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ABSTRACT In this paper, we model the malware detection problem as a graph inference problem, and
develop a novel belief propagation approach within a semi-supervised learning scheme that fully makes use
of files’ and hosts’ connections to detect malware. Specifically, with network download data, we build a large
graph that depicts files’ co-occurrence and files-hosts relationship. Different from the classical methods that
heuristically define edge weights only in the file co-occurrence graph, we develop a new method to integrate
homophilic host-file relationship on top of file co-occurrences. Then, by using the linear neighborhood
model, we first perform propagations in the subgraph of files to achieve their stabilization, then extend
the propagation to the complete file-host graph. To facilitate this propagation procedure, we develop a set
of algorithmic tools that extract information for the linear neighborhood model from the link structure of
download events. Also, we theoretically show that, under some mild conditions, our propagation method
could reveal the actual labels of unlabeled nodes in the complete graph. Finally, we perform a set of
experiments that demonstrate the effectiveness of our new method in a variety of contexts on a real-world
dataset.

INDEX TERMS Malware detection, machine learning, data mining, semi-supervised learning, graph
algorithms.

I. INTRODUCTION
As the number of computers increases dramatically and they
ubiquitous access to a high-speed Internet connection, mal-
ware, which is also known as malicious software, has spread
and infected computers around the world at an unprecedented
rate. Protection against malware attacks is very important
as the cost of these attacks increase. In particular, the bat-
tle against malware is becoming very difficult as attackers
develop extremely sophisticated techniques to break tradi-
tional security measures. This suggests malware detection
solution will face great challenges in the years to come,
as they will likely be outpaced by the threats created by mal-
ware authors. Analysis based on executable individual files
has always been the main means of malicious file evaluation
and detection. Currently, this kind of thinking provides an
effective platform for malware detection.

Recent years, cloud services are prominent within the pri-
vate, public and commercial domains. Many of these ser-
vices are expected to be always on, therefore, security is a
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critical consideration. In order to remain secured, a cloud
needs to possess the ability to react to threats [1]. In 2008,
Oberheide et al. [2] first proposed anti-virus cloud service
at the conference on USENIX security. More and more
scholars and security vendors have researched and released
malware detection tools and solutions based on this conc-
ept [3]– [5]. Generally, the cloud security service follows
the steps described below. Cloud service submits executable
files which cannot be determined by the local anti-virus
engine on the end host, and summarizes files submitted by
the anonymous ID of the end host. These files are either man-
ually evaluated by experts in the security team, or automat-
ically evaluated by traditional defense mechanisms. At last,
the evaluated results upgrade the security strategy on end
hosts to improve the defense. Fig. 1 exhibits an example of
the cloud security service.

The method that is independent of the contents of the file
is established under the reputation system by analyzing the
credibility of the source of the file. Several previous mal-
ware detection works investigate how malware propagates
in networks and analyze the temporal propagation pattern of
executable files [6]– [11]. Although these methods apply the
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FIGURE 1. Work flow of cloud security service.

technique to the analysis of characteristics of malware, they
ignore the interaction between malicious or benign files and
the reputation of end hosts.

There are several previous works providing an effective
complement to analytical techniques for malware detection
via machine learning algorithms. Chau et al. [12] formu-
late the malware detection problem as a file reputation
inference problem over a machine-file bipartite graph. They
assume the machine-file relationship can follow homophily.
Inferring file goodness through incorporating homophilic
machine-file relationships domain knowledge and intuition,
and other files’ goodness through their influence on asso-
ciated machines. The focus of Rajab et al. [13] is specif-
ically on the reputation of most downloads locally. Their
method processes the features sent from the browser and
computes a reputation decision informed by the client request
and a reputation metric constructed from previous client
requests. Rahbarinia et al. [14] present an approach for
accurate real-time detection of malware download events.
This method combine the knowledge derived from historic
relationships between machines, files, and UPLs that were
triggered by clients, with both system and network proper-
ties of each download event. Although the reputation of the
container provides evidence of the reputation of the file in it
and the reputation of files provides an extremely important
basis for these methods, the heuristic or experience-based
reputation system makes techniques inflexible to the dra-
matic increase in new malware. These methods have heavily
relied on refining existing signature-based protection mod-
els pioneered by the industry. In addition, these machine
learning algorithms require an amount of labeled ground
truth for training purposes. Researchers discuss methods to
incorporate class priors and the predictions of classifiers
obtained by supervised learning. The reputation score of files
is often, however, very time consuming and expensive to
obtain, as the reputation score requires the efforts of human
annotators.

Semi-supervised learning is a type of machine-learning
technique that is especially useful when a limited amount of
labelled data exists for each class [29]. These techniques cre-
ate a supervised classifier based on labeled data and predict
the label for all unlabelled instances. Based on the file-to-file
relation network, Chen et al. [15] design several robust graph-
based features for malware detection and reveal its relation-
ship characteristics. Based on the designed features and two
findings, they select the representative samples from the large

FIGURE 2. Overview of our approach to malware detection.

unknown file collection for labeling and then use the belief
propagation algorithm to detect malware. Tamersoy et al. [16]
leverage locality-sensitive hashing to measure the strength of
these inter-file relationships to construct a graph, on which
it performs large scale inference by propagating information
from the labeled files (as benign or malicious) to the pre-
ponderance of unlabeled files. Ni et al. [17] construct the
file relation graph, k-nearest neighbors are chosen as adjacent
nodes for each file node. Their Label propagation algorithm
propagates label information from labeled file samples to
unlabeled files. The algorithm is used to learn the probability
that one unknown file is classified as malicious or benign.
However, there are two drawbacks in file co-occurrence based
malware detection. One is that their detectionmethods largely
sacrifice the utilization rate of files, because a large number
of the unlabeled file is ignored as noise by detection methods
during processing. The other is these defenses that ignore
the tracking of the latest virus files between hosts are only
partially effective, given that they tend to lag behind the
latest threats, thus leaving users exposed to new malware
infections.

