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ABSTRACT Epilepsy is one of the most common serious brain disorders affecting 1% of the world
population. Epileptic seizure events are caused by abnormal excessive neuronal activity in the brain,
which may be associated with behavioural changes that severely affect the patients’ quality of life. These
events are manifested as abnormal activity in electroencephalography (EEG) recordings of individuals with
epilepsy. This paper presents the on-chip implementation of an algorithm that, operating on the principle
of data selection applied to seizures, would be able to reduce the power consumption of EEG devices,
and consequently their size, thereby significantly increasing their usability. In order to reduce the power
consumed by the on-chip implementation of the algorithm, mathematical approximations have been carried
out to allow for an analog implementation, resulting in the power consumed by the system to be negligible in
comparison to other blocks in an EEG device. The system has been fabricated in a 0.18 µm CMOS process,
consumes 1.14 µW from a 1.25 V supply and achieves a sensitivity of 98.5% while only selecting 52.5% of
the EEG data for transmission.

INDEX TERMS Seizure, epilepsy, electroencephalography (EEG), System-on-Chip (SoC),
seizure detection.

I. INTRODUCTION
Epilepsy is a serious neurological condition affecting more
than 1% of the world population. It is characterized by seizure
episodes resulting from abnormal brain activity that affects
quality of life of patients. Recurring seizures can result in
reduced activities related to the patient’s work, educational
and social life [1]. Despite the significant consequences of
epilepsy, almost 25% of patients are misdiagnosed [2].

The diagnosis of epilepsy often involves the use of elec-
troencephalography (EEG) to monitor the brain activity of
patients. Seizures can be infrequent events, occuring in the
space of weeks or months, and about two-thirds of patients
have between 1 and 12 seizures a year [3]. Long-term EEG
monitoring is therefore desirable in order to capture epileptic
traces and to increase the diagnostic yield [4]. Continuous
EEG recordings carried out in hospital settings are costly and
the secluded setup reduces the patient exposure to seizure pro-
voking factors that may have otherwise resulted in seizures
being recorded. Recordings can be carried out in a home set-
ting using Ambulatory EEG (AEEG) units. However, AEEG
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units in their current form have a number of shortcomings
[5], [6], including their bulkiness, heaviness (over 500 g) and
short battery lifetime (less than 3 days).

The creation of truly Wearable EEG (WEEG) systems
would allow for the long term monitoring of patients in the
comfort of their natural environment. By monitoring patients
in their own environment, as opposed to a clinical setup,
patients can be exposed to stimuli that would provoke the
seizure activity under investigation.

The WEEG system must maintain key features including
wireless connectivity, miniature size, light-weight and low
power consumption, while complying with medical regula-
tory standards such as those provided by the International
Federation of Clinical Neurophysiology (IFCN) [7] and Inter-
national Electrotechnical Commission (IEC) [8] to ensure the
clinical-grade gathering of EEG signals and patient safety.
Wireless connectivity of the WEEG system to a base station
(e.g. mobile phone or tablet) is desirable to avoid long wired
connections that may limit patient movement during the mon-
itoring period. The WEEG system ergonomics and wireless
connectivity features are also important from a privacy stand-
point, sincewearing a larger devicewith longwiresmaymake
apparent the user’s health condition. Low-power operation of
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the WEEG system is essential in order to achieve long-term
monitoring, without interruption, from miniature batteries
limited by the mentioned size and weight considerations.
Extending the battery lifetime through low-power operation
of the WEEG system would also mitigate the inconvenience
and risks associated with recharging or replacement of batter-
ies by untrained users.

