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ABSTRACT Currently, there are many tools available online for T-cell epitope prediction. They usually
focus on the binding of peptides to major histocompatibility complex (MHC) molecules on the surface
of antigen-presenting cells (APCs). However, the binding of peptides and MHC complexes to the T-cell
receptor (TCR) is also critical for the immune process. Identifying the binding of human epitopes to TCRs
will be useful for developing vaccines. It also has great prospects in medical issues such as cancer and
autoimmune diseases. We propose a similarity-based TCR-epitope prediction method using a similarity
measure. This paper introduces the Deepwalk method to calculate the topological similarity between TCR-
TCRs, constructs a TCR similarity network topology, and predicts the correlation between TCRs and
epitopes based on known TCR-epitope associations. We selected data from 22 types of epitopes from the
VDJDB database and trained models to implement TCR-epitope prediction. We trained a model on the
data from the 22 types of epitopes, predicting which epitope each TCR belongs to. To compare with other
methods, we also generated a second method involving training a model for each type of epitope so that we
can predict which TCR is bound to the epitope from a large pool of TCRs. We used the ROC curve, PR curve
and other evaluation indicators to evaluate our model in 10-fold cross-validation. In the first model, the AUC
value of our method is 0.926, and that of the support vector machine (SVM) method is 0.924. Considering
that no one has ever used the first prediction model, we used the second method for the predictions. The
results show better predictive performance compared to the SVM method, TCRGP method and random
forest method. Our AUC values range from 0.660 to 0.950. The experimental results show that our method
outperforms other methods in TCR-epitope prediction, which can help predict the TCR-epitope.

INDEX TERMS Deepwalk, TCR-epitope associations, TCR-epitope prediction, similarity measure.

I. INTRODUCTION
The T-cell receptor (TCR) is a characteristic molecular
marker found on the T-cell surface. Most TCRs consist of
α and β chains [1], and a small number consist of δ and γ
chains [2]. It is the gene recombination of the DNA frag-
ment on both chains that produces a large number of dif-
ferent TCR sequences [3]–[5]. Epitopes are chemical groups
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that have a specific structure on the surface of an antigen
that determines antigen specificity. An antigen binds to a
specific TCR through recognition of the epitope. The anti-
gen is degraded into a polypeptide and specifically binds to
the corresponding major histocompatibility complex (MHC)
molecule. The MHC molecules then present antigenic pep-
tides to the TCRs. If the MHC-peptide complex can be
specifically recognized by the TCR, then it can induce
the immune response of the T cell. Therefore, the bind-
ing of the TCR epitope is crucial in the immune process.
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After TCR-epitope-specific recognition, T cells produce an
effector T cell killing antigen cell with specific immune func-
tion.Medical research on the immune responsemechanism of
T cells has been useful for the development of targeted drugs
and vaccines against infectious diseases [6]–[10]. An injected
vaccine acts an antigenic substance, triggering an immune
response with TCR-specific recognition and producing anti-
bodies to eliminate the virus. The principle of identification
between the TCR and the epitope is also an important part of
vaccine development.

With the recent development of high-throughput sequenc-
ing technology [11], TCR-sequencing technology enables
us to sequence a person’s whole repertoire. We are able to
select T cells’ RNA or DNA or TCR-specific CDR3 regions
for sequencing. Some tools can process sequences into a
quantitative list, so we can use the sequencing results to per-
form epitope prediction-related experiments. In recent years,
bioinformatics [12] has played a very beneficial role in the
recognition of T-cell epitopes. Therefore, the scientific com-
munity is interested in further developing TCR sequencing
and analysis tools. There are a great number of published
TCR-peptide datasets available online, such as VDJDB [13]
and McPAS [14] containing information on different types
of epitopes. These data make the analysis of TCR-peptide
associations more comprehensive, making it possible for us
to complete TCR-epitope prediction tasks.

