
Received September 4, 2019, accepted October 7, 2019, date of publication October 18, 2019, date of current version November 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948293

Full Dose CT Database Induced Reconstruction
With Nonlocal Means Prior for Ultra-Low-Dose
Lung CT: A Preliminary Study
WENLEI LIU 1,2, PENG GAO1, YUANKE ZHANG 1, TIANSHUAI LIU1, HUANGSHENG PU 1,
JUNYAN RONG1, AND HONGBING LU 1
1Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032, China
2General Hospital of Western Theater Command, Chengdu 610083, China

Corresponding authors: Junyan Rong (junyanrong@126.com) and Hongbing Lu (luhb@fmmu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFC0107400,
Grant 2017YFC0107401, Grant 2017YFC0107402, Grant 2017YFC0107403, Grant 2017YFC0107404, and Grant 2017YFC0107405,
and in part by the National Natural Science Foundation of China (NSFC) under Grant 31700865, Grant 11805274, and Grant 61871383.

ABSTRACT Although Low-dose computed tomography (LDCT) is the most effective way for early lung
cancer screening, it’s still a challenge to further reduce radiation dose on the premise of ensuring image
quality. Penalized weighted least-squares (PWLS) image reconstruction with nonlocal means (NLM) prior
has shown excellent performance to improve the image quality for LDCT, especially when the nonlocal
weights are calculated from previous full-dose CT (FDCT) image. However, the previous FDCT image
of the same patient is not readily available, and registration between the LDCT and FDCT images must
be considered because of the scanning misalignment. This paper proposed a new NLM prior model to
reconstruct high quality LDCT image without image registering. In order to estimate the nonlocal weights of
NLM prior, a database was trained from FDCT images of different patients, from which the patch samples
similar to each target patch of the LDCT were extracted. Then the nonlocal weights were determined by
the patch samples, and integrated into PWLS reconstruction with the priori information of local structures
from FDCT. Experiments with 10mAs LDCT data have shown its superiority in reducing noise, streaking
artifacts and preserving structure detail, indicating the potential of further dose reduction in ultra-LDCT lung
screening.

INDEX TERMS Ultra-low-dose lung CT, nonlocal means, penalized weighted least-squares, CT database.

I. INTRODUCTION
Lung cancer is the leading cause of cancer mortality
around the world, with an estimation of 1.59 million deaths
in 2012 [1]. The 5-year lung cancer survival rate is only
17.8% in the United States, and less than 18% in UK, Canada
and China [1]–[3]. It can be greatly improved if lung cancer
can be detected and diagnosed at its earlier stage in high-
risk individuals. Currently, screening with low-dose com-
puted tomography (LDCT) is the most effective way for early
detection of lung cancer [4]–[7]. It has been proved a 20%
reduction in lung cancer mortality with LDCT versus that
of chest radiography by the National Lung Screening Trial
(NLST), a massive study in the United States [8]. LDCT

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaoqing Pan .

shows its potential and benefits for early detection of lung
cancer, but it’s still a great risk exposing in the CT radiation.
Most LDCT protocols for lung cancer screening have used
scan parameters of 120-140 kVp and 30-100mAs, resulting
in an average effective dose of 1.5 mSv [9]. It is 15 times
as high as those delivered by the posteroanterior and lateral
chest radiography of 0.1mSv [10]. Furthermore, the probable
diagnostic chest CT or PET/CT increases the exposure, so as
the annual LDCT for high-risk individuals [8], [11]. The
accumulation of repeat scans increases the potential risk for
radiation-induced cancer [12]. Therefore, ultra-low-dose CT
(uLDCT) is needed for Lung cancer screening.

Currently, lowering the tube current–time product (mAs)
is the main method to decrease the dose in lung cancer
screening. The low-dose CT acquisition protocol often dete-
riorates the image reconstruction, due to the presence of
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noise and data insufficiency [13]. To mitigate this problem,
the penalized weighted least-square (PWLS) criteria [14] has
been proposed for LDCT reconstruction and shows superior
performance in suppressing noise and streak artifacts. It mod-
els the signal-dependent noise properties with PWLS cost
function provided that the noise in log-transformed projection
data follows approximately Gaussian distribution and the
variance of the noise can be determined by a formula showing
the relationship between the mean transmission datum and
the electronic noise [15], [16].