In this paper, we revisit the problem of file co-occurrence
and interaction between end host and file by incorporating
Semi-supervised learning into the problem formulation. The
main challenge here is that there are no partially labeled
files available for clusters. Hence the machine learning has
to be done in a semi-supervised fashion. To achieve high
detection accuracy, we introduce a graph model defined the
link structure of the files to discover other files that are
likely to be malicious or benign, and then we guide security-
related profiling that learns the risk scoring framework for
files via user’s downloading behavior. This is in contrast
with previous works, which attempt to detect malware down-
loads based primarily on features derived from network traf-
fic [30] [13] or that only consider the relationships between
end hosts and files [12].

Fig.2 shows an overview of our approach to malware
detection. Due to the cloud security service, real-time files
download events are recorded when hosts submit files to the
remote server. Our system aims to detect malware by another
consideration about who is downloading what files. The
importance of an executable file is an inherently subjective
matter, which depends on the readers’ interests, knowledge,
and attitudes [25]. The average files quality experienced by
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most of the user is higher than the quality of the other average
files, which is because the certain special purpose of creating
and publishing files results in a large fraction of low quality
that the users are unlikely to use [26]. The dependencies
are derived from our domain knowledge. User activities on
benign hosts result primarily in benign files downloads and
occasional unintended malicious files downloads. Hence we
may assume that benign hosts are more likely to download
benign files than malicious files. Similarly, a benign file’s
neighbor is more likely to benign host than a malicious host.
However, malicious hosts are more likely to visit malicious
files as malware tends to be associated with many malicious
files. We derive the relationship between files via end hosts’
behavior. A good file is likely to be associated with a machine
with a good reputation than with a low-reputation one [11].
The idea that the accuracy of file co-occurrence can be signif-
icantly improved with a cluster metric tailored to the specific
data set is well documented. Themethod of learning an appro-
priate cluster metric from a given reputation score or partially
reputation score training file has demonstrated to be effective
in the literature lately [24].

In themalware detection community, there have beenmany
previousworks using belief propagation algorithms or limited
neighborhood set approaches. Although those use efficient
computational methods, the classification criteria used in
most of them are based on just local properties of the billion-
node graph. Our method combines knowledge derived from
historic relationships between hosts and files, with both files
co-occurrence and files-hosts relationship properties of each
download events. We prove theoretically that our matrices
of graph-based methods can precisely approximate the label
propagation framework. Therefore, this approximated matri-
ces can be used as smoothmatrices as in standard graph-based
malware detection algorithms.

The main contributions of this paper are as follows:
• We present a novel technology that detects mal-
ware through large-scale graph inference based on the
scalable belief propagation algorithm. It infers every
file’s reputation, flagging files with a low reputation
as malware. Our method leverage large-scale situa-
tion awareness about cloud security service-based files
download events and casts the problem of detect-
ing new malware downloads as an inference prob-
lem over cyclic (files
files)→hosts→files relationship
graph.

• Note that the existing approach has been demonstrated
to be effective when threats are known in advance, but
the methods cannot cope with previously unseen mal-
ware, or with large amounts of new malware. Unlike
the previous work, our method does not require a sig-
nificant amount of malicious code and benign con-
tents be identified and labeled beforehand, and thus
allows us to more accurately detect future malware
downloads.

• We show that the final classification result of our method
is much more effective and usable for malware detection

at any time, and for unknown malware detection com-
pared to other methods mentioned.

II. METHODS
Our goal is to propose an approach that scales hun-
dreds of millions of users and protects them from down-
loading malware while at the same time limiting the
impact on their privacy. We focus on two aspects, file
co-occurrence and homophilic host-file relationship, based
on a semi-supervised graph-then-cluster method. In several
earlier work, researchers demonstrated that a semi-supervised
graph-then-cluster method can produce a reliable classifica-
tion model from small amounts of labeled data [18]– [22].
In this section, we propose an improvement of the method
proposed in earlier studies and we also provide the theoretical
justifications of the feasibility of our method.

A. FILE CO-OCCURRENCE
We first review the harmonic property under the graph nota-
tion. The harmonic property means that the reputation value
of files at each point is the average of files at neighboring
points. Harmonic property is at the heart of graph-based
methods. As in [23], we assume that all of these neighbor-
hoods are linear, that is, each data point can be optimally
reconstructed by using a linear combination of its neigh-
bors. In this paper, given the co-occurrence graph of files,
we employ label propagation to infer the reputation value of
files.

As outlined briefly in this section, the basic framework
presented in the previous section can be viewed in several
fundamentally different ways and these different viewpoints
provide a rich and complementary set of techniques for rea-
soning about this approach to the semi-supervised learning
problem. Imagine a particle walking along the graph, starting
from a node, it moves to another node with probability after
one step, the walk continues until the particle hits all over
the node. To provide some intuition on how most semi-
supervised methods works, Wang et al. [20] described how
the labels propagate through the linear neighborhoods.

In practice, a file fi has no multiple direct hyperlinks to
another file fj. Fig. 3 represents a example which implies a
bipartite graph of files and end hosts, an edge between them
indicating the emergence of the file in the end host. We con-
sider two files as co-occurrence if they are downloaded by
the same host. Roughly speaking, the individual files that
share the same host belong to the same cluster. Under this
definition, we build a file co-occurrence graph which is an
undirected graph with each vertex representing a distinct file.
We add one or more links between file fi and file fj if there
are one or more times of file fi and file fj co-occurrence in the
original cluster graph.