Traditional T-cell epitope prediction often uses peptide
scanning [15]. However, due to the enormous complexity of
the immune process, this work is time consuming and costly.
The use of computer-effective predictions of T-cell epitopes
can avoid these problems, making accurate predictions that
can then be proven by experiments. Therefore, the meth-
ods developed through bioinformatics have received exten-
sive attention from researchers. Currently, in bioinformatics,
research methods on epitope prediction are mainly divided
into two groups: MHC-epitope prediction and TCR-epitope
prediction. Most online tools are based on MHC-epitope pre-
dictions [16], mainly including methods based on molecular
modeling [17], combined motif methods [18], quantitative
matrixes [19] andmachine learning [20].Molecularmodeling
can reveal interaction mechanisms within molecules but is
not suitable for high-throughput data processing. The binding
motif method is simple and suitable for epitope prediction
with less experimental data, but the complexity of MHC [21]
binding to antigen peptides results in low prediction accuracy
for the binding motif method. Methods involving quantita-
tive matrixes are greatly improved compared to the com-
bined motif method. The binding score of any epitope is
obtained by using a specific scoring matrix (PSSM), but
the effect of the overall peptide structure on the binding is
neglected; furthermore, quantitative matrix-based methods
also suffer from data-overfitting issues. Machine-learning
methods include Artificial Neural Network (ANN) [22] and
support vector machine (SVM) [23]. The SVM method is
widely used in MHC-epitope identification and other fields.

It is a traditional machine learning that results in better
prediction results for MHC-epitope identification than other
machine-learning methods. However, in the identification
of TCR epitopes, the SVM classification prediction method
has never been used. Therefore, in this article, we use the
traditional method of SVM for classification prediction of
TCR epitopes. There are many web tools that can pre-
dict combinations of MHC epitopes, and existing predict-
ing tools have achieved high accurancy. However, there are
few tools for predicting the combination of TCR-epitope.
Currently used TCR-epitope prediction methods consist of
TCRGP [24], TCRdist [25] and a random forest-based predic-
tionmethod [26]. TCRGP is a Gaussian process classification
based on non-parametric models. TCRdist is a method for
calculating distances to determine whether a TCR is closer
to an epitope-specific cluster or background TCR cluster.
The random forest method predicts the identification of the
TCR epitope by extracting the features of TCR amino acid
sequences and placing them into a random forest classifier.

However, none of these prediction methods takes the topo-
logical structure of a TCR-epitope network into account. The
TCR-epitope topology network based on the TCR-epitope
data verified by known biological experiments and the calcu-
lated TCR sequence similarity contributes to the TCR-epitope
prediction.Many studies have proposedmethods for calculat-
ing the similarity of TCR sequences: TCRdist distance mea-
sure [25]: Using the BLOSUM62 scoring matrix to calculate
the similarityweightmismatch distance between two receptor
loops; GLIPH Algorithm [27]: Searches for CDR3 global
similarity and local similarity in the CDR region of TCR
to cluster receptors. CDRdist [28]: Calculates the similarity
score of TCR sequences based on sequence alignment and
finally standardizes the scores. Profile distance measure [26]:
Constructs profiles based on physicochemical properties such
as hydrophobicity, alkalinity, and helicity of each amino acid;
then, calculated the distance between two profiles by using
a weighted Euclidean distance. By calculating the similar-
ity of the TCR sequences, we found that the TCR distance
similarity scores belonging to the same type of epitope were
lower than the heterogeneous scores. Based on this finding,
we constructed a TCR similarity topology by the TCR sim-
ilarity score in TCR-epitope prediction. The experimental
results prove that the TCR similarity topology contributes to
the TCR-epitope prediction.

In this paper, we proposed a method based on TCR-TCR
topology similarity. Constructing a TCR-TCR similarity
topology space by calculating the distance between TCR
sequences. Then, using a deep learning method, Deep-
walk [29], we extracted the features of the vertices in the
topology structure, and then predicted the TCR epitope based
on the known data. We used the ROC curve, PR curve and
other evaluation indicators to evaluate our prediction model
under 10-fold cross-validation. The experimental results
show that our method makes contributions to TCR-epitope
prediction. Figure 1 shows the core part of our method.
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FIGURE 1. The core part of TCR-epitope predictions in our method.