As well as the statistical noise model, the prior model
also plays a critical role for effective reconstruction in
LDCT [17]–[21]. The Markov random field (MRF) model-
based priors have been widely used to promote the
smoothness of the reconstructed image, assuming that the
intensities of neighboring pixels are similar [21], [22]. To fur-
ther improve spatial resolution, the nonlocal means (NLM)
based prior has been successfully used as a penalty for the
PWLS reconstruction, called PWLS-NLM [20], [23]. It uti-
lizes redundancy information existed in images to calculate
the nonlocal weight in a patch window for edge-preserving
filtering. To improve the estimation accuracy of nonlocal
weights, one way is to optimize NLM parameters such as
the size of search window (SW) and patch window (PW),
and smoothing parameter [24]. The other way is to use high-
quality full-dose CT (FDCT) images with less noise and
artifacts for better estimation of the weight [25]. Ma et al.
designed a structure-preserving filter named ndiNLM, which
utilized nonlocal means filtering induced from previous
normal-dose scan of the same patient [26]. It shows promising
gains in terms of noise reduction, low-contrast object detec-
tion and edge detail preservation. However, for lung cancer
screening, the previous normal-dose CT scan of the same
patient is not readily available. And registration should be
required as the misalignment between low-dose and normal-
dose scans could not be ignored, which may introduce uncer-
tain errors. If nonlocal weights could be derived from high
dose CT images of other patients, the practical significance
of PWLS-NLM in lung cancer screening could be greatly
strengthened.

Except for the FDCT based reconstruction, the FDCT
based image restoration also works. Zhang et al proposed an
adaptive prior features assisted (APFA) restoration scheme
for low dose CT lung images [27]. Based on an offline
training database consisting of patch samples extracted from
existing full-dose lung scans, the APFA integrated the patch-
search scheme with principal components analysis to retrieve
local structure and texture pattern adaptively for the LDCT
target. The results show that it can achieve a noticeable gain
over some state-of-the-art methods in terms of noise suppres-
sion and details/textures preservation. However, its perfor-
mance would be limited when applied to uLDCT images with
serious noise and artifacts.

In this study, we proposed a new NLM prior and inte-
grated it into the PWLS framework for potential lung cancer

screening with ultra-low-dose CT, which was based on a
training database from FDCTs. Assuming the accuracy of
nonlocal weights could be related to the similarity degree of
the patches in the search window, the patch samples from
FDCT training database would be great help for improv-
ing the weights accuracy. When the nonlocal weights were
extracted as the most similar patch samples from FDCT
database, the structure detail or texture of reconstructions
should be improved further, and the prior FDCTs should not
be restricted to the same patient and the registration process
could be skipped directly.

The rest of this paper is organized as follows. In section II,
the training database-based patches for the NLM prior in the
PWLS algorithm (PWLS-NLMpatch) is presented in details
and the comparative and evaluation methods are presented.
Section III reports the experimental results with artificial low
dose CT data based on real CT data. Finally, discussions and
conclusions are given in section IV and V.

II. MATERIALS AND METHODS
A. REVIEW OF THE PWLS RECONSTRUCTION WITH NLM
PRIOR (PWLS-NLM)
The PWLS cost function of CT imaging can be expressed as
follows:

µ∗ = argmin
µ

{
(y− Aµ)T6−1(y− Aµ)+ βU(µ)

}
, (1)

where y is the vector of measured line integral,A is the system
matrix, T is a transpose operator, µ is the vector of image to
be reconstructed and 6 is a diagonal matrix with the ith ele-
ment of σ 2

yi , which is the variance of yi. It can be determined
by the following mean-variance relationship in consideration
of both X-ray quanta noise and system electronic noise [15],
[16], [24]:

var(yi) = σ 2
yi =

N̄i + σ 2
e

N̄ 2
i

=
1

N̄ 2
0i

exp(ȳi)(1+
σ 2
e

N̄0i
exp(ȳi)),

(2)

where N̄0i and N̄i represent the mean number of X-ray pho-
tons transmitting before and after the patient respectively,
which can be detected by detector bin i.
For the second term of equation (1), U(µ) denotes the

penalty term and β is a smoothing parameter which controls
the tradeoff between the data fidelity and the penalty term.
In NLM, a patch which is modeled as a pixel and its K × K
nearest neighbors, is used to reflect local spatial structure
of a pixel. For the PWLS-NLM algorithm, U(µ) can be
expressed as equation (3) [24], where φ denotes a positive
potential function and can be chosen as quadratic function
φ(1) = 1

21
2. The weighting coefficient ωjk (µ) is calculated

from µ, the image to be reconstructed. P(µj) denotes the
patch centered at pixel j; h is the filtering parameter and a is
the standard deviation of the Gaussian kernel. The similarity
between pixels j and k depends on the weighted Euclidean
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distance of their patches.