We derive a reliable and stable way for malware detection
if there are only very few labeled files available. We propose
to use the neighborhood information of each file to construct
G = (F,W ) with the files set F = f1, f2, . . . , fn, ∀f ∈ F can
assign a real value of reputation to every file, and the weight
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FIGURE 3. An example of the files co-occurrence graph and the labels
propagate through the linear neighborhoods.

wij ∈ W reflects the similarity between fi and fj. We assume
the n × n symmetric weight matrix W on the edges of the
graph is given. For example, when (xi1, xi2, . . . , xim) ∈ R is
the feature vector for fi, the weight matrix is

wij = exp(−
m∑
d=1

(xid − xjd )2

σ 2
d

) (1)

where the variance σ1, . . . , σm are free parameters. File co-
occurrence of the function states that the reputation value of
a file is the linear combination of the value of its neighbors.
After all of the reconstructing weights are computed, we can
construct a sparse matrixW by

W (i, j) = wij (2)

Given in matrix diag(di) is the diagonal matrix with entries
di =

∑
j wij

d = max
(
di =

∑
j
wij
)

(3)

After the graph is constructed, we have to make use of it to
predict the labels of the unlabeled vertices. Here, we propose
a scheme to the one in Label Propagation, which can itera-
tively propagate the labels of the labeled data to the remaining
unlabeled data on the constructed graph. The process of labels
propagate property means that the value of fi at each data
point is the average of fi at neighboring points, Therefore,
the label of the reputation of fi at m + 1 times propagation

steps.

f m+1i =
α

d

n∑
j=1

wijf mj + (1− α) ti (4)

where 0 < α < 1 is the fraction of label information that fi
receives from its neighbors. Let t = (t1, t2, . . . , tn)T . Fm =
(f m1 , f

m
2 , . . . , f

m
n )T is the prediction label vector at iteration t ,

and F0
= t. The equivalent matrix equation is:

Fm+1 =
α

d
WFm + (1− α) t (5)

We will use (5) to update the labels of each data object
until convergence. First, we will analyze the convergence
property of the iterative formula (5) and propose a one-shot.
Specifically, we have the following theorem:
Theorem 1: The sequence Fm computed by (5) will con-

verge to

Fm = (1− α)
(
I −

α

d
W
)−1

F0 (6)

when m→ 0 and F0 is the initial condition.
Proof: By (5), we have

Fm =
(α
d
W
)m−1

F0
+ (1− α)

m−1∑
i=0

(α
d
W
)i
F0 (7)

Since wij ≥ 0, di =
∑

j wij and d = max
(
di =

∑
j wij

)
.

We will construct a other sparse marixM :

M (i, j) =
(
mij
)
=

(
wij
di

)
≥

(wij
d

)
=

1
d
W (i, j) (8)

Since mij ≥ 0 and
∑

j mij = 1, from the theorem of Perron-
Frobenius [27], we know that spectral redius ofM or ρ(M) ≤
1, and 0 < α < 1, thus,

lim
m→∞

(αM)m−1 = 0 (9)

Based on the formula (8), we can easily derive the following
theorem:

0 6 lim
m→∞

(α
d
W
)m−1

6 lim
m→∞

(αM)m−1 = 0

lim
m→∞

∑m−1

i=0

(α
d
W
)i
=

(
I −

α

d
W
)−1

(10)

where I is the identity matrix of order n, Clearly, the sequence
Fm will converge to

F = lim
m→∞

Fm = (1− α)
(
I −

α

d
W
)−1

F0 (11)

which proves a theorem. Hence, we can use F as the classifi-
cation function, which results in a one-shot method. That is,
we can predict the labels of all the data objects in one step.

The common denominator of graph-based methods is to
model the whole data set as a graph G = (F,W ), as we have
mentioned in this section. But just studying the relationship
between files cannot provide a strong basis for malware
detection. In our case, the homophilic host-file relationship
based on file co-occurrence is at the heart of the malware
detection method.
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FIGURE 4. An example of the bipartite graph of files and end hosts the
labels propagate through the linear neighborhoods.

B. HOMOPHILIC HOST-FILE RELATIONSHIP BASED ON
FILE CO-OCCURRENCE
We believe that focusing on the behavior of user downloading
files is justified for several reasons: with the gradual upgrade
of the anti-virus engine’s defense capabilities in recent years,
the anti-virus engine gives appropriate prompts when the host
downloads files that are not unknown binary by the anti-
virus engine. User activities on benign hosts result primarily
in benign file accesses and occasional unintended malicious
file access. The benign hosts are more likely to visit benign
files than malicious files. Similarly, a benign file’s neighbor
is more likely to be a benign host than a malicious host.
Malicious hosts are more likely to visit malicious files as
malware tend to contact many malicious files [11]. The
fact that homophilic host-file relationships that, good files
are more likely to appear on downloading the list of end
hosts with a good reputation and bad files are more likely
to appear on downloading the list of end hosts with a low
reputation.

This section presents the procedure of the labels propagate
through the bipartite graph of files and end hosts on a exam-
ple. Fig. 4 shows an example of the dataset of file submission
records obtained from the cloud security service. We con-
struct the bipartite graph of files and end hosts, according
to this submission records. Due to the cloud security service,
when hosts submit files to the remote server, the timestamp is
recorded as well. We consider file-file relationships with little
correlation if there is a one-hour interval between the files’
submission from the same host. Thus, we split the original
whole dataset into multiple datasets according to the time
interval that they belong to, and we consider host-file rela-
tionships at the same time interval only. We evaluate the
performance of malware detection under different time in our
experiments as shown in the later subsection. Furthermore,
as shown in Fig. 4, we build the union graph of files and end
hosts. We conduct edge-weight learning and label prediction
on the graph.