II. MATERIALS
A. DATA
Most TCRs are composed of α and β chains; the rest are com-
posed of δ and γ chains. At present, there are many available
data for the α chain and β chain online. Our dataset gathers
3654 TCR sequences with 22 types of epitopes from the
VDJDB (https://vdjdb.cdr3.net), which compiles information
from many different studies and contains TCR sequences
from many different individuals. TCR β sequence data con-
tains V-region, J-region and CDR3 amino acid sequence
information. Each sequence in the VDJDB gives a confidence
score (0-3). Due to the large difference in the number of TCRs
of different types of epitopes in the VDJDB database, a max-
imum of 413 TCRs, but the least is only one. To balance the
difference in sample size, all epitopes we selected contain at
least 50 TCR sequences [24] with a VDJ score greater than 1.
As is known to us all that the TCR CDR3β sequence plays
a significance role in the process of recognizing peptides.
Therefore, in our experiment, we only selected the CDR3β
sequence and deleted the data from the VDJDB that did not
meet our requirements. A detailed description of the epitope
dataset is presented in Table 1.

In the final comparison experiment, we selected some
background TCRs from Dash et al. [25]. Moreover,
we ensured that the number of epitope-specific TCRs and
background TCRs were the same size [24] in the training sets
and test sets to ensure the authenticity of the model evaluation
and to observe how the trained model adapts to the new
data.

B. SEQUENCE REPRESENTATION
TCR sequences are composed of 20 amino acids, each
of which needs to be characterized so that it can then
be used by computational methods. Kidera et al. [30]

TABLE 1. Dataset collected from the VDJDB database, which contains 22
types of epitopes for 8 viruses.

extracted 10 orthogonal factors from 188 physical proper-
ties of 20 amino acids by multivariate statistical analysis.
These 10 factors with appropriate weighting factors can rep-
resent most of the 188 physical properties. These factors
include helicity, hydrophobicity, and structural preferences,
etc. In our experiment, each amino acid in the TCR sequence
was encoded by these 10 orthogonal factors. We encoded the
physicochemical properties of amino acids and extracted the
features of each TCR sequence. Because each TCR sequence
has a different length, the variables for each amino acid input
are not equal.

III. METHODS
A. TCR-TCR SIMILARITY SPACE
In this section, we use a distance-based method such
as physicochemical differences or sequence alignment-gap
penalty for each amino acid to construct a topological
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TABLE 2. Examples of the GapAlign score for the TCR sequences of the ATDALMTGY epitope.

TABLE 3. Examples of the GapAlign score for the TCR sequences of the ATDALMTGY and GILGFVFTL epitopes.

FIGURE 2. TCR-epitope bipartite network.

similarity space for TCR sequences. The TCR-epitope bipar-
tite network is shown in Figure 2. We construct a TCR
sequence-topology similarity space. TCRs of the same color
indicate that they are associatedwith the same type of epitope.
The dashed line indicates that a distance-based approach is
used to construct a topology similarity network for TCR
sequences. The solid line indicates the known relationship
between TCR and epitope. Our goal is to predict which
epitope is associated with the unknown TCR.

Inspired by Meysman et al. [31], in this article, we mainly
used the GapAlign method to calculate the distances between
TCR sequences. The lower the GapAlign score, the higher
the similarity between the two TCR sequences. From the
GapAlign scores in Table 2 and Table 3, it can be seen that
the similarity of TCR sequences in the same type of epitope is
higher than the similarity of TCR sequences belonging to dif-
ferent epitopes. Therefore, we constructed a TCR-similarity
topological network based on the differences in sequence
similarity within and between epitopes to help predict the
relationship between the TCR and the epitope. In section IV,
we added the Profile and CDRdist distance calculation meth-
ods to compare with the GapAlign method. The experimental

results show that the GapAlign method outperformed than
other two methods.

GapAlign: This diatance originated from the TCRdist
method proposed by Dash et al, which is based on sequence
alignment and uses the BLOSUM90 [32] scoring matrix.

Profile: This distance is used to calculate the physicochem-
ical properties between two TCR sequences. We normalized
the alkalinity, hydrophobicity, and helicity values of each
amino acid, constructed a profile of the TCR CDR3 region,
and calculated the distance of the two profiles using weighted
Euclidean distances. The sum of the three profile distances is
the final score.

CDRdist: This distance performs local alignment using the
Smith-Waterman algorithm [33]. It normalizes to the [0,1]
interval by using the algorithm for local alignment and divid-
ing the alignment score by the minimum of the two sequence
self scores.