U(µ) =
∑
j

(φ(uj −
∑
k∈SWj

ωjk (µ)uk ),

and ωjk (µ) =
exp(−

∥∥P(uj)− P(uk )
∥∥2
2,a /h

2)∑
k∈SWj

exp(−
∥∥P(uj)− P(uk )

∥∥2
2,a /h

2)
, (3)

In repeated CT scans, a previously scanned FDCT image
has lower noise and higher resolution than the current LDCT
image, and majority of the anatomical information are same
between the two scans. The PWLS-ndiNLM algorithm utilize
fully the redundancy of information in the prior image to
construct the NLM regularization. It is written as:

U(µ) =
∑
j

(φ(uj −
∑
k∈SWj

ωjk (µFD,µ)uFDk ),

and ωjk (µFD,µ) =
exp(−

∥∥P(uj)− P(uFDk )
∥∥2
2,a /h

2)∑
k∈SWj

exp(−
∥∥P(uj)− P(uFDk )

∥∥2
2,a /h

2)
,

(4)

where the weighting coefficient ωjk (µFD,µ) is calculated
from the full dose image and the reconstructed image of µ.
P(uFDk ) denotes the patch centered at pixel k from FDCT,
P(uj) denotes the patch centered at pixel j from the image
to be reconstructed, and

∥∥P(uj)− P(uFDk )
∥∥2
2,a calculates the

similarity between the patch of pixel j and the patch of pixel k .
In PWLS-ndiNLM, the nonlocal weights are determined

by the similarity between the target patch and similar patches
from the search window of the FDCT image. Once there is
no FDCT image, the algorithm cannot work.

B. PWLS RECONSTRUCTION WITH NLM PRIOR BASED ON
PATCHES FROM TRAINING DATABASE OF FDCTS
(PWLS-NLMPATCH)
Inspired by the APFA algorithm [27], we proposed a new
NLM prior model incorporated into the PWLS framework,
where all patches in the search window consist of samples
from the training database. The training database was con-
structed offline and the construction process was similar to
that of APFA [27]. To build the training database, full-dose
lung scans were first collected from different patients. For
each patient’s FDCT scan, 2D patches of size K × K were
extracted automatically with a sliding distance of one pixel on
the FDCT image. Then all the patches from different patients
were stacked into a training database, denoted by µDB. The
nearest similar patches DBj are determined by evaluating the
similarity (Euclidean distance) between patches from µDB

and the target patch P(uj) of LDCT. How to decide the scale
of the training database and the DBj will be discussed in the
experiments part.

So, the second term in φ of equation (4) is determined
by similar patches selected from a FDCT training database,

as shown below:

U(µ) =
∑
j

(φ(uj −
∑
k∈DBj

ωjk (µDB,µ)uDBk ),

ωjk (µDB,µ) =
exp(−

∥∥P(uj)− P(uDBk )
∥∥2
2,a /h

2)∑
k∈DBj

exp(−
∥∥P(uj)− P(uDBk )

∥∥2
2,a /h

2)
, (5)

where the weighting coefficient ωjk (µDB,µ) is calculated
from the training database (DB) ofµDB and the reconstructed
image of µ. The NLM filtering pixel of µj is calculated as∑
k∈DBj

ωjk (µDB,µ)uDBk , whereDBj denotes the nearest similar

patches in µDB to the target patch P(uj) with center pixel µj
and P(uDBk ) denotes the patch centered at pixel k of µDB.

In summary, the cost function for the proposed
PWLS-NLMpatch can be rewritten as:

µ∗ = argmin
µ

(y−Aµ)T6−1(y−Aµ)

+β
∑
j

1
2
(uj−

∑
k∈DBj

ωjk (µDB,µ)uDBk )2

 , (6)

C. FLOWCHART SUMMARY OF THE PROPOSED
PWLS-NLMPATCH METHOD
The flowchart of the PWLS-NLMpatch is summarized as
follows:

Step 1: Produce an initial image û by FBP or other recon-
struction algorithms. Initiate the following formulae:

q = Aû, r̂ = y− q, D = diag(1/σ 2
yi ), (7)

Step 2: Construct offline training database with FDCTs
from different patients. Step1 and Step2 can be exchanged
with each other.

Step 3: For each target patch of the LDCT, select similar
patch samples from the training database. The effect of selec-
tive patch samples in the PWLS-NLMpatch algorithm is same
as that of patches in the search window in the PWLS-ndiNLM
or the PWLS-NLM algorithms.