Apparently host-file relationship is responsible for creat-
ing malware detection method. We assume there are l hosts
h1, h2, . . . , hl which denote the reputation score of the host
andm files f1, f2, . . . , fm which denote the reputation score of
the file.We assume an l×m edgesmatrixE on the edges of the
graph is given. For example, when the ith host download the
jth file once or twice, the edges matrix can be eij = 1 or2. For
our purposes, the matrix E fully specifies the data manifold
structure. The reputation score of each host is the summation
of the reputation score of files which is downloaded by the
host: hi =

∑
j eijfj. On the contrary, we use the same method

to get reputation score of ith file: fi =
∑

j ejihj. Above on,
host-file relationships becomes: H = EF, F = ETH .

Hm+1
= EFm

Fm+1 = ETHm (12)

Given the file co-occurrence mentioned above, we can
develop the method to integrate homophilic host-file rela-
tionship on top of file co-occurrences, meanwhile, the labels
of files are propagating through the linear neighborhoods.
In fact, in each propagation step, we let each data file absorb
a fraction of label information from its neighbors and then
exchange some label information of its hosts.

Hm+1
= EŴFm

Fm+1 = ETHm (13)

It is straightforward to associate File co-occurrence assump-
tion with Theorem1 mentioned in last subsection. We imag-
ine that the sequence {Fm} propagates the fraction of label
information to their linear neighbors until convergence, and
then the relabeled sequence {Fm} continues to propagate
label information to their hosts who download them. We can
consider the sequence {Fm} in the second formula of (13) as
the initial condition of the first formula at each time. Using
the conclusion of Theorem1, we can rewrite our iteration
equation.
Theorem 2: The prediction results of our method can be

derived from the reconstructive framework:

Hm+1
= E

[
(1− α)

(
I −

α

d
W
)−1]

Fm

Fm+1 = ETHm (14)

where (W )ij is the weight matrix by solving (1) for the
reconstruction weights of each data object from its neighbors.
Fig.5 shows the basic idea of the procedure described above,
which underscores the file co-occurring as well as the host-
file relationship. We use (14) to update the labels of each
data object until convergence. Convergence means that the
predicted labels of the data will not change in several suc-
cessive iterations. The convergence analysis of our algorithm
will be presented in the next subsection. After the graph has
been constructed, we make use of it to predict the labels of
the unlabeled vertices.
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FIGURE 5. The example representation of approach overview.

Algorithm 1 Framework of Host-File Relationship Based on
File Co-Occurrence
Input: F0

= (f1, f2, . . . , fn) ∈ R are initial label of files;
Output: The labels of all the data files.

Construct the neighborhood graph of files by solving (1).
From the weight matrix (W )ij=wij;
Construct edges matrix between files and hosts: E:
Compute the parameter d = max(di =

∑
j wij)

repeat
Hm+1

= E
[
(1− α)

(
I − α

dW
)−1]Fm;

Hm+1
= Hm+1/∥∥Hm+1

∥∥
2;

Update Fm+1 = ETHm+1;
until convergence

C. CONVERGENCE ANALYSIS
In this section, we will prove the iterative process of (14).

Proof: By (14) and the initial condition that F0 is
given. W is an N × N symmetrical matrix with W (i, j) =
wij. One easily verifies that (1− α)

(
I − α

dW
)−1 is also

N × N symmetrical matrix. We will do so by transform-
ing (1− α)

(
I − α

dW
)−1 into a standard symmetrical matrix.

Rewrite (14) as

Hm+1
= EŴFm

Fm+1 = ETHm (15)

where Ŵ = (1− α)
(
I − α

dW
)−1. Based on the above

lemma, we can easily derive the following

Hm+1
= (EŴET )mEŴF0 (16)

(EŴET )T = EŴET indicates that EŴET is a symmet-
ric matrix. A standard result of linear algebra states that if
EŴET is a symmetric matrix, there will be orthonormal
X = (x1, . . . , xn) satisfies X−1(EŴET )X = diag(λ1 . . . λn).
Assume that |λ1| > |λ2| ≥ . . . ≥ |λn|, EŴF0

= α1x1 +
α2x2 + . . .+ αnxn, and (α1 6= 0), then

Hm+1
= (EŴET )mEŴF0

= α1λ
m
1 (x1+

α2

α1

(
λ2

λ1

)m
x2+· · ·+

αn

α1

(
λn

λ1

)m
xn) (17)

we conclude that

dist(Hm+1, α1λ
m
1 x1) = o

(∣∣∣∣ λiλ1
∣∣∣∣m) (18)

Hm+1
/∥∥∥Hm+1

∥∥∥
2
= x1 (19)

then renew Hm+1

Hm+1
= Hm+1

/∥∥∥Hm+1
∥∥∥
2

(20)

Clearly, the normalizing vector of Hm+1 will converge to x1,
Hence, we can use Fm+1 = ETHm+1 to get the classification
function and we can predict the labels of all the data objects
in several successive iterations.

EXPERIMENTS
In this section, we conduct numerical experiments to evaluate
the performance of the method based on homophilic host-file
relationship and file co-occurrence in a semi-supervisedman-
ner for malware detection. The experiments are conducted by
utilizing a real-world dataset from the cloud security service
of RiSing.

D. DIGIT RECOGNITION
We focus on the problem of classifying files. The one day-
data set we adopt is fromRiSing, a Chinese security company.
In China, a large fraction of users join the cloud security
programs provided by RiSing. According to the dataset from
the real world, we originally get a total of 700,000 pieces of
data of 24 hours. Each piece of the data is thus represented
by an 18-dimensional vector which includes ID addresses
of a host and a file, the reputation score of the file, and the
other 15 features of the file. It means that the dataset record
all the details of user downloads. 8060 end hosts submitted
134410 executable files. Among this set of data, 29389 files
are confirmed as benign and 25041 files are confirmed as
malware, and that can provide a basis for our experimental
study. The reputation scores of the rest of the files have not
been confirmed yet.

