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ABSTRACT A compensation method for a magnetoelectric velocity sensor (MVS) is always necessary,
which can lower the resonance frequency of the measuring system and subsequently extend the measuring
bandwidth. In this paper, a novel compensation method is proposed based on the BP neural network under
the TensorFlow architecture. Comparing with the existing methods, the new method does not depend upon
an accurate model of the MVS any more, whose parameters are badly influenced by the temperature. The
dynamic compensator is connected with the sensor. The BP neural network algorithm is used to identify
compensation parameters. The dynamic compensator works at state of the optimum parameter all the time to
compensate the dynamic performance of MVS by training the weights and thresholds of the neural network.
The experiment results show that velocity measurement deviation is within±5% error band by the dynamic
compensator, which can reduce the measurement deviation caused by the variation of temperature and
improve the measurement accuracy. The bandwidth can be as low as 0.28Hz. The dynamic compensator
is superior to Random Forests and RBF Neutral Network in implement in FPGA/CPLD. Its’ accuracy
is superior to zero-pole compensation method. This method leads a new way to weaken the temperature
variation characteristics of the velocity sensor and improve the measurement performance.

INDEX TERMS Velocity sensor, bandwidth expansion, temperature dependence, BP neural network.

I. INTRODUCTION
Vibration isolation systems are widely used in high-
precision applications to achieve the extreme demands of
accuracy [1]–[4]. The measurements of the vibration signal
are very important for the active vibration isolation sys-
tem [5], only based on which the closed-loop isolating system
can be constructed. The output signal of absolute velocity
sensor, such as the magnetoelectric velocity sensor (MVS)
which has low output impedance and high sensitivity, comes
from the relative motion between the inertia mass block and
the outer shell [6]. In order tomeasure the ultra-low frequency
signal, it is necessary to decrease the natural frequency of the
detecting system and subsequently expand its bandwidth.

In vibration isolation search area, the frequency expansion
technology of the MVS has attracted increasing attention
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of researchers in the precision engineering, such as the nano-
scale measuring, the semiconductor manufacturing and the
space exploring. The zero-pole compensation method is the
widely-applied method to lower the natural frequency of
the MVS, which is expected to cancel the natural pole of the
transfer function of the sensor by introducing the carefully-
designed zero of the compensation network [7], [8]. Then the
designed pole of the compensation network acts as the pole of
the whole detecting system, which is consisted by the sensor
and the additional compensating network. Then, the new
center frequency of the detecting system could be lower than
before, which will match the system requirement [9].

In recent years, many ground simulators in aerospace
field require vibration isolation foundation (VIF) with high
integration and low frequency isolation performance. The
MVSs are embedded in the platform of the VIF. The cooling
equipment cannot be used to avoid additional disturbance
from introducing external disturbance any more, such as
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the water flow. So the local temperature rising around the
MVS during long-time running cannot be suppressed by
the environmental control system. The temperature rise of
the MVS will subsequently cause the parameters change,
such as the natural frequency, the damping ratio, the sensitiv-
ity, and the frequency characteristic. So the existing compen-
sation network will be ineffective because of the temperature
dependence of the MVS.