Step 4: Apply the empirical one-step-late (OSL) imple-
mentation and the Gauss-Seidel (GS) updating strategy for
the reconstruction [20]. The reconstruction is updated itera-
tively by minimizing the cost function (6) according to equa-
tion (8) and would be ended if the stop criterion is satisfied.

unewj =

AT
j Dr̂+ λju

old
j + β

∑
k∈DBj

ωjk (µDB,µ)uDBk

λj + β
, (8)

where λj = AT
j DAj and Aj denotes the jth column of

the system matrix A. The parameters of PW size, DBj
size, h, a, and β are determined according to published
papers [20], [21], [28].
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D. COMPARATIVE METHODS AND EVALUATION MERITS
In order to evaluate the performance of PWLS-NLMpatch,
both the PWLS-ndiNLM and PWLS-NLM algorithms were
used for comparison, considering they are typical algo-
rithms to be compared. It is verified that the former can
achieve close-to-optimal results in the current state of the art.
However, it needs full dose scan of the same patient and will
increase the potential dose risk. The PWLS-NLM algorithm
only utilizes information of the current scan for the regular-
ization, overcoming the dose problem of the PWLS-ndiNLM.
However, the current LDCT with high noise and streak-
ing artifacts may affect the reconstruction accuracy of the
PWLS-NLM.

Quantitative merits of root mean square error (RMSE),
universal quality index (UQI) were utilized to evaluate the
performance of the reconstruction algorithms. Let Xr =(
xr,1, xr,2 . . . xr,J

)T denotes the vector of reconstructed
image and X0 =

(
x0,1, x0,2 . . . x0,J

)T denotes the vec-
tor of the ground truth image. The RMSE is employed to
reflect the difference between the reconstructed image and
the ground truth for regions of interest (ROI). It is formulated
as equation (9):

RMSE =

√√√√√ 1
Q

j=Q∑
j=1

(xroir,j − x
roi
0,j )

2 (9)

where Q is the number of pixels in the ROI. The smaller the
RMSE is, the nearer for the ROI to the ground truth.

The UQI was to quantify the similarity of noise, spatial
resolution and texture correlation between the reconstructed
image and the ground truth in the ROIs. It is defined as
equation (10):

UQI =
4cov(xroir , x

roi
0 )

var(xroir )+ var(xroi0 )
·

x̄roir · x̄
roi
0

(x̄roir )2 + (x̄roi0 )2
,

var(xroir ) =
1

Q-1

∑Q

j=1
(xroir,j − x̄roir )2,

var(xroi0 ) =
1

Q-1

∑Q

j=1
(xroi0,j − x̄roi0 )2,

cov(xroir , x
roi
0 ) =

1
Q-1

∑Q

j=1
(xroir,j − x̄roir )(xroi0,j − x̄roi0 ) (10)

where, x̄roir and x̄roi0 are the mean values of the Q pixels in the
ROIs of the reconstructed image and the ground truth respec-
tively. The higher the UQI is, the more like the ground truth
in terms of noise, spatial resolution and texture correlation.

Except for the above quantitative merits, the line spread
function (LSF) was analyzed to evaluate the spatial resolution
of the reconstructed images, which was estimated from the
edge spread function (ESF) [29]. In addition, the normal
vector flow (NVF) [21], [27] was plotted to evaluate the
texture similarity on selective ROIs. The gradual changes of
the intensities in the desired image are often shown as ordered
arrow in the NVF image, while the noise in the image is
often shown as disordered arrows. The NVF image of the

ROI image in the FDCT from the same patient was served
as ground truth. The NVF images of the same ROI in LDCT
reconstructions with different algorithms were compared to
the ground truth. The best matched NVF demonstrates the
fine textures are better preserved.

E. DATA ACQUISITION AND SIMULATION DESIGN
We validated the proposed reconstruction method with
acquired FDCT data and artificial LDCT data based on real
data. Under informed consents after the approval by the
Institutional Review Board, three patients (denoted as patient
#1 to patient #3) were recruited with full-dose scans acquired
from clinical CT-guided lung nodule needle biopsy studies.
The FDCT data were acquired from a Siemens CT scan-
ner with 120 kVp tube voltage and 100 mAs tube current
using a fan-beam geometry. The source-to-detector distance
was 1040 mm, the source-to-axis distance was 570 mm,
and 1160 projection views were evenly spanned on a 360◦

circular orbit. The detector bin spacing was 1.407 mm. The
FDCT images (denoted as FDCT #1 to FDCT #3) were
reconstructed by the traditional FBP algorithm with hundreds
of slices.