B. DEEPWALK SIMILARITY LEARNING
Deepwalk [29] is a deep learning method that vectorizes ver-
tices in the graph and represents the potential relationship of
the vertices. This method obtains local information about the
random walk by maximizing the co-occurrence probability
of the vertex vj of the visited node in the window w to learn
the vector representation of the vertex. Deepwalk contains
two main steps: (1) random walk, (2) an update step with a
skipgram algorithm [34]. The random walk generator takes a
random vertex vj in graph G as the root of random walk wvj .
In our experiment, the walk length t of the random walk is
fixed. A walk sequence randomly selects the neighbor of the
last visited node until it reaches the maximum length t. For
each random walk sequence, it maximizes the co-occurrence
possibility of vertices in a window size w, calculated as
follows:

Pr({vj−w, ..., vj+w}\vj|φ(vj)) =
j+w∏

i=j−w,i6=j

Pr(vi|φ(vj)) (1)

The skipgram algorithm iterates all possible matches of the
random walk sequence in window w. For each j, φ(vj) means
vertex vj maps to its representation space; φ ∈ R|v|×d is
represented by a matrix, where d is the embedding size,
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and |v| is the set of vertices. After giving vj a representation in
space, we want to maximize the probability of its neighbors
in the walk sequence. We can use a variety of models to
learn the posterior distribution, but these models require huge
computing resources. The calculation of Pr(vi|φ(vj)) is not
feasible. Therefore, hierarchical softmax [35] is introduced
to factorize Pr(vi|φ(vj)). We assign the vertices in the walk
sequence to the leaves of the binary tree and transform the
prediction problem into a hierarchy to maximize the spe-
cific path using vertices as leaf nodes of the Huffman tree
to shorten training time. The formula of Pr(vi|φ(vj)) is as
follows:

Pr(vi|φ(vj)) =
[log|V |]∏
k=1

1/(1+ e−φ(vj)·ϕ(bk )) (2)

where ϕ(bk ) ∈ Rd represents the parent node of tree node bk .
The path to vi is identified by the sequence of tree nodes
(b0, b1,. . . ,blog|v|), where b0 = root and blog|v| = vi. The
Huffman tree we introduced can speed up training time by
assigning shorter paths to frequent vertices in a random
walk.

We use distance methods to construct the TCR-TCR simi-
larity topology and input the obtained TCR sequence similar-
ity relation matrix into the deepwalk method. Starting from
a random vertex vj (the TCR sequence), a sequence of local
relationships between TCR-TCRs is obtained by a random
walk. The walk length t, walk per vertex γ , window size
w and embedding size d are appropriately adjusted accord-
ing to the data. Then, the skipgram algorithm iteratively
updates the representation of the vertices by maximizing
the co-occurrence probability and finally obtains the vector
matrix φ that is learned. The vector matrix φ is the potential
representation of the relationship between the vertices in the
topology similarity network learned by deepwalk. Each row
is equivalent to the feature of a TCR sequence. We com-
bine the features extracted from the TCR topology with the
original feature representation of the sequence described in
Section II then place them into the SVM classifier to predict
the TCR-epitope relationships.

C. CLASSIFICATION ALGORITHM AND VALIDATION
In this paper, we use the libsvm package [36] to perform
TCR-epitope prediction. The SVM Classifier maps the input
vector to a high-dimensional space and uses an optimal hyper-
plane to maximize the separation of a given set of training
data.We use the RBF kernel, constantly changing the value of
the error penalty (C) and gamma (g) (C=10, g=0.012) by grid
search to maximize the prediction accuracy. We combined
the TCR sequence features obtained by topological similarity
learning with the amino acid features encoded, each type of
epitope is a label. The goal of SVM is to construct a classifier
to classify TCR sequences for 22 types of epitopes.

In the next section, we compare our methods with TCRGP
and random forest methods. TCRGP is a Gaussian process

classification algorithm that predicts whether TCR-epitope
can specifically bind. It based on sequence similarity and
modeling sequences by kernel function. The random forest
method is a common classification method that can predicts
the identification of the TCR epitope.