The WEEG system architecture would at least contain an
Instrumentation Amplifier (IA), Analog to Digital Converter
(ADC) and a transmitter [9]. A power analysis carried out
in [10] for a 32 channel EEG system using state-of-the-art
IAs, ADCs and transmitter modules revealed that due to
the continuous transmission of raw EEG signals, the power
consumed by the transmitter would account for 97% of
the total power consumption of the EEG system. In the
context of epilepsy monitoring, a number of recently pub-
lished works, focusing on treatment rather than diagnosis,
targeted a reduction on the communication cost by detecting
seizures locally. A reduction of 14× in system power con-
sumption has been achieved in the work of [11]. This sys-
tem transmits feature-vectors, rather than raw EEG signals,
and seizure detection is performed in the software domain
using the extracted features. Feature Extraction (FE) is car-
ried out in the seizure detection System-on-Chip (SoC) of
[12] by deriving the spectral energy distribution of the input
EEG signal prior to the classification stage. The SoC uti-
lizes a Non-Linear Support Vector Machine (NLSVM) clas-
sifier to perform the patient-specific seizure classification,
while consuming 19.6 µW/channel (FE+ classification).
The implantable seizure detection system of [13] is designed
based on counters that detect high frequency activity while
consuming 1.5µW/channel. The system uses parameters that
must be tuned specifically to each patient. An implantable
seizure detector utilizing signal entropy and frequency spec-
trum based feature extraction together with a Linear Least
Square (LLS) classifier has been reported in [14]. The SoC
requires patient-specific training and achieves a power con-
sumption figure of 162.31 µW/channel. The patient-specific
and implantable seizure detector of [15] uses the line length
feature to discriminate between seizures and background
activity, subsequent to compressive sensing and digitiza-
tion stages, while performing seizure classification using a
thresholding scheme. The SoC consumes 0.85 µW/channel.
Seizure events are detected in the implantable seizure count-
ing system of [16] by deriving the input signal energy in
different frequency bands. A lookup table is also generated
during a patient-specific training phase, and is used to match
the measured energy values with the probability of seizure
occurrence. The power consumed by the seizure detector
is 0.45 µW/channel. All these patient-specific approaches
to detect seizure occurence ([11]–[16]) focus on the real-
time treatment of epilepsy through closed-loop instantaneous
seizure suppression and symptom alleviation. Patient-specific
approaches can be utilized in systems intended for epilepsy
treatment since patients requiring such systems have already
been diagnosed with epilepsy and therefore the gathered EEG

data, which is known to contain seizure activity, can be used
for training the seizure detection algorithms.

This paper presents a scalable EEG data selection SoC
targeting a different aspect of epilepsy, which is the diagnosis
stage, for which the previously mentioned approaches are
unsuitable. The mentioned seizure detection systems require
a training phase using patient-specific EEG data containing
marked seizure events, which may be available during the
post-diagnosis stage. Such patient-specific data is, however,
not readily available during the diagnosis stage.

The system presented in this paper reduces the amount of
data to be transmitted by a WEEG device by continuously
selecting sections of EEG data containing likely seizure activ-
ity. In other words, the system aims not to ‘lose’ seizure
related sections of recorded signal that are important for
the neurologist to see to make a diagnosis; whilst at the
same time still reducing the amount of data that needs to be
transmitted in order to significantly reduce the overall power
consumed by theWEEG device. Note that reviewing raw and
relevant EEG data is currently considered to be important for
neurologists during the diagnostic process. As an illustration,
a survey of neurologists, carried out in [5], revealed that the
majority of respondents would not trust systems performing
‘automated diagnosis’, i.e. systems that would automatically
mark clinical events without the intervention of neurologists
during the diagnosis stage. In contrast, a large portion of
the surveyed neurologists were in favour of systems that
would reduce the amount of EEG data presented to them.
It is also important to note that the process of manually
reviewing raw EEG data by neurologists is time consuming,
taking approximately 2 h per 24 h of recordings [17]. Hence,
this approach, has the advantages of simultaneously reducing
the power of the EEG system, but also the amount of time
required by neurologists to review the transmitted EEG data,
since it still gives them access to the clinically relevant seizure
information, whilst eliminating large amounts of recorded
brain signal that has nothing diagnostically important in them.
Furthermore, because of its very low power consumption,
the system presented in this paper could also be used in the
WEEG system in combination with others which focus on
selecting other relevant but also, in some cases, important
diagnostic biomarkers, such as interictal spikes [10].