The LDCT data for patient #3 was simulated with 10 mAs
based on the FDCT projection data of patient #3. The imaging
geometry in the LDCT simulation was the same as that of
FDCT acquisition. Also, it is assumed that the detected pre-
logarithmX-ray intensity follows the Poisson process plus the
electronic noise background, which has been verified [15].
Firstly, the noise-free sinogram y was obtained by comput-
ing the line integration of the attenuation coefficients using
equation (11):

y = Aµ (11)

Then the simulated noisy CT transmission data bi at each
detector bin iwas generated according to the statistical model
of pre-logarithm projection data:

bi = Possion(I0 exp(−yi))+ Normal(0, σ 2
e ) (12)

where I0 denoted the incident X-ray intensity and σ 2
e was the

background electronic noise variance. The noisy sinogram
data ỹi were calculated by performing the logarithm transfor-
mation on the transmission data bi. All of the LDCT data were
computed by setting I0 as the actual X-ray intensity collected
at 10mAs and the electronic noise variance σ 2

e as 10.
With the acquired FDCT data and the simulated LDCT

data, two slices (slice #22 and slice #6) of patient #3 shown
in figure 1 were reconstructed separately, to evaluate and val-
idate the proposed PWLS-NLMpatch algorithm, compared
to other algorithms. For the PWLS-NLMpatch algorithm,
the training database was constructed from FDCT of patient
#1 and/or patient #2.

III. RESULTS
A. COMPARISON BETWEEN DIFFERENT ALGORITHMS
Reconstruction results for slice #22 and slice #6 of patient
#3 by the PWLS algorithms with general NLM prior
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FIGURE 1. Two slices of images from patient #3 for studying. Both of them are reconstructed with
the FBP algorithm. Slice #22 is shown in the first and second rows and slice #6 is shown in 3-4 rows.
Both slices are shown firstly on a line with a window of [0.0112, 0.0288] mm−1 for better displaying
the mediastinum and bone structure, and then with a lung display window of [0, 0.0220] mm−1 for
their enlarged lung regions on the next line. The Left column are the FDCT images and the right
column are the corresponding LDCT images (denoted as FDCT-FBP and LDCT-FBP respectively).

(PWLS-NLM), the normal-dose scan induced NLM prior
(PWLS-ndiNLM) and the proposed training database-based
NLM prior (PWLS-NLMpatch) are compared in Figure 2.
For PWLS-NLMpatch algorithm, image was reconstructed
with h of 0.003, β of 1×106 and 343382 patches constructed
from FDCT of patient #1 and patient #2. For comparison,
in PWLS-ndiNLM algorithm, h and β were set similar to

that of PWLS-NLMpatch. However, when reconstructing
with PWLS-NLM algorithm with the same h, high distortion
around the edge area of the image exist. Therefore, h was
set as 0.01 in PWLS-NLM algorithm, which was determined
experimentally, when there was no apparent deformation in
vision. Figure 2 demonstrates that all PWLS reconstruc-
tions with the NLM based priors have improvement in
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FIGURE 2. Reconstructions of slice #22 and slice #6 with different algorithms. The first and second rows are reconstructions of slice #22 while the
third and fourth rows are reconstructions of slice #6. The columns from left to right are the PWLS-ndiNLM, PWLS-NLM and the PWLS-NLMpatch
images. Both slices are shown firstly with a window of [0.0112, 0.0288] mm−1 for better displaying the mediastinum and bone structure, and then with
a lung display window of [0, 0.0220] mm−1 for their enlarged lung regions on the next line.

suppressing noises, compared to the LDCT-FBP results
in Figure 1. From the red arrows in Figure 2, we can see the
proposed model is better than the conventional NLM prior
in lung detail preservation, although it is not as good as the
PWLS-ndiNLM. To further reflect the differences between
reconstructed images, horizontal profiles of the resulting
images were drawn in Figure 3. Profile of the FDCT-FBPwas
plotted as reference. Compared to PWLS-NLM image, the
PWLS-ndiNLM and PWLS-NLMpatch images generate pro-
files closer to the reference. The PWLS-NLMpatch images

are improved compared to the PWLS-NLM images, although
they are a little worse than the PWLS-ndiNLM reconstruc-
tions. The quantitative merits with RMSE and UQI for the
ROIs shown in Figure 1 are presented in Table 1 and Table 2,
reflecting the same conclusion as the visual and profile result.

The LSF and fitting curves along the horizontal and
vertical directions for slice #22 and slice #6 were plotted
in Figure 4. The FDCT-FBP was for reference. Apparently,
the LSF curves of PWLS-NdiNLM are the closest to the
reference curves. The LSF curves of the PWLS-NLMpatch
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FIGURE 3. Horizontal profiles of the images reconstructed with different methods. The left is for slice #22 and the right
is for slice #6. The profiles are along the red lines shown in the imbedded images.

TABLE 1. The RMSE and UQI of the ROIs shown in figure 2 for slice #22 using different algorithms.