There are two methods for sensor temperature compen-
sation. The traditional method is hardware compensation,
such as bridge method, negative temperature coefficient
platinum resistance method [10], [11]. Because the resis-
tance and capacitance parameters of hardware circuit are
difficult to adjust and the flexibility is bad, software com-
pensation is more frequently-used. Software compensation
divides into two ways: modern filter and machine learn-
ing. Frequently-used modern filters include adaptive filter-
ing algorithm [12]–[15] and Kalman filter [16], [17]. The
adaptive filtering based on the Least Mean Square (LMS)
is generally suitable for on-line identification of the system
and it needs a reference signal. So it is not suitable for the
MVS because the ideal output signal is unknown during the
measurement process. The Kalman filter does not need ideal
output signal as a reference, which is generally applicable to
the signal to be filtered including other noise signals. But the
temperature variation causes the change of the system transfer
function, so the Kalman filter is also unsuitable. Machine
learning includes RNN (Recurrent Neutral Network), CNN
(Convolutional Neural Network), Random Forests, REFNeu-
tral Network, SVM (support vectormachines) and BPNeutral
Network etc. The LSTM (Long Short-Term Memory) is a
typical RNN neutral network structure. It has memory feature
and is suitable for NLP (Natural Language Processing) with
context [18]. But the output of MVS at any time is disturbed
when temperature changes. So in the above case, LSTM
may not suitable. And CNN has the ability of representation
learning and can classify input information according to its
hierarchical structure. It is mainly used for image recogni-
tion. Its’ nonlinear mapping ability is less than BP neural
network [19]. The RBF neural network is a typical local
approximation network and it can approximate arbitrary con-
tinuous function with arbitrary precision. But RBF has only
one hidden layer. Therefore, when training samples increase,
the number of hidden neurons in RBF network is much higher
than that of BP, which makes the complexity and structure of
RBF network greatly increased, and the amount of computa-
tion also increased and it’s also difficult to be implemented
in FPGA/CPLD [20]. Because temperature compensation
involves multiple frequency points in this paper, the training
sample data is huge. So RBF is inappropriate. SVM is sim-
ilar to the above. Random Forests are able to process high-
dimensional data without feature selection with high training
speed [21], [22]. But there will be over fitting for classi-
fication problems with large noise. Furthermore, Random
Forest Algorithms are usually implemented in R Language
and is so hard to implement in FPGA/CPLD based it’s high

FIGURE 1. Mechanical structure sketch of the MVS.

FIGURE 2. Equivalent model of the MVS.

processing speed. BP Neutral Network can be multiple hid-
den layers and we can adjust learning rate dynamically to
improve the convergence rate. And It’s easy to implement
in FPGA/CPLD by matrix operation in VHDL (Very High
Speed Integrated Circuit Hardware Description Language)
or Verilog.

In this paper, a novel compensation method is proposed
based on the BP neural network under the TensorFlow archi-
tecture to compensate the temperature dependence of the
MVS referring to Yu Ma et all’s disturbance suppression
method based on adaptive fuzzy neural network model [23].
The proposed compensation network is initially trained by
feeding the amplitude and the frequency of the output voltage
of the MVS, the temperature of the MVS, and the accu-
racy vibration amplitude of the excitation source. The well-
designed weights and thresholds of the neural network can
be therefore arrived at. And we can embed this algorithm
into integrated devices to measure velocity excellently in
real time [24], [25]. Finally, the effectiveness of the proposed
method will be experimentally verified by measuring the
detecting errors of the velocity under the temperature rise
condition.

II. PROBLEM STATEMENT
The mechanical structure sketch of the MVS in this paper
is shown in Fig. 1. The MVS is mainly composed of the
permanent magnet, the coil, the support frame, and the spring.
The dynamic system of the MVS can be simplified as a
second-order systemwith single-degree-of-freedom, which if
consisted of a massM , a spring of stiffness K , and a damping
C , as shown in Fig. 2.

The MVS converts the relative velocity of coil and per-
manent magnet into voltage signal proportional to the veloc-
ity based on the principle of electromagnetic induction.
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FIGURE 3. Second-order underdamped response curve.

The induced electromotive force produced by the coil cutting
the magnetic induction line is as follows:

e = WBlv sin(θ ) = WBl(ẋ1 − ẋ0) sin(θ ), (1)

where W is the coil turn, B is the magnetic induction of
permanent magnet (T ), l is single-turn coil effective length
(m), v is the relative velocity of coil and permanent magnet,
θ is the angle between coil motion direction and magnetic
field direction, ẋ1 is absolute velocity of the coil, and ẋ0 is
absolute velocity of the permanent magnet.

The dynamic equation of the MVS can be written as,

Mẍ1 + f (ẋ1 − ẋ0)+ K (x1 − x0) = F, (2)

When the external force F= 0 acting on the measured
object, the transfer function of the MVS can be deduced by
deriving the Laplace transform of equations (1) and (2),

G0(s) =
U0(s)
V0(s)

=
−k0s2

s2 + 2ζωns+ ω2
n
, (3)

where ωn =
√
k/m is natural frequency, ζ is damping ratio,

k0 is sensitivity.
The natural frequency and the damping ratio of the MVS

can be obtained by the direct current excitation method.
A constant current is applied on the MVS, and the coil
is suspended by the ampere force. Then, after the coil is
stable, the constant current will be cut off instantaneously.
The coil subsequently reaches the state of damped vibra-
tion. Since the coil cuts the magnetic induction line when
it moves, the output of the MVS is a sinusoidal waveform
whose amplitude decreases exponentially. The second-order
underdamped curve can be measured as shown Fig. 3.