The remainder of this paper has been organised as fol-
lows. The concept of data selection in WEEG devices and
epilepsy monitoring has been explained in Section II. This
is followed by Section III, in which the system architecture
together with the circuits blocks used in the system have
been presented. The front-end and control circuitry are dis-
cussed in Section IV. Subsequently, measurement and per-
formance results of the fabricated chip have been presented
in Section V.

II. SEIZURE SELECTION
The complexity of the data selection system should be kept to
a minimum to allow for the power consumed by this stage to
remain negligible compared to the other blocks in the WEEG
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FIGURE 1. Overview of data selection algorithm.

unit. The system presented in this work utilizes the algorithm
proposed in [18], as a foundation. The algorithm operates
based on the concept of discontinuous recording [5], in which
sections of raw EEG data containing clinically interesting
events are selected while background EEG is discarded. The
main operation of the algorithm has been illustrated in Fig. 1.
The EEG input to each channel of the algorithm is initially
high pass filtered with a cutoff frequency of 0.16 Hz. The
following decimation block includes a third order low pass
filter to strongly attenuate the signal frequency components
above 10 Hz and allow for downsampling the input signal
to 20 Hz, while avoiding distortion resulting from aliasing.
The downsampled signal is used during the line length fea-
ture extraction in the form of 2 s non-overlapping windows
of EEG data. The mentioned windows of data are hereon
referred to as ‘epochs’. The line length is calculated over each
epoch as

L(e) =
S∑

k=1

|x(k − 1)− x(k)| (1)

where e is the epoch number being processed and L(e), x,
k and S are the line length calculated within the epoch,
downsampled signal, sample number and total number of
samples in the epoch, respectively. Signal normalization is
performed in the next stage of the algorithm to correct for
changes in signal amplitude between different patients or due
to the quality of the electrodes. Normalization is performed
using the median decaying memory calculated as

z(e) = (1− λ)×median{L(e− 1) . . . L(e− B1)}

+ λ× z(e− 1) (2)

where z(e) represents the estimated background activity cal-
culated for the current epoch. The number of epochs used in
the median calculation (searching window) is B1 and λ is a
decay constant which controls the effect of previously derived
values of z.
A start-up time of 2 min was chosen for the algorithm

in the work of [18] to allow for the background estimate

z(e) to reach the same range of values as L(e), during
which the median is derived using all available epochs and
λ = 0.92. The value of λ is increased to 0.99 after the initial
2 min period to reduce the effect of erroneous values of the
median calculation likely caused by seizure events [18]. The
normalization estimate is calculated over a 120 s period and
therefore B1 = 60 for 2 s epochs.
Hardware implementations of median filters, not specifi-

cally designed for processing EEG signals, have been previ-
ously reported in the literature and proven to be power hungry.
A 3 input median filter has been proposed in [19] consuming
14 mW and the work of [20] reports a 9 input median circuit
consuming 1.25 mW. Since in (2), the median operation is
performed on the input signal and its time-shifted copies,
the required delay elements (60 in the case of (2)) would
only add to the hardware implementation complexity and
power consumption. Due to the limited power budget for the
algorithm hardware implementation in this work, a moving
average filter was used to estimate the background activity
instead of the median decaying memory. The moving average
(MAV) is calculated as

MAV (e) =
1
B2

B2−1∑
i=0

L(e− i) (3)

where B2 is the window length of the filter and which was
set to 60, similar to B1 in the median decaying memory
calculation of (2). For B2�1, the moving average of (3)
can be approximated in the less computationally expensive
recursive form, that was used in this work to estimate the
backgroud activity (z(e)) as in (4) [21].

z(e) =
B2 − 1
B2

× z(e− 1)+
L(e)
B2

. (4)