TABLE 2. The RMSE and UQI of the ROIs shown in Figure 2 for slice #6 using different algorithms.

are narrower than that of the PWLS-NLM, and some of them
are similar to that of the PWLS-NdiNLM. It suggests the
improvement of the proposed model on edge preservation.
In order to evaluate the texture similarity, the NVF images
of the selected ROI of slice #22 (Figure 5 (a)) were drawn in
Figure 5. The NVF image of the FDCT-FBP (Figure 5 (b))
was shown as the ground truth. Figure 5(c) shows the
NVF image of the LDCT-FBP reconstruction, where strong
noise exists. Figure 5(d)-(f) show the NVF images of
the reconstructions with PWLS-NdiNLM, PWLS-NLM and
PWLS-NLMpatch, respectively. We can observe that for the
selected ROI, all the PWLS algorithms with the NLM based
prior can suppress the disordered arrows in the uniform
regions. The ordered arrows in the NVF image with the
PWLS-ndiNLM method matched best to the ground truth,
while that with the proposed algorithmwas a litter worse than
the PWLS-ndiNLM, but better than the PWLS-NLMmethod,
especially in the blue ellipse regions.

B. COMPARISON BETWEEN DIFFERENT ALGORITHMS
1) THE QUALITY OF INITIAL IMAGE
The patches DBj similar to the target patch were obtained
based on the initial image and the training database in
the PWLS-NLMpatch algorithm. With the same training
database, the quality of the initial image plays an impor-
tant role in the reconstruction. The reconstructions with two
kinds of initial images are shown in Figure 6. First is the
LDCT-FBP reconstruction (Figure 6 (a)), which presents
high noise and artifacts. Second is the filtered LDCT-FBP
with NLM filtering (denoted as NLMimage, Figure 6 (b))
with parameters of patch window =5, search window =17,
and smoothing parameter of 0.005. Figure 6 (c)-(d) are
the PWLS-NLMpatch reconstructions using them as initial
images, respectively. From the red arrows shown in Figure 6,
it demonstrated that the reconstruction with NLMimage as
initial image was improved in reducing noise, although there
may be a little loss of resolution and detail.
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FIGURE 4. Horizontal and vertical LSF curves of images reconstructed using different algorithms. 1st row: slice #22; 2nd row:
slice #6. Left column: the reconstructed images with red lines of horizontal and vertical directions for the corresponding LSF
curves; middle column: horizontal resolution; right column: vertical resolution.

FIGURE 5. NVF images of the ROI for slice #22. The ROI is shown in (a) with red rectangle. (b)-(f) are corresponding to the FDCT-FBP,
the LDCT-FBP, the images reconstructed with PWLS-ndiNLM, PWLS-NLM and PWLS-NLMpatch algorithms, respectively.

2) OFFLINE TRAINING DATABASE
To study the influence of offline training database µDB on
PWLS-NLMpatch performance, we build a few training

databases with different sizes and different positions
extracted from FDCT #1 and/or #2. Firstly, the training
database of total 1373530 2D patches, which is set as the
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FIGURE 6. Reconstructions by PWLS-NLMpatch algorithm with different initial images. (a) and (b) are
the LDCT-FBP image, NLMimage, respectively. The PWLS-NLMpatch reconstructions using them as
initial images are shown in (c) and (d) respectively. They are shown with a window of [0.0112,
0.0288] mm−1 for better displaying the mediastinum and bone structure. Their enlarged lung regions
are shown on the next line with a lung display window of [0, 0.0220] mm−1.

reference set, were constructed automatically with a sliding
distance of one pixel on the manual cropping ten ROIs from
ten interval slices with odd slice number from FDCT #1 and
nine ROIs from nine interval slices with odd slice number
from FDCT #2. Then for studying the effect of µDB size
to the reconstruction, we chose a subset, consisting of 1%,
10%, 25%, 50% patches of the entire reference set, respec-
tively, to form training databases of different sizes. Also, for

studying the effect of the source position of µDB, we chose
ten interval slices with even numbers from FDCT #1 and
nine interval slices with even numbers from FDCT #2 to
construct the training database (total 1318138 2D patches).
At last, considering both of the above factors, a training
database from five interval slices only from FDCT #1 with
350709 2D patches (about 25% of the reference set size) were
also applied to construct the training database. The RMSE
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TABLE 3. The RMSE and UQI of the ROIs in slice #22 of Figure 2 using different training database sizes.

TABLE 4. The RMSE and UQI of the ROIs in slice #22 of Figure 2 using different training database positions.

and UQI of the ROIs for slice #22 shown in Figure 1 with
different training database sizes and different positions are
listed in Table 3 and Table 4.

