check all the results to verify
the correctness.

C. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we answer the three proposed research ques-
tions through analyzing the experimental results to verify the
effectiveness and correctness of our approach.
RQ1 (Which one is More Effective in Locating NPA, JSST

or INPA-ST?): Program slicing is an effective tool for assist-
ing software fault location. Susan horwitz [20] studied many
kinds of program slicing and showed that callstack-sensitive
slicing could dramatically decrease slice sizes. When a null
pointer exception raised, the stack trace includes all methods
currently on the runtime stack, along with the statements in
those methods at which the method calls were made. There-
fore, we can using the method calling information to perform
program slicing which is very similar to callstack-sensitive
slicing. The difference is that the stack trace does not include
the methods that have been called during the execution and
have already normal returned.

We then compare the result of JSST with the result of
INPA-ST.

Table 3 presents the data that we collected. The
Table shows, for each subject, project release, Loc
(columns 1-2), the number of code lines that need to examine
and the time it needs for the NPA using JSST approach
(columns 3-4), the number of code lines that need to exam-
ine and the time it needs for the NPA using INPA-ST

TABLE 3. The comparison of JSST with INPA-ST.

(columns 5-6), and the time that INPA-ST needs / the time
of JSST needs rate (column 7).

As listed in Table 3, we find that INPA-ST performs better
than JSST. For the first project, the code that a programmer
has to examine 15525 lines during locating the NPA using
JSST, but the programmer only need examine one line using
INPA-ST, and the time of INPA-ST needs is about 20% time
that of JSST needs. For Mckoi 1.0.6 project, the code that a
programmer has to examine 76 lines during locating the NPA
using JSST, but the programmer only need examine one line
using INPA-ST, and the time of INPA-ST needs is about 11%
time that of JSST needs.

Therefore, INPA-ST is more effective in locating NPA than
JSST.
RQ2 (Can the Stack Trace Affect the Efficiency in Locating

the NPA?): In this section, we examine the effect of stack
trace on locating null pointer exception.

This paper analyzed each execution using INPA-ST tool
and computed definite and possible NPAs. Table 3 presents
the data that we collected. The Table shows, for each sub-
ject, project release and Loc (columns 1-2), the number of
code lines that need to examine and the time it needs for
null pointer exception using SSoot approach (columns 3-4),
the number of code lines that need to examine and the time it
needs for null pointer exception using our method (INPA-ST)
(columns 5-6), and the time that INPA-ST needs / the time of
SSoot needs rate (column 7).

As listed in Table 4, we find that our approach performs
better than the compared approach SSoot. For example, for
the first project, the code that a programmer has to examine
117 lines during localization the null pointer exception using
SSoot, but the programmer only need examine one line using
our approach, and the time of INPA-ST needs is about the
same as the time of SSoot needs. For Ant 1.7.1 project,
the code that a programmer has to examine 6 lines during
localization the null pointer exception using SSoot, but the
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TABLE 4. The comparison of SSOOT with INPA-ST.

programmer only need examine one line using our approach,
and the time of INPA-ST needs is about 71% time that of
SSoot needs.

For the four projects in the middle of Table 4 (JFreeChart
1.0.2, Checkstyle 4.2, JFreeChart 1.0.2, JRefactory 2.9.18),
the size of SS is much more lines than that of rest of the
projects that we studied. The reason is that they are not
performed aliases analysis due to not find themain class in the
projects. Alias analysis by Soot must start from main class,
so we do not perform aliases analysis for the four projects.

As listed in Table 4, we give the time that needs for locating
the NPA using two different methods. We can find that the
time our approach needs is less than that of the compared
approach SSoot needs for all the project programs. Therefore,
the stack trace do affect the efficiency on locating null pointer
exception.
RQ3 (Are the Results of our Approach Correct in Locating

the NPAs?): To answer the question, we manually checked
all the results to verify the correctness of our approach. The
result is that all the statements that have found using our tool
conclude all the incorrect assignment statements that lead to
null pointer exception occurred.

Consider project Ant 1.5.1 in Table 4 (the sixth row).
The stack trace of that execution shows that the null
dereference occurs at line 327 in method bsR( ) of class
CBZip2InputStream:
java.lang.NullPointerException
at org.apache.tools.bzip2.CBZip2InputStream.

bsR(CBZip2InputStream.java:327)
at org.apache.tools.bzip2.CBZip2InputStream.

bsGetUChar(CBZip2InputStream.java:346)
at org.apache.tools.bzip2.CBZip2InputStream.

initBlock(CBZip2InputStream.java:232)
Line 327 of bsR( ) contains a call of a method read( ) of an
object bsStream.