This paper analyzes the real data of the cloud security
service. One interesting phenomenon we have noticed from
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the real dataset is that the quantity of files downloaded during
the day is larger than that at night. On the contrary, the ratio
of malicious files that downloaded at night is 63.94 percent
among all malicious files whose reputations have been con-
firmed. We grouped all the files and 8060 hosts, using the
host-file relationship that is part of our method. After the
analysis of data, we find that several individual hosts who
download files at daytime share several good files, but this
phenomenon is not obvious at night. According to this result,
we can imagine that most people punctually and regularly
download benign files for working, learning or the other else
in the daytime. But a few of end hosts ignore security com-
pany recommendations downloadmore amount of files which
may be malicious than the other end hosts. This fact will
gradually become apparent over time, especially at midnight.
The situation is more noticeable in the daytime than at night.
In other words, the architecture of host-file and file-file never
stop change while the time keeps going. According to our
case study, we will also focus on the problem of detection
malware during day and night, and discussion of this subject
will be in a later subsection.

E. COMPARED METHODS AND SETUP
We consider the binary problem of classifying files ‘‘benign’’
vs. ‘‘malware’’. We report average accuracy of the following
methods on unlabeled data: PageRank [26], TrustRank [31]
and HITS [32]. PageRank, TrustRank and HITS are used
simply as baselines. PageRank has been used to evaluate the
importance of crawled pages over the web. A relevant inter-
pretation of this rank is the probability of staying or entering
a webpage during a randomwalk. Previous studies [33] based
on PageRank motive the implementation of such types of
algorithms.HITS evaluates the importance of webpages using
characteristics: Authority and Hub. The algorithm is based
on the following observation: a good hub points to good
authorities, and a good authority is pointed to by good hubs,
similar to the homophilic host-file relationship which is one
of our focus. However, previous studies [34] [35] widely use
the implementation of HITS on the larger graph that covers
several queries. We choose these classifiers as the baselines
because of their popularity and empirical success. In our basic
approach, the solution is also based on the structure of the data
manifold, which is derived from data features. Our approach
of semi-supervised learning is based on cluster assump-
tion [36], which states that two points are likely to have the
same class label if there is a path connecting them. For com-
parison, we also provide the classification results achieved by
Zhu et al.’s Gaussian fields approach [19], Wang et al.’s Lin-
ear Neighborhood Propagation(LNP) [20] and Zhou et al.’s
consistency method [37], that can propagate the labels from
the labeled points to the whole data set.

We evaluate the reputation score of files on the real host-
file and file-file co-occurrence graph for each hour. Accord-
ing to the previous subsection, the total number of the dataset
we collected, including hosts files and feathers of files,
is 700,000. And then, we split the 700,000 pieces of data

FIGURE 6. The results of malicious files detection experiments during 24
hours.

into 24 equal datasets, based on the time. To assure diversity,
we adopt the following sampling method. We generate the
list of sites in decreasing order of time, and we segment each
of 24 equal datasets into 10 buckets. Each of the buckets
contains several labeled datasets that can provide ground truth
for testing.

F. DIFFERENT TIME
We first compare the performance of our method and base-
lines between day and night. In the subsection of digit recog-
nition, we describe the architectures of host-file and file-file
never stop change. We benchmark the performance of all
the methods we mentioned with the same dataset of each
hour. Fig.6 and Fig.7 provide a side-by-side comparison
of our method and others with respect to the accuracy of
benign and malicious file detection in each hour during a
day.

Remember, a few hosts may ignore any pieces of advice on
anti-virus engines, nor do they explicitly refuse to download
malicious files. The purpose of customers who download
too many virus files is essentially different from the purpose
of those who download normal files. In other words, host-
malicious file relationship and host-benign files relation-
ship are different. Fig.6 and Fig.7 respectively display the
results of malicious and benign files detection experiments
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FIGURE 7. The results of benign files detection experiments during 24
hours.

for 24 hours. The horizontal axis shows the accuracy of
different algorithms. The recognition accuracies with 400 and
800 pieces of labeled data randomly selected for training
and remaining data points for testing. In both figures the
vertical axis represents hours. Because we have segmented
each of 24 equal datasets into 10 buckets, the ordinate is the
total recognition accuracy value averaged over 10 indepen-
dent runs.

From these figures, we see that our method is a reason-
able spam detection tool, that is, even when we test all
the methods at any time, it can still get a high recognition
accuracy. We believe this is because the dataset of different
digits reside on different sub-manifolds, whereas the dataset
of the same digit may reside on the same submanifold. Our
method can effectively reveal thesemanifold structures which
are reflected by file co-occurrence and interaction between
end host and file. As shown in figures, during working
hours, the recognition accuracy becomes higher since the
bridge points that connect the same digit sub-manifolds are
constructed. In other words, most end hosts usually down-
load a lot of execution files for their work during working
hours. It is straightforward to improve the cluster assump-
tion of files-file and host-file with these execution files are
in common use at daytime since the central idea of our
method is to construct two global coordinate systems for the
dataset.

FIGURE 8. The sensitivity of semi-supervised methods to the choice of δ.

An explanation for why our approach to semi-supervised
learning at daytime is so effective on the dataset may lie in
the common use of executive files. file f1 and file f2 coexist
in a user’s download list, f3 and f2 coexist in others, and so
on. Thus, although documents far apart in the thread may
be quite different, they are linked by edges in the graphical
representation of the data, and these links are exploited by
the learning algorithm.