The RMSE and UQI merits in Table 3 show that the recon-
struction with 25% patches of the entire reference training
database are very close to the reconstruction with total 2D
patches. The decreasing training database size will benefit
for reducing the offline time of searching similar patches
in step 3. So, about 25% patches of the entire reference
training database were chosen for the PWLS-NLMpatch
reconstruction.

The RMSE and UQI of Table 4 show that images recon-
structed with similar size level of training databases, which
are coming from different positions, are almost similar to
each other in the two merits (columns 3-4). It illustrates that
high-quality patches in the NLM prior will help improving
the reconstruction performance, no matter where they come.
Compared between columns 5 and columns 3-4, it shows that
the RMSE and UQI of the images reconstructed with the
training database constructed by five interval slices is compa-
rable to that of the training database constructed by nineteen
interval slices, which further illustrates 25% patches of the
entire reference set (about hundreds of thousands of patches)
is adequate for the PWLS-NLMpatch reconstruction.

3) RECONSTRUCTION PARAMETERS WITHIN
PWLS-NLMpatch METHOD
There are several parameters related to the PWLS-NLMpatch
method, including PW size, DBj size, standard deviation a
of the Gaussian kernel, filtering parameter h, and smoothing
parameter β. Then it is necessary to determine the optimal
values.

a: THE PW SIZE AND A
The PW size and a do not have noticeable effects on the
reconstructed image, so they were set at PW size = 5 × 5

and a = 5, similar to the PWLS-ndiNLM or PWLS-NLM
algorithms [20], [24], [30].

b: THE DBJ SIZE
The DBj size is similar to the search window size of the
PWLS-ndiNLM or PWLS-NLM algorithms. Researchers
have reported that search window size = 289 (17 × 17) is
good enough for LDCT reconstruction. Therefore, a typical
selection of DBj size =300 (about the same size) was used
for all the cases in the study.

c: THE PARAMETERS H AND β

The parameters h and β together control the smoothness of
the reconstruction. A few combinations of h and β were
studied to determine the proper values. The hwas set 3× 105,
5 × 105,7 × 105, 1 × 106 and 2 × 106. β was set 0.005 and
0.01. The RMSE and UQI for two ROIs of the lung for
slice #22 were calculated (Table5) and plotted as the function
of h and β (Figure 7). The criterion of the lowest RMSE and
largest UQI were considered for determining the optimized
parameters of h and β. Seen from Figure 7, the curves of
different h have similar changing trend. The RMSE decreases
firstly and then increases slowly with increased β, while the
UQI has opposite tread, indicating that there is a best β for
each h within a small common range. For both of the fixed h
of 0.005 and 0.01, the best β was 1 × 106. So, we choose β
of 1 × 106. The RMSE and UQI at h of 0.005 are better than
that with h of 0.01. To test the variation when h decreased
again, the performance of reconstruction with h =0.003,
0.002 and β =1× 106 was studied. The RMSE and UQI with
parameters h =0.003 and β =1× 106 were a little better than
the result when h =0.005, 0.002 and β =1 × 106, which is
listed in Table 5. So, h and β were reasonably set as 0.003 and
1 × 106, respectively for reconstructing slice #22. For other
slices, β could be set in the range of 7× 105 to 1× 106 and h
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TABLE 5. The RMSE and UQI of the ROIs in figure 2(a) with different h and β values.

FIGURE 7. RMSE and UQI with different h and β of two ROIs of the PWLS-NLMpatch reconstructions for slice #22. (a) is for the first
ROI and (b) is for another ROI.

be set in the range of 0.002∼0.01 with fine tuning depending
on the noise condition.

IV. DISCUSSION
In this paper, a new NLM prior model with nonlocal weights
determined by optimal similar patch samples from the FDCT
database was proposed to improve the uLDCT reconstruction
for Lung. The priori information about the local structure
from FDCT can be incorporated into the model conveniently
without registration. With this method, the FDCT data can
come from large chest CT database, not limiting to the
same patient. Reconstructions for uLDCT data had shown
its potential in structure detail preservation. The perfor-
mance of RMSE, UQI and NVF plot was better than that of
PWLS-NLMalgorithm in the lungROIs, which demonstrated
its superior reconstructions for low-dose lung data.