It should be noted that equation (4) is specific to processing
discrete time signals. Considering the epoch duration of 2
s (fs = 500 mHz), the transfer function of the moving
average corresponds to a single-pole recursive low pass filter
with a cutoff frequency (fc) of 1.3 mHz calculated using (5),
allowing for a continuous time analog domain approximation
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FIGURE 2. System-level implementation of the data selection algorithm.

which was used in the hardware implementation, shown later
in Section III.

fc =
−fs
2π

ln
(
B2 − 1
B2

)
. (5)

The normalization stage is completed by dividing the out-
put of the line length calculation by the background estimate
as:

A(e) = L(e)/z(e). (6)

A detection flag for the channel being analysed (represented
byDFn(e) in Fig. 1) will be set to ‘1’ if the normalized feature
A(e) is greater than a user set threshold (β). Candidate seizure
events are selected using a multichannel approach and there-
fore, a section of EEG data is selected for containing likely
seizure activity only if the number of channels with a detec-
tion of ‘1’ is higher than a threshold of 4 (chosen empirically).

III. SYSTEM ARCHITECTURE
The system level implementation of the algorithm is shown in
Fig. 2. An initial low-pass filtering stage strongly attenuates
the signal frequency components above 10 Hz to ensure that
the signal can be subsequently sampled during the line length
feature calculation at a reasonable sampling rate. The filter
was created by cascading three first order GmC low-pass
filters with cutoff frequencies of 21 Hz, achieved by a biasing
current of 200 pA for each filter OTA and an integrated
capacitance of 20 pF.

The line length equation of (1) was implemented by sub-
tracting the original signal from a delayed copy of itself, fol-
lowed by a rectifier and integrator. The delay line was created
by cascading six of the delay cells proposed in [22], each
consisting of two SC stages and controlled by complementary
clock signals. The delay cells were clocked at 128 Hz with a
duty cycle of 50%, resulting in an overall delay of 47 ms for
the six cascaded delay cells. A single stage GmC low-pass
filter with a cutoff frequency of 40 Hz, placed after the delay
circuit, effectively attenuates the distortion resulting from
the clock signal frequency component and its harmonics.
As shown in Fig. 3a, the subtractor circuit utilizes quasi-
infinite resistors (MR2−R3) and capacitors (C1−2) to block the
DC offset resulting from the previous circuitry. The circuit

FIGURE 3. Subtractor circuit to subtract the low-pass filtered input signal
from a delayed copy of itself (a) subtractor top-level design (b) OTA circuit.

was designed to have a gain (−C1/C2) of −1 by choosing a
capacitance of 10 pF for both C1 and C2. The negative sign is
of no consequence since the subtractor output is subsequently
passed through a full-wave rectifier. A PMOS input stage was
used in the subtractor OTA (Fig. 3b) to reduce the effect of
low frequency noise on the subtractor output. The biasing
current of the OTA was set to 12.5 nA, and cascoded devices
(M3 −M6) were used to maintain the DC operating point.
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FIGURE 4. Rectifier circuit topology. The input signal is passed through an
amplifier (A1 or A2) based on the comparison result against Vref.

The design of the full-wave rectification stage was influ-
enced by the concept proposed in [23], in which compari-
son results of the input signal (Vin) against a DC reference
voltage (Vref) is used to discriminate between the positive
and negative signal polarities (see Fig. 4). A low impedance
path is provided to the outputs of the non-inverting and
inverting amplifiers (A1 and A2) upon selection based on the
comparator output, through the switches (S1 and S2) which
were implemented using minimum sized NMOS devices.
The following SC low-pass filter, implemented based on the
work of [24], effectively integrates the rectified signal to
approximate the line length behaviour.

The low-pass filter clock frequency was set to 128 Hz
with a duty cycle of 4% to achieve a filter cutoff frequency
of 100 mHz.