We use 10-fold cross-validation to train the SVM model.
In our experiment, the TCR sequence with the epitope label
was randomly divided into 10 disjoint subsets; one subset
was used for testing, and the other 9 subsets were sub-
jected to multiple iterations training. This step was repeated
5 times and we selected the average of 5 results as the
final result. To evaluate the performance of our method,
the ROC curve and PR curve, as well as accuracy, sensitivity,
and precision, were calculated to evaluate the quality of the
model:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

Sensitivity =
TP

TP+ FN
(4)

Precision =
TP

TP+ FP
(5)

where TN, TP, FN and FP represent true negative, true pos-
itive, false negative, and false positive values, respectively.
The ROC curve is drawn based on these indicators. The
area under the ROC curve (AUC) can be used as a reliable
indicator of the evaluation of the model.

IV. EXPERIMENT AND RESULT
A. TCR TOPOLOGY PREDICTION
We added the features of the TCR similarity topology struc-
ture based on the SVMmethod. By calculating the GapAlign
score of the TCR sequences, we found that there is a certain
degree of correlation between the TCR sequences of the
same type of epitope and considered that there is a similar
relationship between TCR sequences. Therefore, we used
theGapAlign distance calculationmethod (threshold=90) for
constructing the TCR topology similarity network and use the
deepwalk method for similarity learning.

Deepwalk has a total of 4 parameters. We selected a set of
optimal parameters through grid search algorithm. The best
performance of deepwalk is achieved at window size w=5,
walk length t=40, dimension d=32 and number of walks
γ = 10. Therefore, we chose this set of values as the default
parameters for deepwalk. We compared our method with the
SVMmethod in Figure 3 and Table 4. Deepwalk extracts sim-
ilarity topology features between TCR sequences. Figure 3
clearly shows that the value of the AUC for our method is
higher than that of the SVM method. In Table 4, we used the
three evaluation indicatorsmentioned above to directly reflect
the performance of the two models. Compared with the SVM
method, our method has improved performance, achieving a
precision of 0.720, a sensitivity of 0.608, and an accuracy
of 0.706. The results show that adding the TCR similarity
topology feature can help predict the epitope.
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FIGURE 3. ROC curves and PR curves for the two methods. SVM method
(red line) vs Our method (green line).

TABLE 4. Results from the prediction methods.

B. PREDICTION ACCURACY OF EPITOPES
(TOP30, TOP40, TOP50)
In addition, for comparison, we ranked the posterior proba-
bilities of each type of epitope with the two methods. The
higher the posterior probability, the greater the association
between the TCR sequence and that epitope. We sorted the
posterior probabilities of each type of epitope prediction,
selected the top 30, top 40, and top 50 TCRs, and then
average the prediction accuracy of the 22 types of epitopes.
Figure 4 summarizes our method and the SVM method for
predicting TCR epitope capabilities. Specifically, the average
predicted values of the 22 types of epitopes are 0.926, 0.893,
and 0.856 for the top-ranked 30, 40 and 50 TCRs in our
method, respectively. In contrast, these respective values are
0.925, 0.890, and 0.855 when ranking TCRs by the SVM
method. Larger proportions of top-ranked TCRs indicate that
our model is better than the SVM method. These results
indicate that constructing a TCR similarity topology network
contributes to TCR epitope prediction.

FIGURE 4. Ranking TCR based on the posterior probability of each type of
epitope. We select the top 30, top 40 and top 50 TCRs for each epitope
separately and obtain the average prediction accuracy.

FIGURE 5. Comparison of different thresholds for different distance and
distance measures.

C. DIFFERENT DISTANCE MEASURES AND THRESHOLDS
Experimenting with different thresholds for the three differ-
ent distance metrics mentioned above, we can explore which
distance measure or which measure threshold has better per-
formance.

In Figure 5, we can see the overall prediction of the
three thresholds; the GapAlign method is superior to the
other two methods. This is also proven in the article by
Meysman et al. [31]. The principles of the three distance
methods are different. The CDRdist method is similar to the
GapAlign method; both are based on sequence alignment and
incorporate the BLOSUM replacement matrix. The differ-
ence is that the GapAlignmethod deeply analyzes the internal
structure of the TCRα and TCRβ chains. It then calculates the
alignment of CDR2.5α, CDR3α, CDR2.5β, etc., and sets a
reasonable weight for each region’s sequence. CDRdist only
considers the sequence alignment of the CDR3 region. The
Profile method is based on the physicochemical properties
of the amino acids, such as hydrophobicity, alkalinity, and
helicity, makes these values Z-normalized to construct a pro-
file, and calculates the distance between two profiles. From
the experimental results, the GapAlign method has a good
predictive effect.