G. VARIANCE WEIGHT MATRIX W
In this experiment, we address the task of the different param-
eters using the 520268 pieces of data during the daytime.
Fig.8 offers another view on the performance of our method,
Gaussian fields, and Consistency. It introduces the property
of edges which correspond to pairs of co-occurred files.
The edge weight quantifies the correlation of the label of
co-occurred files. Our edge-weight experiment aims to esti-
mate the parameters δ to better characterize the edgeweight in
the prediction phase. The horizontal axis of Fig.8 marks the
recognition accuracy at the daytime and night, respectively.
The vertical axis of the figures corresponds to the value
of δ. In the figures, different lines represent the results of
different methods, and the values on the line represent the
average classification accuracies over 10 independent runs.
We assume that the files downloaded by the same host belong
to the same cluster and are near to each other. We use this
assumption to find the k nearest neighbors when constructing
the neighborhood graph in different methods. We use the
following function on inner product distance.

d
(
xi, xj

)
= 1−

xTi xj
‖xi‖

∥∥xj∥∥ (21)

where xi and xj are respectively document vectors of fi and fj.
Two files fi, fj are connected by an edge if fi is among fj’s
near neighbors or if fj is among fi’s near neighbors. For
Zhou et al.’s Consistency and Zhu et al.’s Gaussian fields,
the affinity matrices were all computed by

(W )ij = exp

(
−

1
δ2

(
1−

xTi xj
‖xi‖

∥∥xj∥∥
))

(22)
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We use the same parameter δ as in Zhou et al.’sConsistency
and Zhu et al.’s Gaussian fields methods is set. We test
the parameter stability in all methods mentioned by us at
this subsection. A small δ indicates that the weight is more
sensitive to variations in the dimension. The experimental
results are shown in Fig.8. We find that the methods are very
unstable in this experiment since it can only achieve a high
classification accuracy when δ falls into a very small range.
But our method performs better, and it can hold a little higher
classification accuracy as long as δ selects any value between
0.1 and 1.5. We show the sensitivity of our method to the
choice of δ, from which we can see that there is a sudden
increase when δ changes from 0.1 to 0.3, which indicates that
incorporating the smoothness term can greatly improve the
effectiveness of our method. Our method is relatively less
sensitive to the number of unlabeled points than the other
semi-supervised method since slighter changes in the perfor-
mance of our method are observed as the number of unlabeled
points. Besides, the performances of all the methods do not
exhibit a significant difference in the variance of the training
ratio. According to convergence analysis, the performance
of our method has no relationship with the training ratio.
It is observed that just the effectiveness of the training ratio
can help the other semi-supervised methods to get a high
recognition accuracy.

To demonstrate the effects of estimating W on different
methods, there is only a single parameter of δ to learn.
As noted earlier, when δ falls into a small range (between
0.1 and 0.3), we may find all methods we mentioned are
unstable in this experiment. When δ keeps growing towards
infinity (we use δ = 1.5 as maximum ), δ stabilizes at
0.6, and the classification accuracies of our method reach
the best. We can imagine that δ towards infinity is legiti-
mate, it means that the learning algorithm has identified the
x-direction as irrelevant, based on all datasets. Under such
conditions, the results of all methods are usually undesirable.
If we adopt a separate δ for each method, parameter learning
is more dramatic. The results of our method achieve higher
accuracy than either method, suggesting there is complemen-
tary information which is the relationship of host-file used
by ours. The figure again shows that our method effectively
reflects most of the spam from among each dataset.

H. DIFFERENT DATA SIZE
In the last subsection, we consider the binary problem of clas-
sifying with the variance of the Gaussian function. We report
the average accuracy of the semi-supervised learning algo-
rithms that we mentioned on unlabeled data. We notice that
our method is very sensitive to different values of δ. In this
case study, we will focus on the classification accuracies with
different date sizes for our method under the situation of
variance δ.
Fig.9 illustrates the induction results of our method on

the different sizes of the testing dataset. We fixed the size
of the dataset to be 1,000, 10,000 and 50,000. 1,000 data
points are not enough for discovering the structure of

FIGURE 9. The sensitivity of our method to the choice of δ on the
different dataset.

file-file and host-file, so the malicious files and benign files
detection accuracies are poor. Moreover, 50,000 points are
effective for describing this structure in these malicious and
benign file detection accuracies that can approximate the
accuracies achieved by the standard our method, which uses
the whole data set for detection. The induction results are
shown in Fig.9, where we also use varied δ to find the
classification accuracies when we use a dataset containing
the different sizes of points for testing. From Fig.9 we can
draw the same conclusion as in the experiments on variance
parameter when the dataset can provide sufficient data. That
is, when δ changes from 0.4 to 0.7, our induction method can
produce results sufficiently approximating the stable results.

Fig.9 exhibits the sensitivity of our method to the choice of
δ on the different data size, where the abscissa represents the
value of δ, and the ordinate represents the average classifi-
cation accuracies of our method. In the figure, different lines
represent the results with different size of the dataset, and the
values on the line represent the average malicious and benign
files detection accuracies.

The result for the parameter δ is shown in Fig.9. From
the analysis in Theorem 3, we know that the role of δ as
the variance of the Gaussian function is to trade off the
prediction loss and smoothness. The figure also verifies that
we should consider both the prediction loss and smoothness
in classification since the performance of our method could
be worse when δ becomes either too large or too small.

I. DETECTION OF NEW MALWARE
Both malware variants and new malware are growing rapidly
on the Internet. The above experimental setting provides a
way of validating the performance of models on detecting
malware variants. To validate the performance on detecting
new malware, we split the dataset into the training set and
testing set as a fresh new dataset according to the temporal
information. We treat the dataset of the first a few hours the
training set, and the rest dataset as the testing set.

As can be observed from Fig.10, our model on file-
file co-occurrence and host-file relationship graphs achieve
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FIGURE 10. Detection results of models in detecting new malware.

better performance than other methods on the original file
co-occurrence graph. Besides, considering the performance
shown in Fig.10, we choose δ = 0.65, since models with this
setting achieve better performance than with other settings
overall. Fig.10 illustrates the detection results of different
methods.