[320] private int bsR(int n) {
[321] int v;
[322] {
[323] while (bsLive < n) {
[324] int zzi;
[325] char thech = 0;
[326] try {
[327] thech = (char) bsStream.read();
[328] } catch (IOException e) {
[329] compressedStreamEOF();
[330] }. . .

To locate the NPA, we would have to trace back in method
bsR( ) to see where the value of bsStream comes from. Then
we trace back into the caller method bsGetUChar(),where we
do not find bsStream,and then we trace back into initBlock(),
where we still do not find bsStream.We trace back to the
declaration section of class CBZip2InputStream,where we
find line 149, which defines a variable of type InputStream,
bsStream, which is not assigned an initial value. In Java, its
default value is null. Therefore, line 149 is the statement that
we want to find.
[142]private int unzftab[] = new int[256];
[143]
[144] private int limit[][] = new int[N_GROUPS]

[MAX_ALPHA_SIZE];
[145] private int base[][] = new int[N_GROUPS]

[MAX_ALPHA_SIZE];
[146] private int perm[][] = new int[N_GROUPS]

[MAX_ALPHA_SIZE];
[147] private int minLens[] = new int[N_GROUPS];
[148]
[149]private InputStream bsStream;
[150]
[151] private boolean streamEnd = false;

If using our tool for this null pointer exception, it need only
4s to find the incorrect assignment statement.

D. DISCUSSION
The evaluation shows that, for the subjects that this paper
studied, the approach is more efficient in locating the null
pointer assignment statements than the compared methods.

To compare our approach with a baseline using a manual
check by several experienced developers, we conducted an
experiment. Our population consisted of six students in com-
puter science (four) and software engineering (two) whowere
just about to get their degrees. These students included two
PhD and fourmaster students. Their programming experience
ranged from three year up to nine years. We gave them the
three projects, Freemaker, Mckoi 1.0.6 and Jode 1.0.9, and
asked them to locate the error statements that caused the null
pointer exceptions manually in IDEs. The results is as fol-
lows. Only two of six students find the three error statements
within 30 minutes; three of six students find only two error
statements within 30 minutes; and one of six students find
only one statement within 30 minutes.
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If the statement that raised the null pointer exception and
the source statement at which an incorrect assignment was
made is within one class, locating the incorrect assignment
statement manually in IDE is relatively easy. Otherwise it is
hard for developers.

However, there are several threats to the validity of the
evaluation. Threat to internal validity is that our implemen-
tation could have some flaws that would affect the accuracy
of the results. However, the implementation is based on the
Soot [5] that has been used by many practitioners. Addition-
ally, we have manually checked all the results to verify the
correctness.

Threat to external validity is the ability to generalize the
results for null pointer exceptions, based on the subjects we
used. In our experiment, we use 18 programs of eight projects
and our approach works well. But, we are unable to conclude
that our approach will hold for subjects in general.

V. RELATED WORK
There are many related researches in fault localization,
which can be divided into three categories: static analysis,
dynamic analysis and combining dynamic with static analysis
methods.

The static methods include: Hovemeyer [9] applied for-
ward inter-procedure data flow analysis and annotations to
find null pointer dereferences bugs. Evans [10] combined
annotations to detect errors in C programs, such as memory
leak and dangerous aliasing. Dong et al. [16] proposed a
region-based memory model for detecting null pointer deref-
erences (NPDs) in C programs. Ma et al. [17] proposed
a static analysis tool – LUKE for detecting NPDs in C
programs, they also proposed a context and path sensitive
algorithm for detecting NPDs [18]. Duan et al. [19] pro-
posed a NPD verification approach for C programs. Nanda
and Sinha [11] presented a context sensitive inter-procedural
approach that could identify potential null pointer derefer-
ences. Xie and Engler [12] used redundancy checkers to find
null dereferences, potential deadlocks.

All above methods are purely static, thus they suffer from
the common problem of imprecise analysis. Unlike this paper
combine the dynamically generated information (from the
stack trace) with the static analysis.

Hangal and Lam [13] attempted to find bugs by dynamic
program invariant detection. Romano et al. [15] proposed a
search-based test data generation approach to automatically
identify the null pointer exceptions. However, gathering of
dynamic invariants is an expensive work that may not suitable
for large programs. In contrast, this paper’s approach uses
stack trace information to locate faults, and does not need to
collect dynamic information.