The natural frequency and damping ratio can be obtained
by measuring the peak point coordinates of the response
curve. The first peak point is (t1, A1) and second peak point
is (t2, A2), then the natural frequency and damping ratio can
be calculated by:

ζ =
ln(A1/A2)√

π2 + [ln(A1/A2)]2
, (4)

FIGURE 4. The Amplitude-Frequency characteristics before and after
Expansion.

f0 =
1

2|t1 − t2|
√
1− ζ 2

, (5)

The sweep frequency method is employed to acquire the
natural frequency, the damping ratio, and the sensitivity of
the MVS. The sinusoidal vibration signals with different
frequencies are generated by an excitation source with a voice
coil motor. The vibration signals are measured by both the
standard velocity sensor and the MVS in this paper. The
parameters of the MVS are as follows, the natural frequency
f0 = 4.59Hz, the damping ratio ζ0 = 0.56, and the sensitivity
K0 = 29.14V/m/s. Therefore, the transfer function of the
MVS can be calculated as,

G0(s) =
−29.14s2

s2 + 32.0851s+ 831.2352
, (6)

The compensation network can be therefore constructed
according to the zero-pole compensation method, whose
transfer function can be expressed as,

G1(s) =
s2 + 32.0851s+ 831.2352
s2 + 2.4876s+ 3.0951

, (7)

Based on the series compensation principle, the amplitude-
frequency characteristics before and after expansion can be
drawn based on equation (6) and (7), as shown in Fig. 4.
As shown in Fig. 4, the zero-pole compensation method can
expand the frequency band of the MVS. The bode diagrams
of equations (6) and (7) can be sketched as Fig. 5.

However, when the temperature changes along with the
external environment or long time running, the parameters of
the MVS will change, which leads to equation (6) change.
So the zero and pole points of equation (6) and (7) can’t be
cancelled by series connection. Then the second-order sys-
tem will become a higher-order system, and the amplitude-
frequency characteristics of the system deviate from the ideal
value, which will cause the measurement error of the MVS.

In this paper, the temperature change of the MVS is mea-
sured by a K-type thermocouple as shown in Fig. 6. A sealed
concrete structure without heat dissipation is constructed,
which is consistent with the actual application. The varying
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FIGURE 5. Frequency characteristic curve.

TABLE 1. Frequency characteristic curve.

FIGURE 6. K-Thermocouple.

parameters of the MVS within 1hour are listed in Table 1.
With the temperature increasing more than 30 ◦C, the sen-
sitivity is increased by 2 V/m/s. The resolution of analog-
to-digital conversion is 2mV. So the voltage corresponding
to smallest vibration signal that can be measured is 2 mV.
Velocitymeasurement deviation is 68.6um/s. The voltage cor-
responding to max vibration amplitude is about 0.073V. And
velocity measurement deviation is 0.199mm/s, and the rela-
tive measurement deviation is 8%. The error is not ignored
for nanoscale processing, for example, photolithography
chip. With the same compensation network, the amplitude-
frequency characteristic curve of the whole series system is
shown in Fig. 7. It can be seen that the amplitude-frequency
characteristics of the series system are greatly affected by
temperature variation in the range of 0.5Hz to 10Hz near the
natural frequency, so the measurement error of the vibration
signal obviously occurs in this frequency range.

To solve the temperature dependency problem of the
MVS, a dynamic compensation network should be adopted.