As shown in Fig.10, our model with the error weight in
the form of reciprocal of degree outperforms other models
in detecting new malware in all experiments, which demon-
strates the feasibility of the proposed file-file co-occurrence
and host-file relationship graphs. Compared with the results
of the experiments mentioned above, the results on new mal-
ware are worse, but as the training data continues to increase,
the results are getting better. One possible reason is that the
experimental dataset does cover all file-file co-occurrence
and host-file relationship among the target files. Thus, split-
ting the training and brand new dataset by time in our experi-
mental dataset leaves many isolated groups of brand new files
in the file co-occurrence graph. In contrast, as the testing data
continues to increase, splitting the training and brand new
dataset leaves a larger connected co-occurrence graph, which
results in better performance via the label propagation on the
graph.

III. CONCLUSION
In this paper, we revisit the problem of file co-occurrence and
interaction between host end and file by incorporating Semi-
supervised Learning into the problem formulation. We pro-
pose a novel semi-supervised learning algorithm that can
discover the structure of the whole data set by synthesizing
the linear neighborhood around each data object. We also
analyze theoretically that the resulting data labels can be suf-
ficiently smooth with respect to the data structure. Promising
experimental results have been presented for malicious files
detection, demonstrating that the framework has the potential
to effectively exploit the structure of file-file and file-end
host to improve malicious files detection accuracy. Finally,
we provide experiments to show the effectiveness of our
method, from which we find that the method also has specific
parameter stability. Meanwhile, as the number of features is

rather small in this paper, the time consumption is acceptable
to derive the solution analytically. In our future work, we will
focus on the theoretical analysis and accelerating issues of
our algorithm.

REFERENCES
[1] M. R. Watson, N.-Ul-H. Shirazi, A. K. Marnerides, A. Mauthe, and

D. Hutchison, ‘‘Malware detection in cloud computing infrastructures,’’
IEEE Trans. Dependable Secure Comput., vol. 13, no. 2, pp. 192–205,
Mar./Apr. 2015.

[2] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian,
‘‘Virtualized in-cloud security services for mobile devices,’’ in Proc. ACM
1st Workshop Virtualization Mobile Comput., 2008, pp. 31–35.

[3] C. Jarabek, D. Barrera, and J. Aycock, ‘‘ThinAV: Truly lightweight mobile
cloud-based anti-malware,’’ inProc. ACM28th Annu. Comput. Secur. Appl.
Conf., 2012, pp. 209–218.

[4] J. Oberheide, E. Cooke, and F. Jahanian, ‘‘Rethinking antivirus: Executable
analysis in the network cloud,’’ in Proc. HotSec, 2007, pp. 1–5.

[5] J. Oberheide, E. Cooke, and F. Jahanian, ‘‘CloudAV: N-version antivirus
in the network cloud,’’ in Proc. USENIX Secur. Symp., 2008, pp. 91–106.

[6] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, ‘‘Measuring pay-per-
install: The commoditization of malware distribution,’’ in Proc. Usenix
Secur. Symp., 2011, pp. 1–16.

[7] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş, ‘‘The dropper
effect: Insights into malware distribution with downloader graph analyt-
ics,’’ in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 1118–1129.

[8] G. Mezzour, M. M. Carley, and L. R. Carley, ‘‘An empirical study of global
malware encounters,’’ in Proc. ACM Symp. Bootcamp Sci. Secur., 2015,
Art. no. 8.

[9] S. Yu, G. Gu, A. Barnawi, S. Guo, and I. Stojmenovic , ‘‘Malware prop-
agation in large-scale networks,’’ IEEE Trans. Knowl. Data Eng., vol. 27,
no. 1, pp. 170–179, Jan. 2015.

[10] E. E. Papalexakis, T. Dumitras, D. H. Chau, B. A. Prakash, and
C. Faloutsos, ‘‘Spatio-temporal mining of software adoption & penetra-
tion,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining
(ASONAM), Aug. 2013, pp. 878–885.

[11] P. K. Manadhata, S. Yadav, P. Rao, and W. Horne, ‘‘Detecting malicious
domains via graph inference,’’ in Proc. Eur. Symp. Res. Comput. Secur.
Cham, Switzerland: Springer, 2014, pp. 1–18.

[12] D. H. P. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos,
‘‘Polonium: Tera-scale graphmining and inference formalware detection,’’
in Proc. SIAM Int. Conf. Data Mining. Philadelphia, PA, USA: SIAM,
2011, pp. 131–142.

[13] M.A. Rajab, L. Ballard, N. Lutz, P.Mavrommatis, andN. Provos, ‘‘CAMP:
Content-agnostic malware protection,’’ Tech. Rep., 2013.

[14] B. Rahbarinia, M. Balduzzi, and R. Perdisci, ‘‘Real-time detection of
malware downloads via large-scale URL-> file-> machine graph min-
ing,’’ in Proc. 11th ACM Asia Conf. Comput. Commun. Secur., 2016,
pp. 783–794.

[15] L. Chen, W. Hardy, Y. Ye, and T. Li, ‘‘Analyzing file-to-file relation
network in malware detection,’’ in Proc. Int. Conf. Web Inf. Syst. Eng.
Cham, Switzerland: Springer, 2015, pp. 415–430.

[16] A. Tamersoy, K. Roundy, and D. H. Chau, ‘‘Guilt by association:
Large scale malware detection by mining file-relation graphs,’’ in Proc.
20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014,
pp. 1524–1533.

[17] M. Ni, Q. Li, H. Zhang, T. Li, and J. Hou, ‘‘File relation graph based
malware detection using label propagation,’’ in Proc. Int. Conf. Web Inf.
Syst. Eng. Cham, Switzerland: Springer, 2015, pp. 164–176.