151278 VOLUME 7, 2019



J. Bi et al.: Prediction of Epitope-Associated TCR by Using Network Topological Similarity Based on Deepwalk

TABLE 5. Prediction results of Our method, SVM, TCRGP and Random Forest with 10-fold cross-validation.

FIGURE 6. AUC value for each type of epitope.

D. COMPARISON OF EACH TYPE OF EPITOPE
We also compared the AUC values of each type of epitope
for the two prediction methods. Figure 6 shows that the AUC
value of 16 of the 22 types of epitopes is higher than that
of the SVM method. Poor prediction results for some of the
types of epitopes is thought to be caused by one or more
of the following reasons: (1) The TCR sequences in each
type of epitope are different, and there are also significant
differences between sequences. This similarity is related to
structure and function and is also closely related to the amino
acid of each locus. The amino acid of each locus affects
the nature of the amino acids around it. (2) Our data have

a sample imbalance problem that affects the performance
of our models and the accuracy of our predictions. We are
considering whether we can reduce the impact of this imbal-
ance. (3) Because we considered the topology of the TCR
sequences, the construction of the topology involves the dis-
tance method and the selection of their thresholds. Different
distance metrics and their choice of thresholds will affect the
experimental results. In this comparison experiment, we still
use the GapAlign method (threshold=90) to construct the
TCR-TCR similarity network topology.

E. COMPARISONS TO OTHER METHODS
Considering that no one has performed the prediction model
described above, in order to compare the performance of
our model, we trained a model for each type of epitope.
We randomly selected the background TCRs, with an equal
number of epitope-specific and background TCRs for each
type of epitope.

Because there are few TCR-epitope prediction methods,
we compared our method with only two methods, the SVM,
TCRGP and random forest method, to each type of epi-
tope prediction (Table 5). Unfortunately, our background
data from [16] did not contain information about the J gene
that the random forest classifier needs. However, accord-
ing to the description of [18], the weights they ascribe to
the J genes are not very high. Therefore, in running the
random forest classifier, we only used the V gene. The
experimental data set consists of the CDR3β sequence data,
the dataset we described in II. All four methods use the
same sequence information and 10-fold cross-validation.
Table 5 shows that the AUC value of 9 of the 22 types
of epitopes was higher than that of the other methods.
The average AUC value achieved by our method is 0.853,
with a minimum of 0.660 for epitope GPGHKARVL and a
maximum of 0.950 for FRDYVDRFYKTLRAEQASQE.
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V. CONCLUSION
Identifying the TCR-epitope associations is important for
exploring the immune response mechanism of the human
body and further improving the development of medi-
cal vaccines. In this paper, we propose a similarity-based
TCR-epitope prediction method using a topological simi-
larity structure. First, we construct a TCR similarity topo-
logical network by calculating the distance between TCR
sequences. Second, we use the deepwalk method to extract
the features of the TCR similarity topology network and
then add it to the original amino acid features. Finally,
we put these features into an SVM classifier for classifi-
cation prediction, where ranking the posterior probabilities
of each type of epitope gives us the final result. Based
on 10-fold cross-validation, we used ROC curve, PR curve
and other evaluation indicators to evaluate our prediction
model.

Although we have achieved good results by adding the
TCR similarity topological network to the TCR-epitope pre-
diction, there are also some inevitable limitations. First,
to improve the prediction accuracy of our method, the CDRα
chain or TCR structure similarity can be added for predic-
tion so that the features of the TCR are more complete
and may improve the prediction accurancy. The currently
known TCR-epitope associations are insufficient. Therefore,
TCR-gene and gene-epitope associations can be used for
similarity learning, which may improve the predicted results.
Next, in this article, we only consider the similarity topology
of TCRs; we can also construct the similarity topology of
epitopes to improve our prediction.
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