The adaptive filtering based on the LMS is generally suit-
able for on-line identification of the system. But it is not
suitable for the MVS because the ideal output signal is
unknown during the measurement process. The Kalman filter
does not need ideal output signal as a reference, which is
generally applicable to the signal to be filtered including
other noise signals. But the temperature variation causes
the change of the system transfer function, so the Kalman
filter is also unsuitable. A compensation method based on
BP neural network under the TensorFlow architecture is
proposed in this paper. The inputs of the proposed com-
pensator are the amplitude, frequency of the output volt-
age, and the temperature of the MVS, the output of the
compensator is vibration velocity. The parameters of the
neural network can be obtained by the off-line training.
MVS’s voltage amplitude is connected with vibration veloc-
ity by sensitivity. The change of sensitivity is equivalent to
the change of amplitude-frequency characteristic of MVS
in Fig. 7, which is only related to frequency and temperature.
So vibration velocity is decided byMVS’s voltage amplitude,
frequency and temperature. And we take above three vari-
ables as input nodes so as to reflect this information to the
neutral network.

III. BP NEURAL NETWORK
A neural network is a mathematical algorithm model that
processes distributed parallel information using a physical
device to simulate the structure and function of a biologi-
cal neural network. BP model is also called the multi-layer
feed-forward network of errorback propagation algorithm.
It is composed of multiple inputs and single output neurons
connected according to certain topological structures; further,
it studies through sample training, changes the weight value
and threshold value of the internal connection such that the
error between the output value and target value is minimal,
and obtains a nonlinear mapping that can describe the rela-
tionship between the input and output of a system [26]–[28].
TensorFlow is a symbolic mathematical system based on data
flow programming, which is widely used in the programming
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FIGURE 7. Amplitude-frequency characteristic curves with temperature variation.

FIGURE 8. BP Neural Network model.

of various machine learning algorithms. Therefore, a BP
neural network based on TensorFlow framework is built.

In this work, the BP model is consisted of one input layer,
two hidden layers and one output layer, as shown in Fig. 8.
The number of hidden layer and nodes in the hidden layer
is determined by the actual training effect. In addition to
the influence of temperature, the compensation effect is also
affected by the amplitude and frequency of vibration signal,
so the node of input layer is set to be 3. The activation function
of hidden layer is a hyperbolic tangent function written by
equation (8).

f1(x) = tanh(x) =
2

1+ exp(−2x)
− 1, (8)

The activation function of the output layer is linear function
written by equation (9).

f2(x) = purelin(x) = x, (9)

The index function is defined as equation (10).

J =
1
2
e2(k) =

1
2
[yc(k)− prediction(k)]2, (10)

where yc(k) is network training data, prediction(k) is network
prediction value and e(k) is the deviation between actual
value and prediction value.

The input layer nodes are shown in Fig. 8, which are the
output voltage u(k), frequency f (k) of the compensatedMVS,
and the temperature T (k) of the MVS. The outputO(1)

j is also
u(k), f (k), T(k).
The input of the hidden layer isO(1)

j , and the outputs are as
follows.

net (2)i (k) =
2∑
j=0

w(2)
ij O

(1)
j (k)+ Pi, (11)

O(2)
i = f1[net

(2)
i (k)], i = 0, 1...m1 − 1, (12)
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FIGURE 9. Simulation model.

FIGURE 10. Neural network training effect.

net (3)h (k) =
m1−1∑
i=0

w(3)
hi O

(2)
i (k)+ th, (13)

O(3)
h = f1[net

(3)
h (k)], i = 0, 1...m2 − 1, (14)

where w(2)
ij is the first hidden layer weight coefficient, w(3)

hi
is the second hidden layer weight coefficient, Pi is the first
hidden layer neuron threshold, th is the second hidden layer
neuron threshold, O(2)

i is the output of the first hidden layer
and O(3)

h is the output of the second hidden layer.
The outputs of the output layer are shown as equation (15)

and (16).

net (4)l (k) =
m2−1∑
i=0

w(4)
lh O

(3)
h (k)+ bl, (15)

O(4)
l = f2[net

(4)
l (k)], l = 1, (16)

Based on the index function (10), the gradient descent
method is used to modify the weights of the network.