The transfer function of the recursive moving average of
(4) results in a filter with a cut off frequency of 1.3 mHz.
The low-pass filter of [24], was also used to approximate the
moving average filter using a 128 Hz clock with a duty cycle
of 0.5%. A Programmable Gain Amplifier (PGA) behaving
as a multiplier was implemented using the Operational
Transconductance Amplifier (OTA) based amplifier topology
of [25], to apply the user-set threshold values (β) to the
background estimate. The PGA consists of two OTAs and
the gain of the amplifier represents the user set threshold
values. The gain of the amplifier is set, by the ratio of the
biasing currents of the two OTAs, to achieve a desired system
performance after deciding on the specific tradeoff between
sensitivity and amount of data reduction.

A comparator detects the time periods for which the
line length output VL is greater than the modulated back-
ground estimate (βVZ ). As can be seen in Fig. 5a, three
pre-amplification stages (A1 − A3) were used prior to the
dynamic latch for an output offset cancellation scheme (OOS)
implementation to reduce the effect of the comparator offset
[26]. Due to the low speed requirement of the comparator,
the devices in the pre-amplifiers shown in Fig. 5b were biased
in the weak inversion region. Current injecting devices (Mi1−

Mi2) were used to increase the transconductance of the input
transistors compared to the diode connected load transistors
(gm1 > gm3), resulting in a moderate gain of 5.5 for each of

FIGURE 5. Comparator producing the system output detection flag (a)
top-level architecture (b) pre-amplifier schematic.

the pre-amplifiers. The comparator output was sampled in 2 s
intervals to create the effect of non-overlapping epochs inline
with the epoch duration of the data selection algorithm.

IV. SYSTEM FRONT END AND CONTROL CIRCUITRY
The IA, which was designed based on the topology reported
in [27], achieves a mid-band gain of 37 dB and input referred
noise of 4 µVrms integrated from 0.5-100 Hz. A proportional
to absolute temperature current generation circuit was used
to draw a reference current of 366 nA from the 1.25 V
power supply. The currents required by the circuits in the data
selection system were generated using scaled copies of the
reference current. An 8b counter circuit using JK flip-flops
followed by D flip-flops and combinational digital logic was
used to scale-down a 32.6 KHz clock provided by an off-chip
oscillator and to generate the low duty cycle pulses required
for the circuits in the system.

V. FABRICATION AND TESTING
A. CHIP FABRICATION
The chip was fabricated in a 0.18 µm, tripple well 6 metal
AMS CMOS technology. The chip padring was split into
the two separate padrings to isolate sensitive analog circuitry
from the noisy digital stages. The chip micrograph is shown
in Fig. 6. The active area consumed by the seizure selection
system is 1.48 mm2.

B. EXPERIMENTAL RESULTS
A National Instruments NI USB-6259 data acquisition board
(DAQ) was used to feed the input signals to the chip and
to gather the output results and intermediate test-points.
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FIGURE 6. Micograph of fabricated chip.

The DAQ board introduces a capacitive load of 15 pF to its
analog input signals and the implemented circuits generally
have a low driving ability not suitable for driving the off-
chip load. Single stage analog buffer circuits with a biasing
current of 40 µA, provided through a separate 1.8 V supply
and ground pad, were placed on-chip after the analog test-
points for testing purposes. A digital buffer was also placed
at the decision flag output.

The EEG dataset used for testing the system performance
contains over 168 h of recordings from 21 patients and
34 marked seizure events from the Epilepsy Society (UK),
Freiburg University Hospital (Germany) and Katholieke Uni-
versiteit Leuven (Belgium) [28], [29]. A summary of the
dataset is provided in Table 1 together with the number
of events per patient. The 16 channels used for testing the
system performance are chosen as the channels common to
all recordings in the dataset and are: C3, C4, CZ, F3, F4, FZ,
F7, F8, FP1, FP2, O1, O2, T3, T4, T5, and T6.