Reconstructing with multi parameters and their diffi-
cult determination is a common problem for iterative-type
algorithms. For the proposed PWLS-NLMpatch algorithm,
the more influential parameters of filtering parameter h,
and smoothing parameter β were studied. Both of them
control the smoothness of the reconstruction. The larger,
the smoother of the images. Among them, β controls the
tradeoff between the data fidelity term and the regularization
term. In our study, β was set within a small range (β = 7×105

to 1 × 106) by experiment for the reconstruction of lung

LDCT data with 10mAs, which was a little larger than most
of that in the published papers [20], [28]. This was because
mAs of the current in our study was smaller and larger β
was needed to decrease the data fidelity for controlling the
noise and artifacts. Parameter h was set 0.003 for all of the
experiments, in which the reconstructions were acceptable.
It controls the amount of de-noising and could be adjusted
adaptively according to the noise situations. In our study, h
was set to a constant value for all the NLM-type algorithms.
Strategies to develop adaptive h will be studied for future
research to further improve the presented scheme.

Except for the reconstruction parameters, the quality of
initial image and the offline training database were also stud-
ied on their effect for the PWLS-NLMpatch performance.
Obviously, if there were severe noises or artifacts in the
initial image, the quality of the selective patch samples in
the training database would be declined, for they were built
up based on the similarity between the FDCT patches and
the target patch of the initial image. Therefor it is better
to improve the quality of initial image. The NLM filtering
was used for denoising the LDCT-FBP image in our study
and the reconstruction with the filtered image as the initial
image was improved in reducing artifacts and noise. Other
methods such as algorithms with data processing in sinogram
domain will be tried in future research to further improve
the initial image. To study the influence of offline training
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database on PWLS-NLMpatch performance, a few training
databases with different sizes and different positions were
built up for the following reconstruction. Reconstructing with
larger training database was good for RMSE and UQI merits.
However, larger size of training database will cost much
time in searching similar patches. Therefore, tests were done
with different sizes of database, which showed that about
3.5× 105 patches were enough for our tests (Table 3). Further
tests with training databases from different positions (Table 4)
demonstrated the performance of PWLS-NLMpatch with
25% patches of the reference set could be preserved, no mat-
ter what FDCT images they come from.

Although the proposed PWLS-NLMpatch has shown
its improvement in RMSE, UQI, LSF and NVF, com-
pared to the PWLS-NLM algorithm, it was worse than the
PWLS-ndiNLM method. The results can be understood,
as the FDCT itself has the best match to the LDCT image to be
reconstructed. So, searching the best matching patches to the
target patch is an essential problem for the PWLS-ndiNLM.
Besides improving the initial image quality, optimizing the
training database and the similar patch samples to the target
patch is another interesting topic for studying. For example,
the training database can be built up precisely by subdi-
vided them into lung database, bone database and so on,
according to segmented organs or tissues [31]. In addition,
more methods will be tried for searching closer and adaptive
patch samples to the target patch from the optimized training
database.

One limitation of the study was the testing uLDCT data
with 10mAs was produced by simulation. Since low dose CT
projection is difficult to obtain, many studies are performed
with simulated LDCT data [29], [32], [33]. In our simulation,
we assume the detected photon intensity follows the Pois-
son process plus the electronic noise background [15]. The
incident X-ray intensity and electronic noise for simulation
comes from actual data collected. The simulation method
has been verified in previous work [33]. It can be assumed
that the data simulated are close to the real data. Suppose
the effective dose of CT scanning is proportional to the tube
current-time product, the effective dose with 10mAs is at
least below 1.0 mSv. It is relatively low dose in existing lung
screening trial or new algorithm studies. However, the pre-
liminary study focuses on the methodological performance of
the proposed algorithm and lacks clinical evaluation. It has
been reported that the radiologist readers can still maintain
the diagnostic performance with ∼96% dose reduction [32],
which is very important for clinical application. Future study
will strengthen this aspect of testing and do some assessment
under much lower dose.

Another limitation was the proposed algorithm was tested
only for one type of CT scanner and the FDCT images
for building the training database were from the same CT
scanner. More reconstructing will be implemented for testing
the PWLS-NLMpatch algorithm for different CT scanner
in future, especially when the training database and projec-
tion data are from different CT scanners. The computational

burden is another drawback of the algorithm. Although
the training database was built up offline, the multiple
re-projection and back-projection operation cycles in the
algorithm dominant the calculation process. However, with
the development of fast computers and current GPU based
methods [34], [35], the computation issue may be not a
problem in the near future.

V. CONCLUSION
In summary, a new NLM prior model based on FDCT
database was proposed in this paper. Preliminary reconstruc-
tion with LDCT data has shown its performance in reducing
the noise, streaking artifacts and improving structure details.
Reconstructions with 10mAs data in the study show the dose
can drop below 1.0mSvwith the proposed strategy, indicating
its potential for uLDCT lung screening.
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