1w(2)
ij = −η

∂f1

∂w(2)
ij

, (17)

∂f1

∂w(2)
ij

=
∂f1

∂yc(k + 1)
·
∂yc(k + 1)

∂O(2)
i

·
∂O(2)

i

∂net (2)i (k)
·
∂net (2)i (k)

∂w(2)
ij

,

(18)

where η is learning rate.
In the actual training process, the weights of each layer can

be directly derived by the TensorFlow framework. Then the
BP neural network can be realized by the embedded system
with FPGA (Field Programmable Gate Array).

IV. SIMULATION
The simulation model is constructed in MATLAB/Simulink
to validate the neural network compensator, as shown
in Fig. 9. The transfer function of the MVS equation (6)
and the compensation network equation (7) are discretized to
Z-domain by the bilinear transformation. The compensation
network in Fig.9 is to amplify the input signal below the cut-
off frequency of the sensor and improve the signal-to-noise
ratio (SNR), which can improve the fitting effect of the neural
network. The inputs of the neural network compensator are
amplitude and frequency of a sinusoidal signal which repre-
sents the vibration signal, and the temperature. The sample
frequency is set to be 2kHz.

According to table 1, variation of sensor parameters includ-
ing natural frequency, sensitivity, damping ratio, caused by
variable temperature. So the discrete function of velocity
sensor varies with temperature in Fig. 9. We use the actual
measured parameters to reflect temperature dependence of
velocity sensor. The temperature and sensor parameters are
measured in actual experimental environment. Furthermore,
the sine vibration signal of DSP module reflects actual
vibration signal. Its frequency range is 0.5Hz-10Hz. And
the vibration amplitude is consistent with the actual vibra-
tion amplitude measured by standard velocity sensor. So,
the conditions for simulation experiments are comprehen-
sive enough. It can reflect all possible situations in practical
application.

As shown in Fig. 7, when the frequency of vibration signal
is in the range of 0.5Hz to 10Hz, the MVS parameters change
caused by temperature variation has the greatest impact on
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FIGURE 11. Experimental system.

FIGURE 12. PID closed-loop control system block diagram for voice coil motor.

series compensation, so in the simulation, the amplitude of
the input signal is set to be 0.5mm/s to 2.5mm/s, the fre-
quency is set to be 0.5Hz to 10 Hz. According to Table 1,
the temperature is set to be T0 = 27.1◦C, T1 = 43.2◦C,
T2 = 50.5◦C, T3 = 54.0◦C, T4 = 56.9◦C and T5 = 59.6◦C
which represent the temperature of MVS on different time.
Then the training data of three input nodes and one output
node is encapsulated.

The trained neural network is validated by a different
vibration signal with amplitude 1mm/s, frequency 5Hz and

temperature 46.3◦C. The simulation result is shown in Fig.10.
The output data of trained neural network is consistent with
the actual velocity which is measured by the standard velocity
sensor, and the measurement data from the MVS without
compensation has obvious error which is affected by the
temperature change.

V. EXPERIMENT
The experimental platform is shown in Fig. 11. A cali-
brated GS-11D velocity sensor severs as the standard sensor.
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FIGURE 13. Experiment process. (a) The vibration with 1 Hz and 3.46 mm/s when t in [0, 2]; (b) the
vibration with 2 Hz and 5.86 mm/s when t in (2, 4]; (c) the vibration with 3 Hz and 7.72 mm/s when
t in (4, 6]; (d) the vibration with 5 Hz and 11.28 mm/s when t in (6, 8]; (3) the vibration with 4 Hz
and 9.57 mm/s when t in (8, 10]. Temperatures are measured at 2, 4, 6, 8, and 10 minute.

FIGURE 14. The maximum relative error of velocity measurements at different measuring
points.

AK-type thermocouple is applied to measure the temperature
of the CZ810 type MVS. The vibration signal is generated by
a voice coil motor with a TA115 type amplifier. The whole
experiment system is controlled by a Speedgoat Real-time
system, which includes the PID closed-loop control module
of the voice coil motor, the BP neural network compensator,
and the sensor signal acquisition module. The software sys-
tem is shown in Fig.12.