A 700 s trace of EEG data from patient 5 (channel C3),
shown in Fig. 7, includes a marked seizure event (from 341 s
to 416 s time marks) and has been used to illustrate the
system behaviour. The modelled and measured line length
signal (VL) and background estimate output (VZ ) in response
to the input data trace is presented in Fig. 8a and Fig. 8b
respectively. It can be seen that the measured signals (solid)
are inline with the shape of themodelled (dashed) results. The
system detection flag output (VDF ) is also shown in Fig. 8c.

The indices used to report the system performance are
sensitivity and specificity. In order to distinguish between the
number of seizure events correctly identified by the system
and the number of identified seizure epochs, two variants of
sensitivity have been used which are event sensitivity and
epoch sensitivity. Event sensitivity is calculated as

Event Sensitivity=
TPev

TPev + FNev
× 100% (7)

FIGURE 7. A 700 s section of EEG containing a seizure event with a
duration of 75 s (from 341 s to 416 s time marks).

FIGURE 8. System outputs in response to the input EEG trace (a) Line
length calculation (VL) (b) Output of moving average approximation (VZ )
(c) Detection flag output.

where TPev is the number of True Positives and is equal to the
number of correctly identified seizure events. The number of
seizure events that have not been identified by the system has
been considered as False Negatives (FNev). The calculation
of epoch sensitivity follows the general form of (7), as

Epoch Sensitivity=
TPep

TPep + FNep
× 100% (8)
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TABLE 1. Dataset used for testing the system performance.

FIGURE 9. System performance tradeoff curve.

where TPep and FNep are the number of correctly detected
seizure epochs and incorrectly rejected seizure epochs
respectively.

Considering the 75 s seizure event of Fig. 7 and the epoch
duration of 2 s used in this work, a single detection by the
system during any of the 37 epochs will result in an event
sensitivity of 100%. However, to achieve an epoch sensitivity
of 100%, the systemmust correctly identify all present epochs
as seizure epochs resulting in 37 detections. The detection
flag output (Fig. 8c) indicates that the system is able to
identify the seizure event (event sensitivty of 100%) while
correctly detecting 29 out of the 37 seizure epochs present,
resulting in an epoch sensitivity of 78.3%.

When testing the system performance on data obtained
from patients during long recording periods, where the
duration of seizure events is insignificant compared to the
overall duration of the recordings, the percentage of data
transmitted is very close to 100% − specificity [18]. The
specificity of the system is calculated using (9), where TNep

TABLE 2. System performance summary.

and FPep are the number of correctly rejected non-seizure
epochs (True Negatives) and the number of incorrectly
detected non-seizure epochs (False Positives) respectively.

Specificity=
TNep

TNep + FPep
× 100% (9)

In order to keep the duration of the measurement pro-
cess across the dataset of Table 1 reasonable, the values of
the sensitivity and percentage of data transmitted indices
were calculated and averaged across all epochs using four
threshold (β) values of 0.9, 1.1, 1.3 and 1.5. The system
performance tradeoff curve is shown in Fig. 9. It can be
seen that the system is able to achieve an epoch sensitivity
of 82.8% and an event sensitivity of 98.5% for a percentage
of data transmitted of 52.5%. In comparison, for the same
percentage of data transmitted, the mathematical model of the
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TABLE 3. Comparison with published works.

data selection algorithm achieves an event sensitivity of 100%
and epoch sensitivity of 85%. The difference in the results
is due to the mathematical approximations carried out in the
original algorithm in order to aid the analog implementation.

The performance metrics must be considered in the context
of the system aim, namely power reduction for a WEEG
unit to aid with the diagnosis of epilepsy. It is expected that
performance results achieved for the system event sensitivity
will be higher than that of epoch sensitivity since it is easier
to detect a single seizure event as opposed to detecting all
seizure epochs. Event sensitivity is an important metric for
real-time treatment systems that require a seizure event to
be detected to allow for focal treatment and prevent seizure
progression. However, epoch sensitivity is also an essential
metric for the system of this work since a higher number for
this metric would indicate that a larger percentage of interest-
ing EEG data has been successfully selected for transmission,
resulting in increased accuracy in the diagnosis.