Bond et al. [7] presented an approach to finding the origin
of null and undefined value errors. Their idea is piggyback-
ing: when the original program stores a null value, value
piggybacking instead stores origin information in the spare
bits of the null value. Unlike their approach, we perform
analysis backward guided by stack trace.

In [8], we also presented a fault localization approach
for null pointer exception based on stack trace and program
slicing. Unlike the approach in this paper, that approach used
Soot tool to find the null value assignment statements, which
could give more than one statement. The approach in this
paper, for most of projects, can find one or two statements
that are possible origins of null values.

Tomb et al. [14] presented an approach to locating run-
time exception in Java programs by combining static and
dynamic analysis. The approach first performed forward
inter-procedural symbolic execution to locate constraints that
may reveal an exception, and then attempted to generate test
cases to raise that exception. However, this paper’s analysis
is backward, and it starts from a statement where it raised an
exception, and it uses the available runtime information, such
as stack traces, to guide the backward analysis.

Sinha et al. [4] proposed an approach to locating and
repairing faults in Java programs due to incorrect assignment
of a value that finally leads to the exception. The approach
performed a backward stack trace guided data flow analysis,
starting at the point where the exception was thrown, to find
the origin of null value for the exception. They implemented
the tool for null pointer exceptions using the XYLEM tool,
which used WALA [21] analysis infrastructure to construct
the call graph and the ICFG. Our approach also leverages
an inter-procedural path sensitive analysis. However, we use
Soot analysis infrastructure to construct the call graph and the
ICFG.

Horwitz et al. [20] evaluated call stack-sensitive slicing
and slice intersection as applied to debugging. Their tech-
nique can help a programmer find the problem more quickly
by reducing the size of the backward slice from the point
of failure. To answer RQ2, the compared approach also per-
forms program slicing using traditional methods, rather than
guided by stack trace. And then performs the null pointer
analysis and alias analysis on the sliced programs using Soot.
In [20], they only discussed the effect of stack trace on
program slicing. However, we discuss the effect of stack trace
on locating the null pointer exceptions in this paper.

Program slicing [3], [22], [24] is a widely studied tech-
nique for debugging. For null pointer exception localization,
a static program slice [3] could identify all statements that
could affect the value of vwhose value is null, which includes
all NPAs. However, the developer would be faced with the
task of examining the slice to identify the definite NPA.
A dynamic slice [24] could compute with respect to the exe-
cution trace of a failing executing, excluding the NPAs that
do not execute in this executing. Thus, it could exclude some
of the possible NPAs identified by our INPA-ST. However,
dynamic slicing requires the program to be rerun, with instru-
mentation, on the failing inputs. Moreover, dynamic slicing
itself can be very slow, which would not be practical for large
programs. Our approach uses readily available stack-trace
information, and requires no re-execution of the program.

Wu et al. [25] proposed CrashLocator, a method to
locate faulty functions using the crash stack information in
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crash reports. Their work targeted at crashing fault localiza-
tion by statistically analyzing a large amount of crash data
collected from different users. Our work is different from
them in that our approach locates the faulty statement not the
faulty functions.

Xuan et al. [26] proposed NOPOL, an approach to auto-
matic repair of buggy conditional statements, which took a
buggy program as well as a test suite as input and generated a
patch with a conditional expression as output. In their work,
fault localization is used as a step of ranking suspicious state-
ments to find out locations of bugs. Durieux et al. [27] pre-
sented a technique, calledNPEfix, to explore the repair search
space of null pointer exception bugs with metaprogramming.
Different from fault repairing, our work is to locate the error
source, which is the first step of repairing the fault.

Gu et al. [28] proposed an automatic approach, namely
CraTer, which predicts whether a crashing fault resides in
stack traces or not (referred to as predicting crashing fault
residence ). However, our work combines dynamic analysis
(using stack-trace information) with static backward data-
flow analysis to identify the source statement.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present an automatic localization tool for
null pointer exception. The approach performs a backward
data flow analysis, under guided by stack trace, starting at
the point where the exception was thrown, to find the root
causes of the exception. Then we conduct some experiments
on 18 open source programs, and the experimental results
show that our tool is effective in locating the null pointer
exception.

There are several areas of future work which are planned to
conduct. One is that it will apply the approach to other types
of runtime exceptions that are based on incorrect assignment.
The other is that it will extend the implementation to provide
context information for repairing the exception.
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