The frequency of vibration signal is adjusted from
0.5Hz to 10Hz with 0.1Hz interval, and the amplitude
of vibration signal is adjusted from 0.5mm/s to 10mm/s
with 0.1 mm/s interval. The output voltage and the tem-
perature of the MVS, and the velocity measured by stan-
dard velocity sensor GS-11D are collected and packaged
as training data of the BP neural network compensator
under TensorFlow architecture. The Kalman filter shown

154896 VOLUME 7, 2019



B. Zhao et al.: Extending Velocity Sensor Bandwidth by Compensating Temperature Dependency

FIGURE 15. The measured time-domain vibration signal waveform when the vibration signal is
1Hz and the temperature of the sensor is 41.2 ◦C.

in Fig. 12 is designed to reduce the measurement noise based
on the time update equations (19), (20) and the state update
equations (21), (22) and (23).

x̂−k = x̂k−1 (19)

P−k = Pk−1 + Q (20)

Kk = P−k /(P
−

k + R) (21)

x̂k = x̂−k + Kk (zk − x
−

k ) (22)

Pk = (1− Kk )P
−

k (23)

where x̂k ∈ Rn is n dimensional state variable, uk−1 is input
control variable, zk ∈ Rm is m order observation variables, Q
is covariance matrix of process excitation noise, R is covari-
ance matrix of observation noise, Kk is Kalman gain and Pk
is covariance matrix of state estimator error

Figure 13 indicates that a series of vibrations with varied
frequencies and amplitudes are generated within 10 minutes.
The temperature of the MVS greatly rises, which varies from
41.2 ◦C to 59.2 ◦C. As shown in Fig. 13, blue bars represent
vibration signals with different amplitudes and frequencies
and Ai represents the amplitude of vibration signal. Because
the sample size is so large, only five groups of data are dis-
played here. The red arrows indicate where vibration signals
aremeasured at a certain frequency. Taking 1Hz vibration sig-
nal for example, experiments are carried out at the frequency
and temperature point when the time-period of applying DC
voltage is 2 minutes, and that’s to say the temperature of the
sensor is 41.2 ◦C. Corroding to Fig. 7, the properties of the

MVS varies with the temperature rise, which subsequently
lead to the obvious measuring errors.

Figure 14 indicates that the maximum relative error of
the MVS connecting with the proposed BP neural network
is obviously reduced into the ±5% error band. National
Standard (GB/T 6593-1996) regulates that the measurement
results is eligible with high confidence probability if the rel-
ative error of measurement data is within 5% error band [29].
It is therefore experimentally verified that the proposed
method is effective for compensating the temperature depen-
dence of the MVS.

Fig. 15 shows that the measured time-domain vibration
signal waveform when the vibration signal is 1Hz and the
temperature of the sensor is 41.2 ◦C. The blue solid line
represents the measured waveform of the velocity sensor
CZ810, and the red dotted line represents the vibration veloc-
ity value compensated by the neural network. It can be seen
that there is the big difference between the both, and the
error between the latter and the true velocity value is even
smaller. Fig. 15 indicates that the velocity value from the
neural network compensator is in good agreement with the
real velocity value in time-domain, that is, the phase delay is
very small, so the velocity measurement value can be used
for real-time feedback adjustment in low-frequency vibration
isolation, thus realizing the real-time control system.

VI. DISCUSSION AND CONCLUSION
In this paper, a BP neural network dynamic compensator
for the velocity sensor is established, which can effectively
compensate the temperature dependence of the sensor and
subsequently extend the detecting bandwidth and improve
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the measurement accuracy. Experimental results indicate that
the proposed compensator can keep the detecting errors
of the velocity within ±5% error band, even though the
temperature rise of the sensor has approximately reached
30 Celsius degrees. It is also experimentally verified that the
minimum detecting frequency of the sensor can be extended
to 0.28Hz from the natural 4.59Hz after applying the pro-
posed compensator. In industrial practice, after deriving the
coefficients of the neural network, the velocity signal can
be measured by matrix operation with DSP or FPGA, and
the vibration signal can be observed in real time with the
host computer.

Therefore, the neural network compensator can replace the
existing zero-pole compensation network and still has a good
performance to measure low-frequency vibration signal even
when the temperature changes. The proposed compensator
is easily embedded into the integrated devices, which can be
excellently applicable for the vibration isolation foundation
applications.
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