A summary of the chip performance is shown in Table 2.
The fabricated chip consumes 910 nA from a 1.25 V supply
resulting in a power consumption figure of 1.14 µW. A com-
parison of this work with other published seizure detection
SoCs has been shown in Table III. It should be noted that
the previously published seizure detection systemsmentioned
in Table 3 require patient-specific training and the EEG
data required to train these systems on a patient-by-patient
basis is already marked as corresponding to seizure or non-
seizure. This training data may be available once a patient
is diagnosed with epilepsy, however, such data is not readily
available during the diagnosis stage, rendering the mentioned
systems unsuitable for use during this stage, unlike the system
proposed in this paper. It is also difficult to directly compare
the performance of the system presented in this paper, which
is intended to aid the diagnosis of epilepsy, with works that
focus on the real-time treatment (management) aspect of
epilepsy and are designed based on different requirements.
For example, the delay in seizure detection (latency) is an
important metric in seizure detectors operating in real-time
[31], but not so in the proposed system as the transmitted sec-
tions of data will ultimately be reviewed by a neurologist after

being gathered, and not in real time. Instead, the ability of the
system to identify the entire duration of seizure events (epoch
sensitivity), in addition to the ability of the system to identify
the occurrence of seizures (event sensitivity), are important
performance indices in a system intended to be used to aid the
diagnosis of epilepsy. Furthermore, the selection of false pos-
itives by the proposed system does not affect the overall EEG
analysis as it is the neurologist, and not the presented system,
who makes the final decision on the clinical relevance of
the transmitted sections of data and rejects incorrect features.
This is unlike systems performing seizure event quantifica-
tion, where any false detections result in the overall result
to be fundamentally incorrect, resulting in a very low false
positive rate requirement. The SoC proposed in [30], which
is a fully digital on-chip implementation of the algorithm of
[18] and also operates based on the concept of discontinu-
ous recording, can aid neurologists in the diagnosis stage of
epilepsy. However, the power figure of 23 µW reported for
the SoC of [30] is almost 23 times larger than the power con-
sumed by the SoC presented in this paper, which is 1.14 µW.

To put numbers into context, assuming a conventional
wireless EEG unit (32 channels) with no data reduction and
created using an array of 32 IAs, ADCs and a single transmit-
ter module based on previously reported low-power works
with power consumption figures of 1.62 µW [31], 200 nW
([32]) and 2.112 mW ([33]), respectively, will result in a
overall power consumption of 2.171mW for the EEG system.
Including an array of 32 data selection stages in the EEG
system will result in an added power figure of 36.5µWwhile
effectively reducing the power consumed by the transmitter
by a factor of 2 (for a data reduction of 50%), resulting in
a reduced overall power consumption figure of 1.15 mW for
the EEG system. This power figure translates to over 213 h
(∼ 9 days) of operation from a miniature battery typically
used in hearing aids [34]. The achieved power savings could
also be capitalized on by using the system proposed in this
work in combination with other data reduction stages that
select inter-ictal sections of EEG data, such as [10], to obtain
a complete WEEG system for the purpose of epilepsy
diagnosis.
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VI. CONCLUSION
This paper presented the design and experimental results
for a low-power seizure focused power reduction SoC. The
mapping of the mathematical model of the seizure selection
algorithm to an analog-based SoC, together with the hardware
design procedure and implementation are discussed. The ana-
log based seizure selection circuitry are implemented using
a 0.18 µm CMOS process. A power analysis presented as
part of this paper shows the potential of the power reduction
SoC in extending the battery lifetime of a EEG system to
over 9 days of operation. The seizure focused power reduction
SoC, which is tested with over 168 hours of EEG data from
21 patients and 34 marked seizure events, is able achieve a
sensitivity of 98.5% while selecting 52.5% of the EEG data
for transmission and consuming 1.14 µW.
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