[18] M. PAnkerst and M. H. P. R. T. J. Breunig Kriegel Ng Sander, ‘‘Order-
ing points to identify the clustering structure,’’ in Proc. ACM SIGMOD,
vol. 99., 2008.

[19] X. Zhu, Z. Ghahramani, and J. D. Lafferty, ‘‘Semi-supervised learning
using Gaussian fields and harmonic functions,’’ in Proc. 20th Int. Conf.
Mach. Learn. (ICML), 2003, pp. 912–919.

[20] F.Wang andC. Zhang, ‘‘Label propagation through linear neighborhoods,’’
IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 55–67, Jan. 2007.

[21] M. Zhao, T.W. S. Chow, Z. Zhang, and B. Li, ‘‘Automatic image annotation
via compact graph based semi-supervised learning,’’ Knowl.-Based Syst.,
vol. 76, pp. 148–165, Mar. 2015.

VOLUME 7, 2019 157839



Y. Fu, J. Xu: Malware Detection via Extended Label Propagation Through Graph Inference

[22] M. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel, ‘‘A cluster-
then-label semi-supervised learning approach for pathology image classi-
fication,’’ Sci. Rep., vol. 8, no. 1, 2018, Art. no. 7193.

[23] S. T. Roweis and L. K. Saul, ‘‘Nonlinear dimensionality reduction by
locally linear embedding,’’ Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[24] N. Idika and A. P. Mathur, ‘‘A survey of malware detection techniques,’’
Purdue Univ., West Lafayette, IN, USA, Tech. Rep., 2007, vol. 48.

[25] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and M. Antonakakis,
‘‘Measuring and detecting malware downloads in live network traffic,’’ in
Proc. Eur. Symp. Res. Comput. Secur. Berlin, Germany: Springer, 2013,
pp. 556–573.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd, ‘‘The PageRank citation
ranking: Bringing order to the Web,’’ Stanford InfoLab, Stanford, CA,
USA, Tech. Rep., 1999.

[27] G. H. Golub and C. F. Van Loan, ‘‘Matrix computations,’’Google Scholar,
pp. 111263–112264, 2012.

[28] U. Dvir, ‘‘Security server in the cloud,’’ U.S. Patent 11 462 046,
Feb. 15, 2007.

[29] I. Santos, J. Nieves, and P. G. Bringas, ‘‘Semi-supervised learning for
unknown malware detection,’’ in Proc. Int. Symp. Distrib. Comput. Artif.
Intell. Berlin, Germany: Springer, 2011, pp. 415–422.

[30] L. Invernizzi, S. Miskovic, R. Torres, C. Kruegel, S. Saha, G. Vigna,
S.-J. Lee, and M. Mellia, ‘‘Nazca: Detecting malware distribution in large-
scale networks,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[31] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, ‘‘Combating Web spam
with trustrank,’’ in Proc. 13th Int. Conf. Very Large Data Bases VLDB
Endowment, vol. 30, 2004, pp. 576–587.

[32] J. M. Kleinberg, ‘‘Authoritative sources in a hyperlinked environment,’’
J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

[33] M. Ben Neria, N.-S. Yacovzada, and I. Ben-Gal, ‘‘A risk-scoring feedback
model for webpages and Web users based on browsing behavior,’’ ACM
Trans. Intell. Syst. Technol., vol. 8, no. 4, 2017, Art. no. 53.

[34] J. Huang, Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, and Z. M. Mao,
‘‘SocialWatch: Detection of online service abuse via large-scale social
graphs,’’ in Proc. 8th ACM SIGSAC Symp. Inf., Comput. Commun. Secur.,
2013, pp. 143–148.

[35] G.-R. Xue, H.-J. Zeng, Z. Chen, W.-Y. Ma, H. Zhang, and C.-J. Lu, ‘‘User
access pattern enhanced small Web search,’’ Tech. Rep., 2003.

[36] O. Chapelle, J. Weston, and B. Schölkopf, ‘‘Cluster kernels for semi-
supervised learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2003,
pp. 601–608.

[37] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, ‘‘Learning
with local and global consistency,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2004, pp. 321–328.

YITU FU received the M.S. degree in control engi-
neering from the College of Information Science
and Engineering, Northeastern University, China,
in 2013, where he is currently pursuing the Ph.D.
degree in control theory and control engineering.
From 2013 to 2015, he was an Engineer with
the Equipment Department, BaoWu Steel Group
Corporation, Shanghai, China. Since 2018, he has
been a Research Scholar with the Department of
Industrial Engineering, University of Pittsburgh,

Pittsburgh, PA, USA. His current research interests include cloud computing,
data mining, machine learning, and artificial intelligence and applications.

JU XU was born in Jiangyin, Jiangsu, China,
in 1987. She is currently pursuing the Ph.D. degree
in business management with Tongji University,
Shanghai, China. From 2018 to 2019, she was a
Visiting Scholar with the Department of Organi-
zation, Strategy, and International Management,
Naveen Jindal School of Management, University
of Texas at Dallas. Her research interests include
strategic optimization, data mining, cognition, and
organizational learning.

157840 VOLUME 7, 2019


	INTRODUCTION
	METHODS
	FILE CO-OCCURRENCE
	HOMOPHILIC HOST-FILE RELATIONSHIP BASED ON FILE CO-OCCURRENCE
	CONVERGENCE ANALYSIS
	DIGIT RECOGNITION
	COMPARED METHODS AND SETUP
	DIFFERENT TIME
	VARIANCE WEIGHT MATRIX W
	DIFFERENT DATA SIZE
	DETECTION OF NEW MALWARE

	CONCLUSION
	REFERENCES
	Biographies
	YITU FU
	JU XU


